Effects of Different Frying Oils Composed of Various Fatty Acids on the Formation of Multiple Hazards in Fried Pork Balls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Materials
2.2. Experiment Reagent
2.3. Sample Pretreatment
2.4. Fatty Acid Composition in Original Frying Oil
2.5. Determination of Basic Indicators
2.6. Simulating Protein Digestibility In Vitro
2.7. Determination of Acrylamide in the Fried Samples
2.8. Determination of PAHs in the Fried Samples
2.9. Determination of HCAs in the Fried Samples
2.10. Determination of TFAs in the Fried Samples
2.11. Statistical Analysis
3. Results and Discussions
3.1. The Fatty Acid Composition in Original Frying Oil
3.2. The Basic Indicators
3.3. The Content of Acrylamide
3.4. The Content of PAHs
3.5. The Content of HCAs
3.6. The Content of TFAs
3.7. The Content of Total Hazards
3.8. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, J.; Xiong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef]
- Zhang, Q.; Saleh, A.S.; Chen, J.; Shen, Q. Chemical alterations taken place during deep-fat frying based on certain reaction products: A review. Chem. Phys. Lipids 2012, 165, 662–681. [Google Scholar] [CrossRef] [PubMed]
- Grootveld, M.; Addis, P.B.; Le Gresley, A. Editorial: Dietary lipid oxidation and fried food toxicology. Front. Nutr. 2022, 9, 858063. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, H. Higher risk of cardiovascular disease associated with diet of fried food, fats, and sugary drinks. J. Nutr. Weight Loss 2021, 151, 3746–3754. [Google Scholar]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Lu, F.; Kuhnle, G.K.; Cheng, Q. Vegetable oil as fat replacer inhibits formation of heterocyclic amines and polycyclic aromatic hydrocarbons in reduced fat pork patties. Food Control 2017, 81, 113–125. [Google Scholar] [CrossRef]
- Lee, J.S.; Han, J.W.; Jung, M.; Lee, K.W.; Chung, M.S. Effects of thawing and frying methods on the formation of acrylamide and polycyclic aromatic hydrocarbons in chicken meat. Foods 2020, 9, 573. [Google Scholar] [CrossRef]
- Morales, G.; Jimenez, M.; Garcia, O.; Mendoza, M.R.; Beristain, C.I. Effect of natural extracts on the formation of acrylamide in fried potatoes. Food Sci. Technol. 2014, 58, 587–593. [Google Scholar] [CrossRef]
- Priego-Capote, F.; Ruiz-Jiménez, J.; de Castro MD, L. Identification and quantification of trans fatty acids in bakery products by gas chromatography–mass spectrometry after focused microwave Soxhlet extraction. Food Chem. 2007, 100, 859–867. [Google Scholar] [CrossRef]
- Cancer, I. Infection with schistosomes, liver flukes and helicobacter pylori. Iarc Monogr. Eval. Carcinog. Risks Hum. 1994, 61, 1–241. [Google Scholar]
- Stadler, R.H.; Robert, F.; Riediker, S.; Varga, N.; Davidek, T.; Devaud, S.; Goldmann, T.; Hau, J.; Blank, I. In-Depth Mechanistic Study on the Formation of Acrylamide and Other Vinylogous Compounds by the Maillard Reaction. J. Agric. Food Chem. 2004, 52, 5550–5558. [Google Scholar] [CrossRef]
- Lim, P.K.; Jinap, S.; Sanny, M.; Tan, C.P.; Khatib, A. The influence of deep frying using various vegetable oils on acrylamide formation in sweet potato (Ipomoea batatas L. Lam) chips. J. Food Sci. 2014, 79, T115–T121. [Google Scholar] [CrossRef]
- Raar, A.; Ahat, A.; Ak, A.; Msb, C.; Isid, E. Intermittent frying effect on French fries in palm olein, sunflower, soybean and canola oils on quality indices, 3-monochloropropane-1,2-diol esters (3-MCPDE), glycidyl esters (GE) and acrylamide contents. Food Control 2021, 124, 107887. [Google Scholar]
- Demirok, E.; Kolsarıcı, N. Effect of green tea extract and microwave pre-cooking on the formation of acrylamide in fried chicken drumsticks and chicken wings. Food Res. Int. 2014, 63, 290–298. [Google Scholar] [CrossRef]
- Ehling, S.; Hengel, M.; Shibamoto, T. Formation of Acrylamide from Lipids. Adv. Exp. Med. Biol. 2005, 561, 223. [Google Scholar]
- Cao, J.; Zou, X.G.; Deng, L.; Fan, Y.W.; Li, H.; Li, J.; Deng, Z.Y. Analysis of nonpolar lipophilic aldehydes/ketones in oxidized edible oils using HPLC-QqQ-MS for the evaluation of their parent fatty acids. Food Res. Int. 2014, 64, 901–907. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Iarc Monogr. Eval. Carcinog. Risks Hum. 2010, 92, 1. [Google Scholar]
- Nie, W.; Cai, K.; Li, Y.; Tu, Z.; Hu, B.; Zhou, C.; Chen, C.; Jiang, S. Study of polycyclic aromatic hydrocarbons generated from fatty acids by a model system. J. Sci. Food Agric. 2019, 99, 3548–3554. [Google Scholar] [CrossRef]
- Ledesma, E.; Rendueles, M.; Díaz, M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control 2016, 60, 64–87. [Google Scholar] [CrossRef]
- Chen, B.H.; Chen, Y.C. Formation of polycyclic aromatic hydrocarbons in the smoke from heated model lipids and food lipids. J. Agric. Food Chem. 2001, 49, 5238–5243. [Google Scholar] [CrossRef]
- Tai, C.Y.; Lee, K.H.; Chen, B.H. Effects of various additives on the formation of heterocyclic amines in fried fish fibre. Food Chem. 2001, 75, 309–316. [Google Scholar] [CrossRef]
- Puangsombat, K.; Gadgil, P.; Houser, T.A.; Hunt, M.C.; Smith, J.S. Occurrence of heterocyclic amines in cooked meat products. Meat Sci. 2012, 90, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Ekiz, E.; Oz, F. The effects of different frying oils on the formation of heterocyclic aromatic amines in meatballs and the changes in fatty acid compositions of meatballs and frying oils. J. Sci. Food Agric. 2019, 99, 1509–1518. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Shand, P.; Dugan, M.E.R.; Gariepy, A.; Juárez, M. Influence of cooking methods and storage time on lipid and protein oxidation and heterocyclic aromatic amines production in bacon. Food Res. Int. 2017, 99, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Zamora, R.; Hidalgo, F.J. 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) formation and fate: An example of the coordinate contribution of lipid oxidation and maillard reaction to the production and elimination of processing-related food toxicants. RSC Adv. 2015, 5, 9709–9721. [Google Scholar] [CrossRef]
- dos Santos, B.; Estadella, D.; Hachul AC, L.; Okuda, M.H.; Moreno, M.F.; Oyama, L.M.; Ribeiro, B.; Claudia Maria da Penha Oller do Nascimento. Effects of a Diet Enriched with Polyunsaturated, Saturated, or Trans fatty acids on Cytokine Content in the Liver, White Adipose Tissue, and Skeletal Muscle of Adult Mice. Mediat. Inflamm. 2013, 2013, 594958. [Google Scholar] [CrossRef]
- Dam, R.V. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Ann. Intern. Med. 2002, 136, 201–209. [Google Scholar] [PubMed]
- Cui, Y.; Hao, P.; Liu, B.; Meng, X. Effect of traditional Chinese cooking methods on fatty acid profiles of vegetable oils. Food Chem. 2017, 233, 77–84. [Google Scholar] [CrossRef]
- Ayodeji, O.F.; Ganiyu, O. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β -Carotene Content of Arachis Oil. Int. J. Food Sci. 2015, 2015, 806524. [Google Scholar]
- Choe, E.; Min, D.B. Chemistry of deep-fat frying oils. J. Food Sci. 2007, 72, R77–R86. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, C.; Wang, C.; Chen, H.; Liu, Y.; Li, S. Evaluation of the non-aldehyde volatile compounds formed during deep-fat frying process. Food Chem. 2018, 243, 151–161. [Google Scholar] [CrossRef]
- Zribi, A.; Jabeur, H.; Aladedunye, F.; Rebai, A.; Matthäus, B.; Bouaziz, M. Monitoring of Quality and Stability Characteristics and Fatty Acid Compositions of Refined Olive and Seed Oils during Repeated Pan- and Deep-Frying Using GC, FT-NIRS, and Chemometrics. J. Agric. Food Chem. 2014, 62, 10357–10367. [Google Scholar] [CrossRef] [PubMed]
- Gb/T 5009.5-2016; Determination of Protein Content in Food. Standards Press of China: Beijing, China, 2016.
- Gb/T 5009.3-2016; Determination of Water Content in Food. Standards Press of China: Beijing, China, 2016.
- Wen, S.; Zhou, G.; Li, L.; Xu, X.; Yu, X.; Bai, Y.; Li, C. Effect of Cooking on in Vitro Digestion of Pork Proteins: A Peptidomic Perspective. J. Agric. Food Chem. 2015, 63, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Escudero, E.; Sentandreu, M.A.; Toldrá, F. Characterization of peptides released by in vitro digestion of pork meat. J. Agric. Food Chem. 2010, 58, 5160–5165. [Google Scholar] [CrossRef] [PubMed]
- Sanny, M.; Jinap, S.; Bakker, E.J.; van Boekel, M.A.J.S.; Luning, P.A. Is lowering reducing sugars concentration in French fries an effective measure to reduce acrylamide concentration in food service establishments? Food Chem. 2012, 135, 2012–2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Dong, L.; Zhang, Y.; Yu, H.; Wang, S. Reduction of the Heterocyclic Amines in Grilled Beef Patties through the Combination of Thermal Food Processing Techniques without Destroying the Grilling Quality Characteristics. Foods 2021, 10, 1490. [Google Scholar] [CrossRef]
- Dogan, S.F.; Sahin, S.; Sumnu, G. Effect of batters containing different protein types on the quality of deep-fat-fried chicken nuggets. Eur. Food Res. Technol. 2005, 220, 502–508. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, L.; Zhang, J.H.; Shi, J.Q.; Wang, Y.Y.; Wang, S. Adverse effects of thermal food processing on the structural, nutritional, and biological properties of proteins. Annu. Rev. Food Sci. Technol. 2021, 12, 259–286. [Google Scholar] [CrossRef]
- Gertz, C.; Klostermann, S. Analysis of acrylamide and mechanisms of its formation in deep-fried products. Eur. J. Lipid Sci. Technol. 2002, 104, 762–771. [Google Scholar] [CrossRef]
- Uriarte, P.S.; Guillen, M.D. Formation of toxic alkylbenzenes in edible oils submitted to frying temperature Influence of oil composition in main components and heating time. Food Res. Int. 2010, 43, 2161–2170. [Google Scholar] [CrossRef]
- An, K.; Liu, Y.; Liu, H. Relationship between total polar components and polycyclic aromatic hydrocarbons in fried edible oil. Food Addit. Contaminants. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1596–1605. [Google Scholar] [CrossRef]
- Zamora, R.; Hidalgo, F.J. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit. Rev. Food Sci. Nutr. 2005, 45, 49–59. [Google Scholar] [CrossRef]
- Weisshaar, R. Quality control of used deep-frying oils. Eur. J. Lipid Sci. Technol. 2014, 116, 716–722. [Google Scholar] [CrossRef]
- Kotsiou, K.; Tasioula-Margari, M.; Fiore, A.; Gökmen, V.; Fogliano, V. Acrylamide formation and colour development in low-fat baked potato products as influenced by baking conditions and oil type. Eur. Food Res. Technol. 2013, 236, 843–851. [Google Scholar] [CrossRef]
- Mestdagh, F.; De Meulenaer, B.; Van Peteghem, C. Influence of oil degradation on the amounts of acrylamide generated in a model system and in French fries. Food Chem. 2007, 100, 1153–1159. [Google Scholar] [CrossRef]
- Williams, J.S.E. Influence of variety and processing conditions on acrylamide levels in fried potato crisps. Food Chem. 2005, 90, 875–881. [Google Scholar] [CrossRef]
- Barzegar, F.; Kamankesh, M.; Mohammadi, A. Heterocyclic aromatic amines in cooked food: A review on formation, health risk-toxicology and their analytical techniques. Food Chem. 2019, 280, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Skog, K.; Jägerstad, M. Effects of edible oils and fatty acids on the formation of mutagenic heterocyclic amines in a model system. Carcinog 1993, 14, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Sabally, K.; Sleno, L.; Jauffrit, J.; Iskandar, M.M.; Kubow, S. Inhibitory effects of apple peel polyphenol extract on the formation of heterocyclic amines in pan fried beef patties. Meat Sci. 2016, 117, 57–62. [Google Scholar] [CrossRef]
- Bouchon, P. Understanding oil absorption during deep-fat frying. Adv. Food Nutr. Res. 2009, 57, 209. [Google Scholar]
- Falade, A.O.; Oboh, G.; Ademiluyi, A.O.; Odubanjo, O.V. Consumption of thermally oxidized palm oil diets alters biochemical indices in rats. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 150–156. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Wang, Y.; Cao, P.; Liu, Y. Effects of frying oils’ fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process. Food Chem. 2017, 237, 98–105. [Google Scholar] [CrossRef] [PubMed]
Item | Fatty Acid Composition | Polycyclic Aromatic Hydrocarbons | Trans Fatty Acids |
---|---|---|---|
Chromatographic column | HP-5 capillary column (0.25 μm × 0.25 μm ×30 m) | HP-88 capillary column (0.25 μm × 0.25 μm ×100 m) | |
Column temperature Box temperature | 120 °C (4 min) → 10 °C/min, 175 °C (6 min) → 1 °C/min, 210 °C (5 min) → 10 °C/min, 230 °C (5 min) | 80 °C (1 min) → 4 °C/min → 220 °C → (20 °C/min) → 280 min (10 min) | 120 °C (4 min) → 10 °C/min, 175 °C (6 min) → 1 °C/min, 210 °C (5 min) → 10 °C/min, 230 °C (5 min) |
Flow rate | 1.5 mL/min | 1.0 mL/min | 1.0 mL/min |
Inlet temperature | 250 °C | 320 °C | 300 °C |
Split ratio | 5:1 | - | 1 μL |
PO | SBO | PNO | CAO | CNO | |
---|---|---|---|---|---|
C16:0 | 30.06 ± 0.09 a | 11.85 ± 0.03 c | 11.28 ± 0.19 d | 4.76 ± 0.04 e | 14.15 ± 0.18 b |
C18:0 | 3.28 ± 0.01 c | 4.56 ± 0.00 a | 3.83 ± 0.04 b | 1.92 ± 0.10 d | 2.03 ± 0.01 d |
C18:1 | 51.90 ± 0.03 c | 30.95 ± 0.04 e | 52.70 ± 0.04 b | 68.16 ± 0.41 a | 31.54 ± 0.01 d |
C18:2 | 13.75 ± 0.01 d | 51.43 ± 0.01 a | 27.05 ± 0.02 b | 21.83 ± 0.54 c | 51.26 ± 0.04 a |
Other SFAs | 1.73 ± 0.16 b | 0.94 ± 0.01 c | 4.96 ± 0.14 a | 1.07 ± 0.01 c | 0.76 ± 0.16 c |
Other UFAs | 0.40 ± 0.01 b | 0.26 ± 0.01 c | 0.13 ± 0.00 d | 2.23 ± 0.02 a | 0.27 ± 0.05 c |
Other PUFAs | Nd | 0.02 ± 0.00 c | 0.06 ± 0.00 a | 0.05 ± 0.00 b | 0.02 ± 0.01 c |
ΣSFAs | 35.06 ± 0.06 a | 17.35 ± 0.04 c | 20.06 ± 0.01 b | 7.75 ± 0.15 d | 16.93 ± 0.00 d |
ΣMUFAs | 51.20 ± 0.05 c | 31.20 ± 0.03 d | 52.83 ± 0.04 b | 70.39 ± 0.39 a | 31.80 ± 0.04 d |
ΣPUFAs | 13.75 ± 0.01 d | 51.45 ± 0.01 a | 27.11 ± 0.02 b | 21.88 ± 0.54 c | 51.27 ± 0.04 a |
ΣUFAs | 64.94 ± 0.06 d | 82.65 ± 0.04 b | 79.94 ± 0.02 c | 92.26 ± 0.16 a | 83.07 ± 0.00 b |
IV | 75.73 ± 1.44 c | 130.13 ± 1.45 a | 111.13 ± 0.37 b | 114.70 ± 1.49 b | 134.22 ± 1.08 a |
PO | SBO | PNO | CAO | CNO | |
---|---|---|---|---|---|
Oil content | 2.56 ± 0.27 d | 4.02 ± 0.33 bc | 3.83 ± 0.859 c | 4.95 ± 0.62 ab | 5.81 ± 0.52 a |
Moisture content | 64.17 ± 1.25 bc | 66.34 ± 0.38 a | 65.49 ± 0.14 ab | 64.22 ± 0.79 bc | 62.73 ± 0.89 c |
Protein content | 33.88 ± 0.06 b | 34.66 ± 0.35 a | 32.89 ± 0.32 c | 31.87 ± 0.01 d | 31.68 ± 0.01 d |
Protein digestibility | 19.10 ± 0.14 d | 30.65 ± 0.71 a | 27.80 ± 0.70 b | 24.44 ± 0.77 c | 31.53 ± 0.03 a |
PO | SBO | PNO | CAO | CNO | |
---|---|---|---|---|---|
BaA | 1.26 ± 0.07 b | 1.30 ± 0.29 b | 1.58 ± 0.22 ab | 1.60 ± 0.18 ab | 1.85 ± 0.21 a |
Chr | 1.03 ± 0.17 c | 1.24 ± 0.39 c | 2.73 ± 0.37 b | 3.91 ± 0.19 a | 2.75 ± 0.07 b |
BaF | Nd | Nd | Nd | Nd | Nd |
BaP | 2.32 ± 0.35 c | 2.38 ± 0.33 c | 2.80 ± 0.44 b | 3.91 ± 0.23 a | 2.77 ± 0.25 b |
PAHs | 4.80 ± 0.07 d | 5.58 ± 0.25 c | 7.31 ± 0.34 b | 8.67 ± 0.17 a | 7.18 ± 0.33 b |
PO | SBO | PNO | CAO | CNO | |
---|---|---|---|---|---|
Norharman | 0.31 ± 0.03 e | 0.74 ± 0.05 b | 0.89 ± 0.03 a | 0.51 ± 0.02 d | 0.60 ± 0.02 c |
Harman | 0.09 ± 0.01 d | 0.23 ± 0.01 b | 0.29 ± 0.02 a | 0.17 ± 0.01 c | 0.22 ± 0.01 b |
Trp-P-2 | 0.25 ± 0.02 b | 0.13 ± 0.05 c | 0.21 ± 0.01 b | 0.40 ± 0.08 a | 0.24 ± 0.06 b |
MeAaC | 0.25 ± 0.03 b | 0.18 ± 0.02 b | 0.15 ± 0.05 b | 0.41 ± 0.10 a | 0.19 ± 0.04 b |
Other HCAs | 0.26 ± 0.01 a | 0.23 ± 0.04 a | 0.13 ± 0.04 b | 0.11 ± 0.04 b | 0.11 ± 0.05 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Wang, J.; Dong, J.; Lu, Y.; Zhang, Y.; Dong, L.; Wang, S. Effects of Different Frying Oils Composed of Various Fatty Acids on the Formation of Multiple Hazards in Fried Pork Balls. Foods 2023, 12, 4182. https://doi.org/10.3390/foods12224182
Sun M, Wang J, Dong J, Lu Y, Zhang Y, Dong L, Wang S. Effects of Different Frying Oils Composed of Various Fatty Acids on the Formation of Multiple Hazards in Fried Pork Balls. Foods. 2023; 12(22):4182. https://doi.org/10.3390/foods12224182
Chicago/Turabian StyleSun, Mengyu, Jin Wang, Jun Dong, Yingshuang Lu, Yan Zhang, Lu Dong, and Shuo Wang. 2023. "Effects of Different Frying Oils Composed of Various Fatty Acids on the Formation of Multiple Hazards in Fried Pork Balls" Foods 12, no. 22: 4182. https://doi.org/10.3390/foods12224182
APA StyleSun, M., Wang, J., Dong, J., Lu, Y., Zhang, Y., Dong, L., & Wang, S. (2023). Effects of Different Frying Oils Composed of Various Fatty Acids on the Formation of Multiple Hazards in Fried Pork Balls. Foods, 12(22), 4182. https://doi.org/10.3390/foods12224182