Consumers’ Preferences towards Bread Characteristics Based on Food-Related Lifestyles: Insights from Slovenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Design and Measures
2.2. Design of the Choice-Based Conjoint Experiment
2.3. Sample Selection
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Consumption of Grains
3.3. Food-Related Lifestyle Segmentation
3.4. Results of Choice Experiment and Differences between Segments
4. Discussion
4.1. Food-Related Lifestyle Segments
4.2. Preferences for Functional Ingredients
4.3. Preferences for Nutritional Claims
4.4. Preferences for Other Claims
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 26 August 2021).
- Gębski, J.; Jezewska-Zychowicz, M.; Szlachciuk, J.; Kosicka-Gębska, M. Impact of nutritional claims on consumer preferences for bread with varied fiber and salt content. Food Qual. Prefer. 2019, 76, 91–99. [Google Scholar] [CrossRef]
- Bandara, B.E.S.; De Silva, D.A.M.; Maduwanthi, B.C.H.; Warunasinghe, W.A.A.I. Impact of Food Labeling Information on Consumer Purchasing Decision: With Special Reference to Faculty of Agricultural Sciences. Procedia Food Sci. 2016, 6, 309–313. [Google Scholar] [CrossRef]
- Spiteri, M.; Soler, L.G. Food reformulation and nutritional quality of food consumption: An analysis based on households panel data in France. Eur. J. Clin. Nutr. 2018, 72, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Bryła, P. Selected Predictors of the Importance Attached to Salt Content Information on the Food Packaging (a Study among Polish Consumers). Nutrients 2020, 12, 293. [Google Scholar] [CrossRef]
- EC. Regulation (EU) No. 1169/2011 of the European Parliament and of the Council on the Provision of Food Information to Consumers. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1169&from=EN (accessed on 13 March 2023).
- EC. Regulation (EC) No. 1924/2006 of the European Parliament and of the Council on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:404:0009:0025:EN:PDF (accessed on 13 March 2023).
- Grunert, K.G.; Fernández-Celemín, L.; Wills, J.M.; Storcksdieck Genannt Bonsmann, S.; Nureeva, L. Use and understanding of nutrition information on food labels in six European countries. J. Public Health 2010, 18, 261–277. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Shi, Y.; Shen, J.; Bullard, T.; Liu, G.; Yang, Q.; Chen, N.; Cao, L. Effect of front-of-package nutrition labeling on food purchases: A systematic review. Public Health 2021, 191, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Rybak, G.; Burton, S.; Johnson, A.M.; Berry, C. Promoted claims on food product packaging: Comparing direct and indirect effects of processing and nutrient content claims. J. Bus. Res. 2021, 135, 464–479. [Google Scholar] [CrossRef]
- Van Loo, E.J.; Grebitus, C.; Verbeke, W. Effects of nutrition and sustainability claims on attention and choice: An eye-tracking study in the context of a choice experiment using granola bar concepts. Food Qual. Prefer. 2021, 90, 104100. [Google Scholar] [CrossRef]
- Andrews, J.C.; Netemeyer, R.; Burton, S.; Kees, J. What consumers actually know: The role of objective nutrition knowledge in processing stop sign and traffic light front-of-pack nutrition labels. J. Bus. Res. 2021, 128, 140–155. [Google Scholar] [CrossRef]
- Egnell, M.; Talati, Z.; Hercberg, S.; Pettigrew, S.; Julia, C. Objective Understanding of Front-of-Package Nutrition Labels: An International Comparative Experimental Study across 12 Countries. Nutrients 2018, 10, 1542. [Google Scholar] [CrossRef]
- Quílez, J.; Salas-Salvadó, J. Salt in bread in Europe: Potential benefits of reduction. Nutr. Rev. 2012, 70, 666–678. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ciudad-Mulero, M.; Fernández-Ruiz, V.; Ferreira, E.; Heleno, S.; Rodrigues, P.; Barros, L.; Ferreira, I.C.F.R. Comparison of different bread types: Chemical and physical parameters. Food Chem. 2020, 310, 125954. [Google Scholar] [CrossRef]
- Pravst, I.; Lavriša, Ž.; Kušar, A.; Miklavec, K.; Žmitek, K. Changes in Average Sodium Content of Prepacked Foods in Slovenia during 2011–2015. Nutrients 2017, 9, 952. [Google Scholar] [CrossRef]
- Nirmala Prasadi, P.V.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045. [Google Scholar]
- Kuhar, A.; Korošec, M.; Bolha, A.; Pravst, I.; Hristov, H. Is a Consumer Perception of Salt Modification a Sensory or a Behavioural Phenomenon? Insights from a Bread Study. Foods 2020, 9, 1172. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Monzó, J.; García-Segovia, P.; Albors-Garrigos, J. Trends and Innovations in Bread, Bakery, and Pastry. J. Culin. Sci. Technol. 2013, 11, 56–65. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raza, N.; Islam, M.; Imran, M.; Ahmad, I.; Meyyazhagan, A.; Pushparaj, K.; Balasubramanian, B.; Park, S.; Rengasamy, K.R.R.; et al. The nutraceutical properties and health benefits of pseudocereals: A comprehensive treatise. Crit. Rev. Food Sci. Nutr. 2022, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Germ, M.; Árvay, J.; Vollmannová, A.; Tóth, T.; Golob, A.; Luthar, Z.; Kreft, I. The temperature threshold for the transformation of rutin to quercetin in Tartary buckwheat dough. Food Chem. 2019, 283, 28–31. [Google Scholar] [CrossRef]
- Stikic, R.; Glamoclija, D.; Demin, M.; Vucelic-Radovic, B.; Jovanovic, Z.; Milojkovic-Opsenica, D.; Jacobsen, S.-E.; Milovanovic, M. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J. Cereal Sci. 2012, 55, 132–138. [Google Scholar] [CrossRef]
- Din, Z.-u.; Alam, M.; Ullah, H.; Shi, D.; Xu, B.; Li, H.; Xiao, C. Nutritional, phytochemical and therapeutic potential of chia seed (Salvia hispanica L.). A mini-review. Food Hydrocoll. Health 2021, 1, 100010. [Google Scholar] [CrossRef]
- Kaur, P.; Waghmare, R.; Kumar, V.; Rasane, P.; Kaur, S.; Gat, Y. Recent advances in utilization of flaxseed as potential source for value addition. Oilseeds Fats Crops Lipids 2018, 25, 11. [Google Scholar] [CrossRef]
- Rødbotten, M.; Tomic, O.; Holtekjølen, A.; Grini, I.S.; Lea, P.; Granli, B.; Grimsby, S.; Sahlstrøm, S. Barley bread with normal and low content of salt; sensory profile and consumer preference in five European countries. J. Cereal Sci. 2015, 64, 176–182. [Google Scholar] [CrossRef]
- Sandvik, P.; Nydahl, M.; Kihlberg, I.; Marklinder, I. Consumers’ health-related perceptions of bread—Implications for labeling and health communication. Appetite 2018, 121, 285–293. [Google Scholar] [CrossRef] [PubMed]
- WHO. Dietary Intake Modelling to Achieve Population Salt Reduction-A Guide to Developing a Country-Specific Salt Reduction Model. Available online: https://www.euro.who.int/__data/assets/pdf_file/0004/365242/salt-report-eng.pdf (accessed on 26 August 2021).
- Wei, B.; Liu, Y.; Lin, X.; Fang, Y.; Cui, J.; Wan, J. Dietary fiber intake and risk of metabolic syndrome: A meta-analysis of observational studies. Clin. Nutr. 2018, 37, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Belz, M.C.E.; Ryan, L.A.M.; Arendt, E.K. The Impact of Salt Reduction in Bread: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Simsek, S. Clean-label bread: Using hard red spring wheat to replace dough improvers in whole wheat bread. J. Food Process. Preserv. 2020, 44, e14920. [Google Scholar] [CrossRef]
- Kumpulainen, T.; Vainio, A.; Sandell, M.; Hopia, A. The effect of gender, age and product type on the origin induced food product experience among young consumers in Finland. Appetite 2018, 123, 101–107. [Google Scholar] [CrossRef]
- Luis-Alberto, C.-A.; Angelika, D.; Juan, S.-F. Looking at the brain: Neural effects of “made in” labeling on product value and choice. J. Retail. Consum. Serv. 2021, 60, 102452. [Google Scholar] [CrossRef]
- Prada, M.; Garrido, M.V.; Rodrigues, D. Lost in processing? Perceived healthfulness, taste and caloric content of whole and processed organic food. Appetite 2017, 114, 175–186. [Google Scholar] [CrossRef]
- Sajdakowska, M.; Krolak, M.; Zychowicz, W.; Jeżewska-Zychowicz, M. Acceptance of Food Technologies, Perceived Values and Consumers’ Expectations towards Bread. A Survey among Polish Sample. Sustainability 2018, 10, 1281. [Google Scholar] [CrossRef]
- Meyerding, S.G.H.; Kürzdörfer, A.; Gassler, B. Consumer Preferences for Superfood Ingredients—The Case of Bread in Germany. Sustainability 2018, 10, 4667. [Google Scholar] [CrossRef]
- Brunsø, K.; Birch, D.; Memery, J.; Temesi, Á.; Lakner, Z.; Lang, M.; Dean, D.; Grunert, K.G. Core dimensions of food-related lifestyle: A new instrument for measuring food involvement, innovativeness and responsibility. Food Qual. Prefer. 2021, 91, 104192. [Google Scholar] [CrossRef]
- Gracia, A.; de-Magistris, T. Consumer preferences for food labeling: What ranks first? Food Control 2016, 61, 39–46. [Google Scholar] [CrossRef]
- Meyerding, S.G.H.; Bauchrowitz, A.; Lehberger, M. Consumer preferences for beer attributes in Germany: A conjoint and latent class approach. J. Retail. Consum. Serv. 2019, 47, 229–240. [Google Scholar] [CrossRef]
- Meyerding, S.G.H.; Trajer, N.; Lehberger, M. What is local food? The case of consumer preferences for local food labeling of tomatoes in Germany. J. Clean. Prod. 2019, 207, 30–43. [Google Scholar] [CrossRef]
- Onozaka, Y.; Hansen, H.; Sørvig, A. Consumer Product Perceptions and Salmon Consumption Frequency: The Role of Heterogeneity Based on Food Lifestyle Segments. Mar. Resour. Econ. 2014, 29, 351. [Google Scholar] [CrossRef]
- Birch, D.; Brunso, K.; Grunert, K.G.; Memery, J.; Agoston, T.; Lakner, Z. Progress on the Revised Module Food-Related Lifestyle Instrument (MFRL)—New Insights from Three Countries. In Proceedings of the International Food Marketing Research Symposium 2018, Bournemouth, UK, 13–16 June 2018; Institute of Food Products Marketing: Bournemouth, UK, 2018. [Google Scholar]
- Grunert, K.G. International segmentation in the food domain: Issues and approaches. Food Res. Int. 2019, 115, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Gosine, L.; McSweeney, M.B. Consumers’ attitudes towards alternative grains: A conjoint analysis study. Int. J. Food Sci. Technol. 2019, 54, 1588–1596. [Google Scholar] [CrossRef]
- Hole, A.R. DCREATE: Stata Module to Create Efficient Designs for Discrete Choice Experiment. Available online: https://ideas.repec.org/c/boc/bocode/s458059.html (accessed on 14 April 2023).
- Carlsson, F.; Martinsson, P. Design techniques for stated preference methods in health economics. Health Econ. 2003, 12, 281–294. [Google Scholar] [CrossRef]
- Cook, R.D.; Nachtrheim, C.J. A Comparison of Algorithms for Constructing Exact D-Optimal Designs. Technometrics 1980, 22, 315–324. [Google Scholar] [CrossRef]
- Zwerina, K.; Huber, J.; Kuhfeld, W.F. A General Method for Constructing Efficient Choice Designs. Available online: http://support.sas.com/techsup/technote/mr2010e.pdf (accessed on 14 April 2023).
- Thielen, L.V.; Vermuyten, S.; Storms, B.; Rumpold, B.; Campenhout, L.V. Consumer acceptance of foods containing edible insects in Belgium two years after their introduction to the market. J. Insects Food Feed. 2019, 5, 35–44. [Google Scholar] [CrossRef]
- Mehmetoglu, M. CONDISC: Stata Module to Perform Convergent and Discriminant Validity Assessment in CFA. Available online: https://EconPapers.repec.org/RePEc:boc:bocode:s458003 (accessed on 14 March 2023).
- Alarcón, D.; Sánchez, J.A.; De Olavide, U. Assessing convergent and discriminant validity in the ADHD-R IV rating scale: User-written commands for Average Variance Extracted (AVE), Composite Reliability (CR), and Heterotrait-Monotrait ratio of correlations (HTMT). Span. STATA Meet. 2015, 39, 1–39. [Google Scholar]
- Banović, M.; Grunert, K.G.; Barreira, M.M.; Fontes, M.A. Consumers’ quality perception of national branded, national store branded, and imported store branded beef. Meat Sci. 2010, 84, 54–65. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Sermas, R.; Colias, M.J.V. ChoiceModelR: Choice Modeling in R ## R. R Package Version 1.3.0. Available online: https://CRAN.R-project.org/package=ChoiceModelR (accessed on 14 April 2023).
- Blum, M.; McKendrick, K.; Gelfman, L.P.; Pinney, S.P.; Goldstein, N.E. Using Latent Class Analysis to Identify Different Clinical Profiles Among Patients With Advanced Heart Failure. J. Pain Symptom Manag. 2023, 65, 111–119. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Lin, T.H.; Dayton, C.M. Model Selection Information Criteria for Non-Nested Latent Class Models. J. Educ. Behav. Stat. 1997, 22, 249–264. [Google Scholar] [CrossRef]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Grunert, K.G. Measuring Meaning of Food in Life. In Handbook of Eating and Drinking: Interdisciplinary Perspectives; Meiselman, H.L., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1197–1214. [Google Scholar]
- Stancu, V.; Brunsø, K.; Krystallis, A.; Guerrero, L.; Santa Cruz, E.; Peral, I. European consumer segments with a high potential for accepting new innovative fish products based on their food-related lifestyle. Food Qual. Prefer. 2022, 99, 104560. [Google Scholar] [CrossRef]
- Bruschi, V.; Teuber, R.; Dolgopolova, I. Acceptance and willingness to pay for health-enhancing bakery products—Empirical evidence for young urban Russian consumers. Food Qual. Prefer. 2015, 46, 79–91. [Google Scholar] [CrossRef]
- Ibrahim, U.; Salleh, R.; Maqsood Ul Haque, S.N.S. Bread towards Functional Food: An Overview. ETP Int. J. Food Eng. 2015, 1, 39–43. [Google Scholar] [CrossRef]
- Germ, M.; Árvay, J.; Vollmannová, A.; Tóth, T.; Kreft, I.; Golob, A. Hydrothermal Treatments Affecting the Concentration of Neochlorogenic Acid in Dough of Tartary Buckwheat. Agriculture 2020, 10, 601. [Google Scholar] [CrossRef]
- Starowicz, M.; Koutsidis, G.; Zieliński, H. Sensory analysis and aroma compounds of buckwheat containing products-a review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1767–1779. [Google Scholar] [CrossRef]
- Zhu, F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016, 203, 231–245. [Google Scholar] [CrossRef]
- Baugreet, S.; Kerry, J.; Allen, P.; Hamill, R. Optimisation of protein-fortified beef patties targeted to the needs of older adults: A mixture design approach. Meat Sci. 2017, 134, 111–118. [Google Scholar] [CrossRef]
- Stelten, S.; Dekker, I.M.; Ronday, E.M.; Thijs, A.; Boelsma, E.; Peppelenbos, H.W.; de van der Schueren, M.A.E. Protein-enriched ‘regular products’ and their effect on protein intake in acute hospitalized older adults; a randomized controlled trial. Clin. Nutr. 2015, 34, 409–414. [Google Scholar] [CrossRef]
- Kamp, J.-W.; Poutanen, K.; Seal, C.; Richardson, D. The HEALTHGRAIN definition of ‘whole grain’. Food Nutr. Res. 2014, 58, 22100. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.; Beck, E.; Hughes, J.; Grafenauer, S. Whole Grains and Consumer Understanding: Investigating Consumers’ Identification, Knowledge and Attitudes to Whole Grains. Nutrients 2020, 12, 2170. [Google Scholar] [CrossRef] [PubMed]
- Hoefkens, C.; Valli, V.; Mazzocchi, M.; Traill, W.B.; Verbeke, W. European consumers’ perceived seriousness of their eating habits relative to other personal health risks. Prev. Med. 2013, 57, 618–622. [Google Scholar] [CrossRef]
- Sajdakowska, M.; Gębski, J.; Jeżewska-Zychowicz, M.; Królak, M. Consumer Choices in the Bread Market: The Importance of Fiber in Consumer Decisions. Nutrients 2020, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- WHO. Using Dietary Intake Modelling to Achieve Population Salt Reduction: A Guide to Developing a Country-Specific Salt Reduction Model; World Health Organization: Geneva, Switzerland; Regional Office for Europe: Copenhagen, Denmark, 2018; Available online: https://apps.who.int/iris/handle/10665/345142 (accessed on 14 April 2023).
- Chrysochou, P.; Grunert, K.G. Health-related ad information and health motivation effects on product evaluations. J. Bus. Res. 2014, 67, 1209–1217. [Google Scholar] [CrossRef]
- Kumar, A.; Smith, S. Understanding Local Food Consumers: Theory of Planned Behavior and Segmentation Approach. J. Food Prod. Mark. 2017, 24, 196–215. [Google Scholar] [CrossRef]
- Aertsens, J.; Mondelaers, K.; Verbeke, W.; Buysse, J.; Van Huylenbroeck, G. The influence of subjective and objective knowledge on attitude, motivations and consumption of organic food. Br. Food J. 2011, 113, 1353–1378. [Google Scholar] [CrossRef]
- Bryła, P. Organic food consumption in Poland: Motives and barriers. Appetite 2016, 105, 737–746. [Google Scholar] [CrossRef]
- Hjelmar, U. Consumers’ purchase of organic food products. A matter of convenience and reflexive practices. Appetite 2011, 56, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Steenkamp, J.-B.E.M.; Wittink, D.R. The metric quality of full-profile judgments and the number-of-attribute-levels effect in conjoint analysis. Int. J. Res. Mark. 1994, 11, 275–286. [Google Scholar] [CrossRef]
Attribute | Attribute Levels |
---|---|
Functional ingredient | No functional ingredient |
Chia seeds | |
Linseed | |
Quinoa | |
Tartary buckwheat | |
Nutrition claim | Low salt |
High fibre | |
High protein | |
Other claim | Organic (bio/eco) |
Free from additives | |
Flour from Slovenia | |
Wholegrain |
Variable | Level | N (%) |
---|---|---|
Sex | Male | 279 (51.7) |
Female | 261 (48.3) | |
Age: Mean (SD) | 42.9 (13.0) | |
Age classes * | 18–29 | 105 (19.4) |
30–44 | 170 (31.5) | |
45–54 | 129 (23.9) | |
55–65 | 136 (25.2) | |
Geographical cohesion region | East | 274 (50.7) |
West | 266 (49.3) | |
Household location | Urban | 298 (55.2) |
Rural | 242 (44.8) | |
Education | Lower level | 291 (53.9) |
Higher level | 249 (46.1) | |
Self-evaluated financial status | Below average | 120 (22.2) |
Average | 329 (60.9) | |
Above average | 91 (16.9) | |
Employment | Employed | 371 (69.0) |
Retired | 56 (10.4) | |
Housekeeping member | 8 (1.5) | |
Student | 49 (9.1) | |
Unemployed | 54 (10.0) | |
Household structure | Household with preschoolers | 72 (13.3) |
Household with members aged 5–65 | 406 (75.2) | |
Household with at least one person older than 65 | 62 (11.5) | |
BMI: Mean (SD) | 26.1 (6.8) | |
Self-evaluated health status | Poor and very poor | 14 (2.6) |
Average | 150 (27.8) | |
Good and very good | 376 (69.6) |
MFRL Core Dimensions and Items | Standardised Factor Loadings | Average Inter-Item Correlation | CR | AVE |
---|---|---|---|---|
Involvement (Cronbach’s alpha = 0.87) | 0.59 | 0.88 | 0.60 | |
Food and drink are an important part of my life | 0.86 | |||
Eating and drinking are a continuous source of joy for me | 0.77 | |||
Eating and food is an important part of my social life | 0.78 | |||
I just love good food | 0.80 | |||
Decisions on what to eat and drink are very important for me | 0.66 | |||
Innovation (Cronbach’s alpha = 0.93) | 0.73 | 0.93 | 0.73 | |
I love to try recipes from different countries | 0.87 | |||
Recipes and articles on food from other culinary traditions encourage me to experiment in the kitchen | 0.86 | |||
I look for ways to prepare unusual meals | 0.86 | |||
I like to try out new recipes | 0.88 | |||
I like to try new foods that I have never tasted before | 0.82 | |||
Responsibility (Cronbach’s alpha = 0.92) | 0.69 | 0.92 | 0.69 | |
I try to choose food produced with a minimal impact on the environment | 0.89 | |||
I try to choose food that is produced in a sustainable way | 0.82 | |||
I am concerned about the conditions under which the food I buy is produced | 0.81 | |||
It is important to understand the environmental impact of our eating habits | 0.81 | |||
I try to buy organically produced foods if possible | 0.81 | |||
Estimated Correlations | SC | HTMT | ||
Involvement vs. Innovation | 0.225 | 0.5 | ||
Involvement vs. Responsibility | 0.140 | 0.5 | ||
Innovation vs. Responsibility | 0.280 | 0.48 |
No. of Latent Classes | Log-Likelihood | df | AIC | BIC |
---|---|---|---|---|
1 | −2183.5 | 6 | 4378.9 | 4404.7 |
2 | −2158.8 | 12 | 4341.5 | 4393.0 |
3 | −2142.9 | 18 | 4321.9 | 4399.1 |
4 | −2131.5 | 24 | 4311.0 | 4414.0 |
5 | −2127.6 | 30 | 4315.3 | 4444.0 |
Variables | Uninvolved | Conservative | Health-Conscious | Moderate |
---|---|---|---|---|
Size | 117 (21.7) | 65 (12.0) | 23 (4.3) | 335 (62.0) |
Sex | ||||
Male | 71 (60.7) | 26 (40.0) | 7 (30.4) | 175 (52.2) |
Female | 46 (39.3) | 39 (60.0) | 16 (69.6) | 160 (47.8) |
Age: Mean (SD) | 48.3 (11.6) | 40.4 (13.4) | 55.8 (9.0) | 40.7 (12.6) |
Age classes | ||||
18–29 | 12 (10.3) | 17 (26.2) | 1 (4.3) | 75 (22.4) |
30–44 | 28 (23.9) | 24 (36.9) | 2 (8.7) | 116 (34.6) |
45–54 | 36 (30.8) | 10 (15.4) | 3 (13.0) | 80 (23.9) |
55–65 | 41 (35.0) | 14 (21.5) | 17 (73.9) | 64 (19.1) |
Household location | ||||
Urban | 63 (53.8) | 35 (53.8) | 12 (52.2) | 188 (56.1) |
Rural | 54 (46.2) | 30 (46.2) | 11 (47.8) | 147 (43.9) |
Education * | ||||
Lower level | 72 (61.5) | 36 (55.4) | 14 (60.9) | 169 (50.4) |
Higher level | 45 (38.5) | 29 (44.6) | 9 (39.1) | 166 (49.6) |
Self-evaluated financial status | ||||
Below average | 32 (27.4) | 14 (21.5) | 8 (34.8) | 66 (19.7) |
Average | 67 (57.3) | 41 (63.1) | 10 (43.5) | 211 (63.0) |
Above average | 18 (15.4) | 10 (15.4) | 5 (21.7) | 58 (17.3) |
Employment | ||||
Employed | 76 (65.0) | 38 (58.5) | 13 (56.5) | 244 (73.3) |
Retired | 21 (17.9) | 7 (10.8) | 6 (26.1) | 22 (6.6) |
Housekeeping member | 2 (1.7) | 1 (1.5) | 1 (4.3) | 4 (1.2) |
Student | 5 (4.3) | 9 (13.8) | / | 35 (10.5) |
Unemployed | 13 (11.1) | 10 (15.4) | 3 (13.0) | 28 (8.4) |
Household structure | ||||
With preschooler | 12 (10.3) | 10 (15.4) | / | 50 (14.9) |
With members between aged 5–65 | 93 (79.5) | 47 (72.3) | 18 (78.3) | 248 (74.0) |
With at least one older than 65 | 12 (10.3) | 8 (12.3) | 5 (21.7) | 37 (11.0) |
BMI: Mean (SD) | 27.6 (11.3) | 25.2 (4.6) | 24.1 (6.3) | 25.9 (4.8) |
Self-evaluated health status | ||||
Poor and very poor | 5 (4.3) | 2 (3.10) | 3 (13.0) | 4 (1.2) |
Average | 38 (32.5) | 20 (30.8) | 4 (17.4) | 88 (26.3) |
Good and very good | 74 (63.2) | 43 (66.2) | 16 (69.6) | 243 (72.5) |
MFRL modules | ||||
Involvement | 3.79 (0.79) a | 6.03 (0.67) b | 3.63 (0.58) a | 5.70 (0.83) c |
Innovation | 2.79 (1.00) a | 2.58 (0.85) a | 5.37 (1.02) b | 5.29 (1.00) b |
Responsibility | 4.17 (1.38) a | 4.47 (1.39) ab | 5.27 (1.24) bc | 5.15 (1.21) c |
Planning and Shopping: Mean (SD) | ||||
Use of technology for shopping | 2.34 (1.27) a | 2.30 (1.21) a | 2.45 (1.58) ab | 3.24 (1.69) b |
Product information | 3.52 (1.58) a | 3.77 (1.85) ab | 4.62 (1.40) bc | 4.71 (1.46) c |
Product quality aspects: Mean (SD) | ||||
Origin | 4.73 (1.49) a | 5.01 (1.51) a | 5.93 (1.04) b | 5.56 (1.24) b |
Healthy eating | 4.11 (1.38) a | 4.31 (1.51) a | 5.21 (1.14) b | 4.99 (1.28) b |
Attributes and Levels | Relative and Aggregated Average Importance (%) | ||||
---|---|---|---|---|---|
All | Uninvolved | Conservative | Health-Conscious | Moderate | |
Functional ingredient | 83.9 | 81.4 | 81.6 | 69.9 | 81.7 |
No functional ingredient | 35.6 | 43.3 | 39.7 | 6.9 | 28.0 |
Linseed | 42.3 | 36.3 | 42.7 | 29.4 | 40.8 |
Chia seeds | −13.5 | −20.6 | −15.3 | −17.7 | −7.8 |
Tartary buckwheat | −21.8 | −20.8 | −28.0 | 21.7 | −20.2 |
Quinoa | −42.6 | −38.1 | −39.1 | −40.4 | −40.9 |
Nutrition claims | 3.0 | 6.2 | 2.4 | 10.2 | 6.4 |
High fibre | 0.6 | 3.6 | 0.8 | −6.4 | −0.7 |
High protein | 1.3 | −2.5 | −1.4 | 2.2 | 3.6 |
Low salt | −1.8 | −1.1 | 0.6 | 4.2 | −2.9 |
Other claims | 13.1 | 12.4 | 16.0 | 19.9 | 11.9 |
Flour from Slovenia | 6.4 | 5.5 | 10.2 | 3.1 | 5.2 |
Wholegrain | 1.5 | 2.8 | −4.6 | −1.1 | 2.5 |
Organic (bio/eco) | −2.2 | −6.9 | 0.2 | 8.8 | −1.0 |
Free from additives | −5.6 | −1.4 | −5.8 | −10.8 | −6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kušar, A.; Pravst, I.; Pivk Kupirovič, U.; Grunert, K.G.; Kreft, I.; Hristov, H. Consumers’ Preferences towards Bread Characteristics Based on Food-Related Lifestyles: Insights from Slovenia. Foods 2023, 12, 3766. https://doi.org/10.3390/foods12203766
Kušar A, Pravst I, Pivk Kupirovič U, Grunert KG, Kreft I, Hristov H. Consumers’ Preferences towards Bread Characteristics Based on Food-Related Lifestyles: Insights from Slovenia. Foods. 2023; 12(20):3766. https://doi.org/10.3390/foods12203766
Chicago/Turabian StyleKušar, Anita, Igor Pravst, Urška Pivk Kupirovič, Klaus G. Grunert, Ivan Kreft, and Hristo Hristov. 2023. "Consumers’ Preferences towards Bread Characteristics Based on Food-Related Lifestyles: Insights from Slovenia" Foods 12, no. 20: 3766. https://doi.org/10.3390/foods12203766
APA StyleKušar, A., Pravst, I., Pivk Kupirovič, U., Grunert, K. G., Kreft, I., & Hristov, H. (2023). Consumers’ Preferences towards Bread Characteristics Based on Food-Related Lifestyles: Insights from Slovenia. Foods, 12(20), 3766. https://doi.org/10.3390/foods12203766