Walnut Flour as an Ingredient for Producing Low-Carbohydrate Bread: Physicochemical, Sensory, and Spectroscopic Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bread-Making Procedure
2.3. Analysis of Basic Properties of Bread
2.4. Color Measurements of Bread
2.5. Sensory Evaluation of Bread
2.6. Texture Parameters of Bread Crumb
2.7. Total Phenolic Content and Antioxidant Properties
2.8. Infrared Spectra Measurements
2.9. Statistical Analyses
3. Results and Discussion
3.1. Basic Properties of Bread
3.2. Crumb Color
3.3. Sensory Evaluation Results
3.4. Texture Parameter Results
3.5. Total Phenolic Content and Antioxidant Activity
3.6. FTIR Spectroscopic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hager, A.S.; Wolter, A.; Czerny, M.; Bez, J. Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. Eur. Food Res. Technol. 2012, 235, 333–344. [Google Scholar] [CrossRef]
- Skendi, A.; Papageorgiou, M.; Varzakas, T. High Protein Substitutes for Gluten in Gluten-Free Bread. Foods 2021, 10, 1997. [Google Scholar] [CrossRef] [PubMed]
- Gasparre, N.; Pasqualone, A.; Mefleh, M.; Boukid, F. Nutritional Quality of Gluten-Free Bakery Products Labeled Ketogenic and/or Low-Carb Sold in the Global Market. Foods 2022, 11, 4095. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, D.; Balfour-Ducharme, S.; Joye, I.J. A Review on the Gluten-Free Diet: Technological and Nutritional Challenges. Nutrients 2018, 10, 1410. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Różyło, R.; Schönlechner, R.; Berger, M.V. Physico-chemical properties of an innovative gluten-free, low-carbohydrate and high protein-bread enriched with pea protein powder. Sci. Rep. 2021, 11, 14498. [Google Scholar] [CrossRef]
- Lin, L.Y.; Hsieh, Y.J.; Liu, H.M.; Lee, C.C.; Mau, J.L. Flavor components in buckwheat bread. J. Food Process. Preserv. 2009, 33, 814–826. [Google Scholar] [CrossRef]
- Lin, L.Y.; Liu, H.M.; Yu, Y.W.; Lin, S.D.; Mau, J.L. Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chem. 2009, 112, 987–991. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, T.; Su, C.; Li, Q.; Yu, X. Fortification of Chinese steamed bread with flaxseed flour and evaluation of its physicochemical and sensory properties. Food Chem. X 2022, 13, 100267. [Google Scholar] [CrossRef]
- Curti, E.; Carini, E.; Diantom, A.; Vittadini, E. The use of potato fibre to improve bread physico-chemical properties during storage. Food Chem. 2016, 195, 64–70. [Google Scholar] [CrossRef]
- Bernardes, E.N.; Flôres, S.H.; Thys, R.C.S. Are Psyllium Fiber and Flaxseed Flour An Exciting Combination of Ingredients in the Development of Gluten-free Vegan Bread? J. Culin. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Hoehoel, A.; Axel, C.; Bez, J.; Arendt, E.K.; Zannini, E. Comparative analysis of plant-based high-protein ingredients and their impact on quality of high-protein bread. J. Cereal Sci. 2019, 17, 102816. [Google Scholar] [CrossRef]
- García-Segovia, P.; Igual, M.; Martínez-Monzó, J. Physicochemical Properties and Consumer Acceptance of Bread Enriched with Alternative Proteins. Foods 2020, 9, 933. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Dziki, D.; Gawlik-Dziki, U.; Różyło, R. Development of no-salt herbal bread using a method based on scalded flour. LWT-Food Sci. Technol. 2021, 145, 111329. [Google Scholar] [CrossRef]
- Kondo-Ando, M.; Seino, Y.; Suzuki, A. Low-carbohydrate diet by staple change attenuates postprandial GIP and CPR levels in type 2 diabetes patients. J. Diabetes Complicat. 2019, 33, 107415. [Google Scholar] [CrossRef] [PubMed]
- Hopkin, L.; Broadbent, H.; Ahlborn, G.J. Influence of Almond and Coconut Flours on Ketogenic, Gluten-Free Cupcakes. Food Chem. X 2022, 13, 100182. [Google Scholar] [CrossRef] [PubMed]
- Pycia, K.; Ivanišová, E. Physicochemical and antioxidant properties of wheat bread enriched with hazelnuts and walnuts. Foods 2020, 9, 1081. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G. Changes in antioxidant activity, profile, and content of polyphenols and tocopherols in common hazel seed (Corylus avellana L.) depending on variety and harvest date. Molecules 2020, 25, 43. [Google Scholar] [CrossRef]
- Pribis, P. Effects of Walnut Consumption on Mood in Young Adults—A Randomized Controlled Trial. Nutrients 2016, 8, 668. [Google Scholar] [CrossRef]
- Abdallah, I.B.; Tlili, N.; Martinez-Force, E.; Pérez Rubio, A.G.; Perez-Camino, M.C.; Albouchi, A.; Boukhchina, S. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, W.; Chen, D.; Lin, Y.; Ma, Y.; Chen, C.; Zhao, S. Optimization of simultaneous microwave/ultrasonic-assisted extraction of phenolic compounds from WF using response surface methodology. Pharm. Biol. 2017, 55, 1999–2004. [Google Scholar] [CrossRef]
- Chochkov, R.; Chonova, V.; Karadzhov, G.; Nedelcheva, R. The influence of WF quantity on the quality of wheat bread. Int. J. Eng. Res. 2016, 7, 1161–1164. [Google Scholar]
- Khan, G.M.; Khan, N.M.; Khan, Z.U.; Ali, F.; Jan, A.K.; Muhammad, N.; Elahi, R. Effect of extraction methods on structural, physiochemical and functional properties of dietary fiber from defatted WF. Food Sci. Biotechnol. 2018, 27, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Almoraie, N.M. The effect of walnut flour on the physical and sensory characteristics of wheat bread. Int. J. Food Sci. 2019, 2019, 5676205. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://methods.aaccnet.org/toc.aspx (accessed on 10 November 2022).
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Wójcik, M.; Krajewska, A. Dandelion flowers as an additive to wheat bread: Physical properties of dough and bread quality. Appl. Sci. 2023, 13, 477. [Google Scholar] [CrossRef]
- Różyło, R.; Szymańska-Chargot, M.; Gawlik-Dziki, U.; Dziki, D. Spectroscopic, mineral, and antioxidant characteristics of blue colored powders prepared from cornflower aqueous extracts. Food Chem. 2021, 346, 128889. [Google Scholar] [CrossRef] [PubMed]
- Różyło, R.; Wójcik, M.; Dziki, D.; Biernacka, B.; Cacak-Pietrzak, G.; Gawłowski, S.; Zdybel, A. Freeze-dried elderberry and chockeberry as natural colorants for gluten-free wafer sheets. Int. Agrophysics 2019, 33, 217–225. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Mucha, M. Sensory evaluation of some types of bread and functional consumer preferences among the bread. Zesz. Probl. Post. Nauk Rol. 2012, 571, 67–78. (In Polish) [Google Scholar]
- Gámbaro, A.; Giménez, A.; Ares, G.; Gilardi, V. Influence of enzymes on the texture of brown pan bread. J. Texture Stud. 2006, 37, 300–314. [Google Scholar] [CrossRef]
- Różyło, R.; Rudy, S.; Krzykowski, A.; Dziki, D.; Siastała, M.; Polak, R. Gluten-free bread prepared with fresh and freeze-dried rice sourdough-texture and sensory evaluation. J. Texture Stud. 2016, 47, 443–453. [Google Scholar] [CrossRef]
- Romankiewicz, D.; Hassoon, W.H.; Cacak-Pietrzak, G.; Sobczyk, M.B.; Wirkowska-Wojdyła, M.; Ceglinska, A.; Dziki, D. The effect of chia seeds (Salvia hispanica L.) addition on quality and nutritional value of wheat bread. J. Food Qual. 2017, 2017, 7352631. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Dziki, D.; Tarasiuk, W.; Gawlik-Dziki, U. Micronized Oat Husk: Particle Size Distribution, Phenolic Acid Profile and Antioxidant Properties. Materials 2021, 14, 5443. [Google Scholar] [CrossRef] [PubMed]
- Offia-Olua, B.I. Chemical, functional and pasting properties of wheat (Triticum spp.)-Walnut (Juglans regia) flour. Food Nutr. Sci. 2014, 5, 1591–1604. [Google Scholar] [CrossRef]
- Wanderslebena, T.; Moralesa, M.; Burgos-Díaza, C.; Barahonaa, T.; Labraa, E.; Rubilarb, M.; Salvo-Garridoa, H. Enhancement of functional and nutritional properties of bread using a mix of natural ingredients from novel varieties of flaxseed and lupine. LWT-Food Sci. Technol. 2018, 91, 48–54. [Google Scholar] [CrossRef]
- Awofadeju, O.F.J.; Awe, A.B.; Adewunmi, O.J.; Ogidan, E.A.; Ojo, A.F.; Oyewumi, R.O.; Godson, B. Physicochemical, nutritional and consumers acceptability of bread made from wheat flour enriched with African walnut flour. J. For. Res. Managem. 2018, 15, 184–194. [Google Scholar]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Parol-Nadłonek, N.; Kalisz, S.; Krajewska, A.; Stępniewska, S. Wheat Bread Enriched with Black Chokeberry (Aronia melanocarpa L.) Pomace: Physicochemical Properties and Sensory Evaluation. Appl. Sci. 2023, 13, 6936. [Google Scholar] [CrossRef]
- Wojciechowicz-Budzisz, A.; Spychaj, R.; Kawa-Rygielska, J. Effect of Added Brewer’s Spent Grain on the Baking Value of Flour and the Quality of Wheat Bread. Molecules 2022, 27, 1624. [Google Scholar] [CrossRef]
- Pešić, M.B.; Pešić, M.M.; Bezbradica, J.; Stanojević, A.B.; Ivković, P.; Milinčić, D.D.; Demin, M.; Kostić, A.Ž.; Dojčinović, B.; Stanojević, S.P. Okara-Enriched Gluten-Free Bread: Nutritional, Antioxidant and Sensory Properties. Molecules 2023, 28, 4098. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Bączek, N.; Capriles, V.D.; Łopusiewicz, Ł. Novel Gluten-Free Bread with an Extract from Flaxseed By-Product: The Relationship between Water Replacement Level and Nutritional Value, Antioxidant Properties, and Sensory Quality. Molecules 2022, 27, 2690. [Google Scholar] [CrossRef]
- Bugarín, R.; Gómez, M. Can Citrus Fiber Improve the Quality of Gluten-Free Breads? Foods 2023, 12, 1357. [Google Scholar] [CrossRef] [PubMed]
- Bourekoua, H.; Różyło, R.; Gawlik-Dziki, U.; Benatallah, L.; Zidoune, M.N.; Dziki, D. Evaluation of physical, sensorial, and antioxidant properties of gluten-free bread enriched with Moringa Oleifera leaf powder. Eur. Food Res. Technol. 2018, 244, 189–195. [Google Scholar] [CrossRef]
- Wirkijowska, A.; Zarzycki, P.; Teterycz, D.; Nawrocka, A.; Blicharz-Kania, A.; Łysakowska, P. The Influence of Tomato and Pepper Processing Waste on Bread Quality. Appl. Sci. 2023, 13, 9312. [Google Scholar] [CrossRef]
- Stantiall, S.E.; Serventi, L. Nutritional and sensory challenges of gluten-free bakery products: A review. Int. J. Food Sci. Nutr. 2018, 69, 427–436. [Google Scholar] [CrossRef]
- Wójcik, M.; Różyło, R.; Schönlechner, R.; Matwijczuk, A.; Dziki, D. Low-Carbohydrate, High-Protein, and Gluten-Free Bread Supplemented with Poppy Seed Flour: Physicochemical, Sensory, and Spectroscopic Properties. Molecules 2022, 27, 1574. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Álvarez-Ortí, M.; Sena-Moreno, E.; Rabadán, A.; Pardo, J.E.; Oliveira, M.B.P.P. Effect of roasting conditions on the composition and antioxidant properties of defatted walnut flour. J. Sci. Food Agric. 2018, 98, 1813–1820. [Google Scholar] [CrossRef]
- Dankar, I.; Haddarah, A.; Omar, F.E.; Pujolà, M.; Sepulcre, F. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chem. 2018, 260, 7–12. [Google Scholar] [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Perera, C.O.; Waterhouse, G.I.N. Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chem. 2012, 131, 802–810. [Google Scholar] [CrossRef]
- Al-Mahsaneh, M.; Aljarrah, M.; Rababah, T.; Alu’datt, M. Using MR-FTIR and texture profile to track the effect of storage time and temperature on pita bread staling. J. Food Qual. 2018, 2018, 8252570. [Google Scholar] [CrossRef]
- Pourfarzad, A.; Najafi, M.B.H.; Khodaparast, M.H.H.; Khayyat, M.H. Serish inulin and wheat biopolymers interactions in model systems as a basis for understanding the impact of inulin on bread properties: A FTIR investigation. J. Food Sci. Technol. 2015, 52, 7964–7973. [Google Scholar] [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Perera, C.O.; Waterhouse, G.I.N. Application of FT-IR and Raman spectroscopy for the study of biopolymers in breads fortified with fibre and polyphenols. Food Res. Int. 2013, 50, 574–585. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Sun, F.; Li, X.; Wang, P.; Sun, J.; Zeng, J.; Wang, C.; Hu, W.; Chang, J.; et al. Tannins improve dough mixing properties through affecting physicochemical and structural properties of wheat gluten proteins. Food Res. Int. 2015, 69, 64–71. [Google Scholar] [CrossRef]
Properties of Bread | Addition of WF (%) | ||||
---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | |
Baking loss (%) | 14.8 ± 0.45 b | 13.1 ± 0.48 a | 13.3 ± 0.33 a | 13.6 ± 0.49 a | 13.6 ± 0.49 a |
Volume of 100 g of bread (cm3) | 147.5 ± 1.12 a | 153.6 ± 0.93 b | 158.2 ± 0.44 c | 163.1 ± 0.67 d | 164.5 ± 0.47 d |
pH (−) | 5.3 ± 0.03 a | 5.3 ± 0.03 a | 5.2 ± 0.03 b | 5.2 ± 0.03 b | 5.2 ± 0.03 b |
Addition of WF (%) | Protein | Fat | Ash | Soluble Fiber | Insoluble Fiber | Total Fiber | AC | TC |
---|---|---|---|---|---|---|---|---|
0 | 22.65 ± 2.53 a | 3.26 ± 0.03 e | 5.33 ± 0.03 a | 32.42 ± 0.08 a | 14.00 ± 0.04 b | 46.41 ± 0.06 a | 22.35 ± 2.40 c | 68.76 ± 2.12 e |
5 | 25.78 ± 1.27 ab | 4.18 ± 0.02 d | 5.35 ± 0.04 a | 32.29 ± 0.07 b | 14.04 ± 0.03 bc | 46.33 ± 0.03 a | 18.36 ± 1.21 bc | 64.69 ± 1.18 d |
10 | 28.39 ± 2.20 bc | 5.24 ± 0.11 c | 5.41 ± 0.04 ab | 32.01 ± 0.05 b | 14.18 ± 0.07 a | 46.19 ± 0.11 a | 14.77 ± 1.95 abc | 60.96 ± 1.84 c |
15 | 30.39 ± 0.48 cd | 6.46 ± 0.07 b | 5.48 ± 0.04 b | 31.62 ± 0.17 c | 14.13 ± 0.05 ac | 45.76 ± 0.12 b | 11.91 ± 0.40 ab | 54.67 ± 0.38 ab |
20 | 34.71 ± 0.69 d | 7.25 ± 0.09 a | 5.60 ± 0.02 c | 31.10 ± 0.07 d | 14.18 ± 0.02 a | 45.28 ± 0.06 c | 7.16 ± 0.73 a | 52.44 ± 0.69 a |
Addition of WF (%) | L* | a* | b* | C* | h° | ΔE |
---|---|---|---|---|---|---|
WF | 49.1 ± 0.22 | 8.6 ± 0.22 | 27.54 ± 0.12 | 28.8 ± 0.15 | 72.7 ± 0.10 | — |
0 | 39.5 ± 0.12 a | 5.7 ± 0.14 a | 23.1 ± 0.15 a | 23.8 ± 0.26 a | 76.1 ± 0.12 a | — |
5 | 37.2 ± 0.10 b | 8.2 ± 0.11 b | 22.7 ± 0.12 a | 24.3 ± 0.22 a | 70.3 ± 0.23 c | 4.2 ± 0.07 a |
10 | 35.7 ± 0.12 c | 8.5 ± 0.21 b | 25.4 ± 0.25 b | 26.7 ± 0.20 b | 71.5 ± 0.15 b | 6.5 ± 0.02 a |
15 | 34.9 ± 0.08 c | 8.5 ± 0.08 b | 25.2 ± 0.18 b | 26.6 ± 0.24 b | 71.4 ± 0.20 b | 7.3 ± 0.23 a |
20 | 32.3 ± 0.18 d | 8.4 ± 0.12 b | 25.4 ± 0.15 b | 26.7 ± 0.19 b | 71.7 ± 0.12 b | 9.8 ±0.13 a |
Addition of WF (%) | Hardness (N) | After 24 h Cohesiveness (-) | Springiness (-) | Chewiness (N) |
---|---|---|---|---|
0 | 28.6 ± 0.25 a | 0.26 ± 0.03 a | 0.67 ± 0.02 a | 4.9 ± 0.12 a |
5 | 29.4 ± 0.58 a | 0.30 ± 0.02 ab | 0.72 ± 0.01 b | 6.2 ± 0.22 a |
10 | 33.1 ± 0.55 b | 0.31 ± 0.04 b | 0.76 ± 0.03 b | 6.4 ±0.31 a |
15 | 33.1 ± 0.38 b | 0.29 ± 0.01 ab | 0.70 ± 0.01 ab | 6.8 ± 0.21 ab |
20 | 43.6 ± 0.61 c | 0.25 ± 0.05 a | 0.71 ± 0.02 ab | 7.2 ± 0.15 b |
After 48 h | ||||
0 | 34.6 ± 0.45 a | 0.26 ± 0.02 ab | 0.59 ± 0.04 a | 5.3 ± 0.13 a |
5 | 36.4 ± 0.36 a | 0.31 ± 0.03 b | 0.70 ± 0.03 b | 7.4 ± 0.21 b |
10 | 37.7 ± 0.24 a | 0.26 ± 0.02 ab | 0.71 ± 0.02 b | 7.2 ± 0.12 b |
15 | 42.7 ± 0.42 b | 0.23 ± 0.02 a | 0.61 ± 0.02 a | 7.2 ± 0.11 b |
20 | 54.6 ± 0.26 c | 0.21 ± 0.06 a | 0.60 ± 0.01 a | 7.1 ± 0.09 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik, M.; Dziki, D.; Matwijczuk, A.; Gawlik-Dziki, U. Walnut Flour as an Ingredient for Producing Low-Carbohydrate Bread: Physicochemical, Sensory, and Spectroscopic Characteristics. Foods 2023, 12, 3320. https://doi.org/10.3390/foods12173320
Wójcik M, Dziki D, Matwijczuk A, Gawlik-Dziki U. Walnut Flour as an Ingredient for Producing Low-Carbohydrate Bread: Physicochemical, Sensory, and Spectroscopic Characteristics. Foods. 2023; 12(17):3320. https://doi.org/10.3390/foods12173320
Chicago/Turabian StyleWójcik, Monika, Dariusz Dziki, Arkadiusz Matwijczuk, and Urszula Gawlik-Dziki. 2023. "Walnut Flour as an Ingredient for Producing Low-Carbohydrate Bread: Physicochemical, Sensory, and Spectroscopic Characteristics" Foods 12, no. 17: 3320. https://doi.org/10.3390/foods12173320