Understanding Global Rice Trade Flows: Network Evolution and Implications
Abstract
:1. Introduction
2. Methods and Data
2.1. Analytical Framework
2.1.1. Network Density
2.1.2. Global Clustering Coefficient
2.1.3. Global Efficiency
2.1.4. Degree Centrality
2.1.5. Disparity Filter
2.2. Data Source
3. Results and Analysis
3.1. Temporal Changes in the Global Rice-Trade Scale
3.2. Spatial and Temporal Evolution of the Global Rice Trade
3.3. Network Topologies of the Global Rice Trade
3.4. Network Backbones of the Global Rice Trade
4. Discussion and Implications
5. Conclusions
- (1)
- The global rice-trade scale has experienced fluctuating growth over time. The trade volume initially exhibited steady growth, but during the food crisis in 2008, it experienced a significant leap. Since then, the trade volume has maintained a consistent trend, with both 2009 and onwards showing synchronized fluctuations in growth. The global rice-trade networks exhibit clear hierarchical features and obvious spatial imbalances. The trade networks have become increasingly complex, resulting in significantly improved network efficiency. This has formed a rice-trade pattern, with Asia serving as the primary source of exports and Africa as an important import market.
- (2)
- Centrality indicators were used to quantify the positions of economies within the global rice-trade networks. According to the weighted degree centrality, Thailand, Vietnam, India, China, Pakistan, and the United States hold central positions in the global rice-trade networks, while the core of the African rice trade is experiencing dynamic changes. In-degree and out-degree analyses revealed that major rice-importing and exporting countries tend to have geographical concentration. European and North American countries, including Germany, France, the UK, the United States, Canada, The Netherlands, and Belgium, have a higher number of rice-importing partners. Meanwhile, the major rice-exporting countries are primarily in Asia, Europe, and North America, aligning with global rice production patterns.
- (3)
- The global rice-trade networks have experienced significant expansion, leading to the evolution and enhancement of their backbone structures. The network backbones of the global rice trade are now taking shape, with major rice-exporting countries in Asia playing a central role, developed countries in Europe and North America occupying key positions, and rice-importing countries in Africa acting as complementary players. Among these, India constitutes the core of the backbone structure, while Thailand and Pakistan serve as secondary cores. Countries like Italy, the United States, China, and Vietnam also function as crucial nodes. The major nodes in the backbone structures are interconnected, radiating to other regions worldwide, and forming individual regional backbone networks within regions such as Asia and Europe.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- D’odorico, P.; Carr, J.A.; Laio, F.; Ridolfi, L.; Vandoni, S. Feeding humanity through global food trade. Earths Future 2014, 2, 458–469. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.M.P.; Berchin, I.I.; da Silva Neiva, S.; Soares, T.; de Albuquerque, C.L.; Deggau, A.B.; de Amorim, W.S.; Barbosa, S.B.; Secchi, L.; de Andrade Guerra, J.B.S.O. Food stability model: A framework to support decision-making in a context of climate change. Sustain. Dev. 2021, 29, 13–24. [Google Scholar] [CrossRef]
- Gebeyehu, D.T.; East, L.; Wark, S.; Islam, M.S. Impact of COVID-19 on the food security and identifying the compromised food security dimension: A systematic review protocol. PLoS ONE 2022, 17, e0272859. [Google Scholar] [CrossRef]
- Behnassi, M.; El Haiba, M. Implications of the Russia–Ukraine war for global food security. Nat. Hum. Behav. 2022, 6, 754–755. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Food Outlook: Biannual Report on Global Food Markets. Available online: https://www.fao.org/giews/reports/food-outlook/en/ (accessed on 17 July 2023).
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Lakkakula, P.; Dixon, B.L.; Thomsen, M.R.; Wailes, E.J.; Danforth, D.M. Global rice trade competitiveness: A shift-share analysis. Agr. Econ. 2015, 46, 667–676. [Google Scholar] [CrossRef]
- Dutta, A.K. Rice trade in the ‘rice bowl of Bengal’: Burdwan 1880–1947. Indian Econ. Soc. Hist. Rev. 2012, 49, 73–104. [Google Scholar] [CrossRef]
- Hoang, H.K.; Meyers, W.H. Price stabilization and impacts of trade liberalization in the Southeast Asian rice market. Food Policy 2015, 57, 26–39. [Google Scholar] [CrossRef]
- Soon, B.M.; Westhoff, P.; Thompson, W. The impact of potential Korea–U.S. free trade agreement renegotiation on the Korean rice market and trade. J. Agric. Appel. Econ. 2019, 51, 434–449. [Google Scholar] [CrossRef]
- Hedlund, J.; Carlsen, H.; Croft, S.; West, C.; Bodin, O.; Stokeld, E.; Jagermeyr, J.; Mueller, C. Impacts of climate change on global food trade networks. Environ. Res. Lett. 2022, 17, 124040. [Google Scholar] [CrossRef]
- Sporchia, F.; Thomsen, M.; Caro, D. Drivers and trade-offs of multiple environmental stressors from global rice. Sustain. Prod. Consump. 2021, 26, 16–32. [Google Scholar] [CrossRef]
- Wu, H.; Jin, R.; Liu, A.; Jiang, S.; Chai, L. Savings and losses of scarce virtual water in the international trade of wheat, maize, and rice. Int. J. Environ. Res. Public Health 2022, 19, 4119. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Chen, W.; Wang, N. Spatiotemporal Dynamics and Topological Evolution of the Global Crude Oil Trade Network. Energies 2023, 16, 1728. [Google Scholar] [CrossRef]
- Wang, J.; Dai, C. Evolution of global food trade patterns and its implications for food security based on complex network analysis. Foods 2021, 10, 2657. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, H. Characterizing the structural evolution of cereal trade networks in the Belt and Road regions: A network analysis approach. Foods 2022, 11, 1468. [Google Scholar] [CrossRef]
- Dupas, M.C.; Halloy, J.; Chatzimpiros, P. Time dynamics and invariant subnetwork structures in the world cereals trade network. PLoS ONE 2019, 14, e0216318. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zhou, W.X. Microstructural characteristics of the weighted and directed international crop trade networks. Entropy 2021, 23, 1250. [Google Scholar] [CrossRef]
- Puma, M.J.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 2015, 10, 024007. [Google Scholar] [CrossRef]
- Distefano, T.; Laio, F.; Ridolfi, L.; Schiavo, S. Shock transmission in the international food trade network. PLoS ONE 2018, 13, e0200639. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.; Feng, Z.; Xiao, C.; Lang, T.; Du, W.; Liu, Y. Risk of global external cereals supply under the background of the COVID-19 pandemic: Based on the perspective of trade network. Foods 2021, 10, 1168. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zhou, W.X. Quantifying the status of economies in international crop trade networks: A correlation structure analysis of various node-ranking metrics. Chaos Solitons Fractals 2023, 172, 113567. [Google Scholar] [CrossRef]
- Burkholz, R.; Schweitzer, F. International crop trade networks: The impact of shocks and cascades. Environ. Res. Lett. 2019, 14, 114013. [Google Scholar] [CrossRef]
- Zhou, M.Z.; Wang, J.Y. Implications from pattern and evolution of global rice trade: A complex network analysis. J. Nat. Resour. 2020, 35, 1055–1067. (In Chinese) [Google Scholar] [CrossRef]
- Xiao, Q.; Li, J. Spatial pattern evolution of the global rice trade network and its implications for China. J. China Agric. Resour. Reg. Plan. 2022, 43, 1–8. (In Chinese) [Google Scholar]
- Fischer, C.S.; Shavit, Y. National differences in network density: Israel and the United States. Soc. Networks 1995, 17, 129–145. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Bryan, E.K.; VerSchneider, C.; Narayan, D.A. Global efficiency of graphs. AKCE Int. J. Graphs Co. 2015, 12, 1–13. [Google Scholar] [CrossRef]
- Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef]
- Serrano, M.A.; Boguna, M.; Vespignani, A. Extracting the multiscale backbone of complex weighted networks. Proc. Natl. Acad. Sci. USA 2009, 106, 6483–6488. [Google Scholar] [CrossRef]
- Neal, Z.P. backbone: An R package to extract network backbones. PLoS ONE 2022, 17, e0269137. [Google Scholar] [CrossRef]
- Gilbert, C.L.; Morgan, C.W. Food price volatility. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2010, 365, 3023–3034. [Google Scholar] [CrossRef] [PubMed]
- van der Ploeg, J.D. The food crisis, industrialized farming and the imperial regime. J. Agrar. Chang. 2010, 10, 98–106. [Google Scholar] [CrossRef]
- Valera, H.G.A.; Lee, J. Do rice prices follow a random walk? Evidence from Markov switching unit root tests for Asian markets. Agr. Econ. 2016, 47, 683–695. [Google Scholar] [CrossRef]
- Sers, C.F.; Mughal, M. COVID-19 outbreak and the need for rice self-sufficiency in West Africa. World Dev. 2020, 135, 105071. [Google Scholar] [CrossRef]
- Seck, P.A.; Tollens, E.; Wopereis, M.C.S.; Diagne, A.; Bamba, I. Rising trends and variability of rice prices: Threats and opportunities for sub-Saharan Africa. Food Policy 2010, 35, 403–411. [Google Scholar] [CrossRef]
- Choudhary, D.; Banskota, K.; Khanal, N.P.; McDonald, A.J.; Krupnik, T.J.; Erenstein, O. Rice subsector development and farmer efficiency in Nepal: Implications for further transformation and food security. Front. Sustain. Food Syst. 2022, 5, 740546. [Google Scholar] [CrossRef]
- Okonkwo, U.U.; Ukaogo, V.; Kenechukwu, D.; Nwanshindu, V.; Okeagu, G. The politics of rice production in Nigeria: The Abakaliki example, 1942-2020. Cogent Arts Humanit. 2021, 8, 1880680. [Google Scholar] [CrossRef]
- Gutiérrez-Moya, E.; Lozano, S.; Adenso-Diaz, B. Analyzing the structure of the global wheat trade network: An ERGM approach. Agronomy 2020, 10, 1967. [Google Scholar] [CrossRef]
- Wu, F.; Guclu, H. Global maize trade and food security: Implications from a social network model. Risk Anal. 2013, 33, 2168–2178. [Google Scholar] [CrossRef]
- Jones, N. Rare ‘triple’ La Nina climate event looks likely-what does the future hold? Nature 2022, 607, 21. [Google Scholar] [CrossRef] [PubMed]
Network Description | 2000 | 2005 | 2010 | 2015 | 2021 |
---|---|---|---|---|---|
Graph size | 1781 | 2233 | 2777 | 2854 | 2883 |
Network density | 0.0767 | 0.0962 | 0.1196 | 0.1229 | 0.1242 |
Global clustering coefficient | 0.3583 | 0.3665 | 0.3785 | 0.3923 | 0.4433 |
Global efficiency | 0.0010 | 0.0009 | 0.0027 | 0.0039 | 0.0089 |
2000 | 2010 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Country | WDC | Country | IN_D | Country | OUT_D | Country | WDC | Country | IN_D | Country | OUT_D |
THA | 4.70 | DEU | 41 | USA | 116 | THA | 6.34 | CAN | 54 | USA | 152 |
USA | 2.92 | FRA | 37 | ITA | 104 | VNM | 4.52 | DEU | 52 | THA | 143 |
CHN | 2.36 | CAN | 37 | THA | 96 | PAK | 3.67 | USA | 50 | CHN | 136 |
VNM | 2.01 | RUS | 36 | CHN | 90 | USA | 3.58 | GBR | 47 | PAK | 128 |
IDN | 1.34 | GBR | 34 | IND | 87 | IND | 3.02 | ZAF | 43 | IND | 127 |
IND | 1.34 | USA | 30 | PAK | 84 | PHL | 2.39 | GHA | 43 | ITA | 126 |
NGA | 1.30 | ZAF | 30 | JPN | 69 | ARE | 2.08 | FRA | 42 | VNM | 112 |
IRN | 1.15 | ARE | 29 | GBR | 66 | BRA | 1.65 | DNK | 40 | JPN | 89 |
ITA | 1.06 | ESP | 29 | ESP | 64 | SAU | 1.30 | ITA | 39 | FRA | 86 |
PAK | 1.04 | CHE | 27 | FRA | 60 | IRN | 1.13 | IRL | 39 | ESP | 83 |
2015 | 2021 | ||||||||||
Country | WDC | Country | IN_D | Country | OUT_D | Country | WDC | Country | IN_D | Country | OUT_D |
IND | 10.03 | NLD | 60 | THA | 145 | IND | 12.23 | NLD | 73 | IND | 136 |
THA | 8.05 | GHA | 56 | USA | 140 | CHN | 5.89 | CAN | 71 | USA | 130 |
VNM | 4.93 | FRA | 55 | IND | 140 | THA | 4.41 | FRA | 66 | THA | 123 |
PAK | 4.01 | DEU | 55 | ITA | 130 | VNM | 4.05 | USA | 59 | CHN | 117 |
CHN | 3.76 | GBR | 53 | CHN | 127 | PAK | 2.97 | GBR | 59 | ITA | 116 |
USA | 3.07 | USA | 52 | PAK | 127 | USA | 2.63 | CHE | 58 | PAK | 109 |
SAU | 1.66 | CHE | 48 | VNM | 117 | ETH | 1.40 | DEU | 56 | VNM | 104 |
ARE | 1.52 | ZAF | 44 | ESP | 94 | BEN | 1.40 | BEL | 54 | ESP | 90 |
SEN | 1.17 | DNK | 44 | GBR | 90 | NPL | 1.37 | ARE | 54 | JPN | 80 |
CIV | 1.14 | BEL | 42 | FRA | 89 | KHM | 1.31 | ITA | 49 | FRA | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zhao, X. Understanding Global Rice Trade Flows: Network Evolution and Implications. Foods 2023, 12, 3298. https://doi.org/10.3390/foods12173298
Chen W, Zhao X. Understanding Global Rice Trade Flows: Network Evolution and Implications. Foods. 2023; 12(17):3298. https://doi.org/10.3390/foods12173298
Chicago/Turabian StyleChen, Wei, and Xiquan Zhao. 2023. "Understanding Global Rice Trade Flows: Network Evolution and Implications" Foods 12, no. 17: 3298. https://doi.org/10.3390/foods12173298