Towards a Multispectral Imaging System for Spatial Mapping of Chemical Composition in Fresh-Cut Pineapple (Ananas comosus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Hyperspectral Imaging
2.3. Image Registration
- (1)
- Non-reflective similarity: This transformation is used when shapes in the distorted image are unchanged, but the image is distorted by some combination of translation, rotation, and scaling. Straight lines remain straight, and parallel lines are still parallel.
- (2)
- Affine: It is applied when shapes in the distorted image exhibit shearing. Straight lines remain straight, and parallel lines remain parallel, but rectangles become parallelograms.
- (3)
- Projective: It is used when the scene appears tilted. Straight lines remain straight, but parallel lines converge toward a vanishing point.
2.4. Spectra Pre-Processing
2.5. Wavelength Selection Process
2.5.1. Approach 1: Ranking and Uncorrelatedness
2.5.2. Approach 2: Subset Selection
2.6. Calibration Models
2.7. Statistical Analysis
3. Results and Discussion
3.1. Statistical Analysis of Chemical Data
3.2. Image Registration
3.3. Wavelength Selection
3.4. MLP Prediction Models
3.5. Chemical Composition’s Distribution Maps
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bose, T.K.; Mitra, S.K. Fruits: Tropical and Subtropical, 3rd ed.; Naya Udyog Press: Kolkata, India, 2001. [Google Scholar]
- Gómez-García, R.; Vilas-Boas, A.A.; Oliveira, A.; Amorim, M.; Teixeira, J.A.; Pastrana, L.; Pintado, M.M.; Campos, D.A. Impact of simulated human gastrointestinal digestion on the bioactive fraction of upcycled pineapple by-products. Foods 2022, 11, 126. [Google Scholar] [CrossRef] [PubMed]
- UNCTAD. Pineapple: An INFOCOMM commodity profile. In United Nations Conference on Trade and Development; UNCTAD: New York, NY, USA; Geneva, Switzerland, 2016. [Google Scholar]
- Kader, A.A.; Zagory, D.; Kerbel, E.L.; Wang, C.Y. Modified atmosphere packaging of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 1989, 28, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Othman, Z.; Siriphanich, J. Pineapple (Ananas comosus L. Merr.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 194–217. [Google Scholar]
- Marrero, A.; Kader, A.A. Optimal temperature and modified atmosphere for keeping quality of fresh-cut pineapples. Postharvest Biol. Technol. 2006, 39, 163–168. [Google Scholar] [CrossRef]
- Antoniolli, L.R.; Benedetti, B.C.; Sigrist, J.M.M.; Silveira, N.F.A. Quality evaluation of fresh-cut ‘Pérola’ pineapple stored in controlled atmosphere. Food Sci. Technol. 2007, 27, 530–534. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Lee, D.S. Modified atmosphere and moisture condensation in packaged fresh produce: Scientific efforts and commercial success. Postharvest Biol. Technol. 2023, 198, 112235. [Google Scholar] [CrossRef]
- Montero-Calderón, M.; Rojas-Graü, M.A.; Martín-Belloso, O. Mechanical and chemical properties of Gold cultivar pineapple flesh (Ananas comosus). Eur. Food Res. Technol. 2010, 230, 675–686. [Google Scholar] [CrossRef]
- Guthrie, J.; Walsh, K. Non-invasive assessment of pineapple and mango fruitquality using near infra-red spectroscopy. Aust. J. Exp. Agric. 1997, 37, 253–263. [Google Scholar] [CrossRef]
- Xu, S.; Ren, J.; Lu, H.; Wang, X.; Sun, X.; Liang, X. Nondestructive detection and grading of flesh translucency in pineapples with visible and near-infrared spectroscopy. Postharvest Biol. Technol. 2022, 192, 112029. [Google Scholar] [CrossRef]
- Wang, N.N.; Sun, D.W.; Yang, Y.C.; Pu, H.; Zhu, Z. Recent advances in the application of hyperspectral imaging for evaluating fruit quality. Food Anal. Methods 2016, 9, 178–191. [Google Scholar] [CrossRef]
- Wieme, J.; Mollazade, K.; Malounas, I.; Zude-Sasse, M.; Zhao, M.; Gowen, A.; Argyropoulos, D.; Fountas, S.; Van Beek, J. Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review. Biosyst. Eng. 2022, 222, 156–176. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.W. Principles of hyperspectral imaging technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Sun, D.W., Ed.; Academic Press/Elsevier: San Diego, CA, USA, 2010. [Google Scholar]
- Mollazade, K. Non-destructive identifying level of browning development in button mushroom (Agaricus bisporus) using hyperspectral imaging associated with chemometrics. Food Anal. Methods 2017, 10, 2743–2754. [Google Scholar] [CrossRef]
- Zhu, H.; Chu, B.; Fan, Y.; Tao, X.; Yin, W.; He, Y. Hyperspectral imaging for predicting the internal quality of kiwifruits based on variable selection algorithms and chemometric models. Sci. Rep. 2017, 7, 7845. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Li, J.; Xia, Y.; Tian, X.; Guo, Z.; Huang, W. Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method. Postharvest Biol. Technol. 2019, 151, 79–87. [Google Scholar] [CrossRef]
- Mollazade, K.; Hashim, N.; Zude-Sasse, M. Hyperspectral imaging for predicting the chemical composition of fresh-cut pineapple (Ananas comosus). Acta Hortic. 2022, 1353, 79–85. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 15th ed.; AOAC International: Washington, DC, USA, 1990. [Google Scholar]
- Pflanz, M.; Zude, M. Spectrophotometric analyses of chlorophyll and single carotenoids during fruit development of tomato (Solanum lycopersicum L.) by means of iterative multiple linear regression analysis. Appl. Opt. 2008, 47, 5961–5970. [Google Scholar] [CrossRef] [PubMed]
- Mollazade, K.; Omid, M.; Akhlaghian Tab, F.; Rezaei Kalaj, Y.; Mohtasebi, S.S. Data mining-based wavelength selection for monitoring quality of tomato fruit by backscattering and multispectral imaging. Int. J. Food Prop. 2015, 18, 880–896. [Google Scholar] [CrossRef]
- Mathworks. Image Processing Toolbox Documentation (R2015b). 2015. Available online: https://www.mathworks.com/help/images/ (accessed on 21 March 2022).
- Rizon, M.; Yazid, H.; Saad, P. Object detection using circular Hough transform. Am. J. Appl. Sci. 2005, 2, 1606–1609. [Google Scholar] [CrossRef]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. SIGKDD Explor. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Liu, H.; Motoda, H. Computational Methods of Feature Selection; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Hall, M.A. Correlation-Based Feature Subset Selection for Machine Learning. Ph.D. Thesis, University of Waikato, Hamilton, New Zealand, 1998. [Google Scholar]
- Padrón-Mederos, M.; Rodríguez-Galdón, B.; Díaz-Romero, C.; Lobo-Rodrigo, M.G.; Rodríguez-Rodríguez, E.M. Quality evaluation of minimally fresh-cut processed pineapples. LWT-Food Sci. Technol. 2020, 129, 109607. [Google Scholar] [CrossRef]
- Shamsudin, R.; Zulkifli, N.A.; Kamarul Zaman, A.A. Quality attributes of fresh pineapple-mango juice blend during storage. Int. Food Res. J. 2020, 27, 141–149. [Google Scholar]
- Lu, X.H.; Sun, D.Q.; Wu, Q.S.; Liu, S.H.; Sun, G.M. Physico-chemical properties, antioxidant activity and mineral contents of pineapple genotypes grown in China. Molecules 2014, 19, 8518–8532. [Google Scholar] [CrossRef] [PubMed]
- Siti Rashima, R.; Maizura, M.; Wan Nur Hafzan, W.M.; Hazzeman, H. Physicochemical properties and sensory acceptability of pineapples of different varieties and stages of maturity. Food Res. 2019, 3, 491–500. [Google Scholar]
- Magistad, O.C. Carotene and xanthophyll in pineapples. Plant Physiol. 1935, 10, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X. Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use. Postharvest Biol. Technol. 2020, 168, 111246. [Google Scholar] [CrossRef]
- Chandra, R.D.; Prihastyanti, M.N.U.; Lukitasari, D.M. Effects of pH, high pressure processing, and ultraviolet light on carotenoids, chlorophylls, and anthocyanins of fresh fruit and vegetable juices. eFood 2021, 2, 113–124. [Google Scholar] [CrossRef]
- Bell, T.; Alamzad, R.; Graf, B. Effect of pH on the chemical stability of carotenoids in juice. Proc. Nutr. Soc. 2016, 75, E94. [Google Scholar] [CrossRef]
- Subedi, P.P.; Walsh, K.B.; Hopkins, D.W. Assessment of titratable acidity in fruit using short wave near infrared spectroscopy. Part A: Establishing a detection limit based on model solutions. J. Near Infrared Spectrosc. 2012, 20, 449–457. [Google Scholar] [CrossRef]
- Wisniewska, A.; Widomska, J.; Subczynski, W.K. Carotenoid-membrane interactions in liposomes: Effect of dipolar, monopolar, and nonpolar carotenoids. Acta Biochim. Pol. 2006, 53, 475–484. [Google Scholar] [CrossRef]
- Bellamy, L.J. The Infrared Spectra of Complex Molecules: Volume Two Advances in Infrared Group Frequencies; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Arruda de Brito, A.; Campos, F.; dos Reis Nascimento, A.; Damiani, C.; Alves da Silva, F.; Henrique de Almeida Teixeira, G.; Carlos Cunha Júnior, L. Non-destructive determination of color, titratable acidity, and dry matter in intact tomatoes using a portable Vis-NIR spectrometer. J. Food Compos. Anal. 2022, 107, 104288. [Google Scholar] [CrossRef]
- Tantinantrakun, A.; Sukwanit, S.; Thompson, A.K.; Teerachaichayut, S. Nondestructive evaluation of SW-NIRS and NIR-HSI for predicting the maturity index of intact pineapples. Postharvest Biol. Technol. 2023, 195, 112141. [Google Scholar] [CrossRef]
Origin No. | Mass (g) | Height (cm) | Arithmetic Mean Diameter (cm) | Moisture Content (MC, in %) | Soluble Solids Content (SSC, in %) | Titratable Acidity (TA, in %) | Carotenoids Content (CC, in mg/100 g DM) |
---|---|---|---|---|---|---|---|
Origin 1 | 1146 b ± 337 | 14.30 bc ± 2.57 | 10.02 a ± 0.64 | 86.51 b ± 1.34 | 13.02 a ± 1.19 | 0.96 a ± 0.07 | 0.34 ab ± 0.12 |
Origin 2 | 1053.2 b ± 88.6 | 12.80 c ± 0.95 | 13.37 a ± 9.95 | 86.70 ab ± 2.24 | 12.42 ab ± 2.19 | 0.95 a ± 0.21 | 0.42 a ± 0.05 |
Origin 3 | 1165.5 b ± 84.7 | 13.75 bc ± 0.49 | 10.33 a ± 0.55 | 85.14 b ± 1.81 | 13.76 a ± 1.17 | 0.92 a ± 0.15 | 0.35 a ± 0.12 |
Origin 4 | 1604.6 a ± 133.8 | 16.60 a ± 0.99 | 11.03 a ± 0.63 | 88.54 a ± 1.28 | 10.52 b ± 1.63 | 0.98 a ± 0.16 | 0.23 bc ± 0.10 |
Origin 5 | 1521 a ± 377 | 15.55 ab ± 2.09 | 10.83 a ± 0.90 | 86.13 b ± 0.58 | 12.92 a ± 0.53 | 0.61 b ± 0.14 | 0.35 ab ± 0.09 |
Origin 6 | 1358 ab ± 320 | 14.00 bc ± 1.87 | 11.07 a ± 0.73 | 86.35 b ± 1.10 | 13.18 a ± 0.91 | 0.93 a ± 0.17 | 0.21 c ± 0.11 |
All origins | 1308 ± 316.2 | 14.50 ± 2.01 | 11.11 ± 4.05 | 86.56 ± 1.75 | 12.64 ± 1.74 | 0.89 ± 0.19 | 0.32 ± 0.10 |
Transformation Function | VIS-SWNIR | NIR | ||||||
---|---|---|---|---|---|---|---|---|
RMSEReg (Pixel) | MAPEReg (%) | RMSECh (Pixel) | MAPECh (%) | RMSEReg (Pixel) | MAPEReg (%) | RMSECh (Pixel) | MAPECh (%) | |
Non-reflective similarity | 2.85 ± 1.15 | 0.52 ± 0.17 | 3.09 ± 1.81 | 0.56 ± 0.26 | 2.21 ± 0.65 | 0.84 ± 0.27 | 2.25 ± 1.02 | 0.82 ± 0.25 |
Affine | 1.48 ± 1.29 | 0.25 ± 0.14 | 1.81 ± 1.84 | 0.28 ± 0.16 | 1.17 ± 0.45 | 0.45 ± 0.16 | 1.29 ± 1.02 | 0.49 ± 0.32 |
Projective | 2.40 ± 3.94 | 0.43 ± 0.69 | 2.82 ± 3.19 | 0.55 ± 0.65 | 1.25 ± 0.83 | 0.48 ± 0.32 | 2.45 ± 2.83 | 1.02 ± 1.22 |
Chemical Composition | Bandpath Optical Filters | Light Sources | ||
---|---|---|---|---|
Ranking and Uncorrelatedness | Subset Selection | Ranking and Uncorrelatedness | Subset Selection | |
Moisture content (MC, in %) | 490 nm (0.54) *, 1565 nm (0.07) | 495 nm (0.54), 500 nm (0.54) | 490 nm (0.54), 1565 nm (0.07) | 495 nm (0.54), 500 nm (0.54) |
Soluble solids content (SSC, in %) | 485 nm (−0.49) | 495 nm (−0.49) | 485 nm (−0.49) | 495 nm (−0.49) |
Titratable acidity (TA, in %) | 515 nm (0.32), 960 nm (0.19) | 500 nm (0.34), 505 nm (0.34), 1215 nm (0.26) | 515 nm (0.32), 960 nm (0.19) | 500 nm(0.34), 505 nm (0.34), 1240 nm (0.25) |
Carotenoids content (CC, in mg/100g DM) | 510 nm (−0.53) | 505 nm (−0.55), 1425 nm (0.21) | 510 nm (−0.53) | 505 nm (−0.55), 1425 nm (0.21) |
Statistical Measure | Moisture Content (MC) | Soluble Solids Content (SSC) | Titratable Acidity (TA) | Carotenoids Content (CC) | |||||
---|---|---|---|---|---|---|---|---|---|
490 nm + 1565 nm | 495 nm + 500 nm | 485 nm | 495 nm | 515 nm + 960 nm | 500 nm + 505 nm + 1215 nm | 500 nm + 505 nm + 1240 nm | 510 nm | 505 nm + 1425 nm | |
Rc | 0.59 ± 0.03 | 0.58 ± 0.03 | 0.50 ± 0.04 | 0.50 ± 0.03 | 0.33 ± 0.03 | 0.37 ± 0.03 | 0.37 ± 0.05 | 0.54 ± 0.02 | 0.65 ± 0.02 |
RMSEc | 2.05 ± 0.07 | 2.05 ± 0.07 | 2.09 ± 0.05 | 2.09 ± 0.06 | 0.26 ± 0.02 | 0.26 ± 0.02 | 0.26 ± 0.02 | 0.13 ± 0.00 | 0.12 ± 0.00 |
MAPEc | 1.90 ± 0.07 | 1.89 ± 0.07 | 14.97 ± 0.52 | 14.88 ± 0.62 | 23.02 ± 0.97 | 22.29 ± 2.09 | 22.72 ± 1.05 | 50.43 ± 2.70 | 44.45 ± 2.58 |
Rcv | 0.55 ± 0.05 | 0.56 ± 0.05 | 0.49 ± 0.07 | 0.52 ± 0.07 | 0.37 ± 0.06 | 0.35 ± 0.06 | 0.37 ± 0.09 | 0.53 ± 0.05 | 0.63 ± 0.04 |
RMSEcv | 2.11 ± 0.11 | 2.10 ± 0.15 | 2.99 ± 3.95 | 2.07 ± 0.11 | 0.24 ± 0.03 | 0.25 ± 0.03 | 0.25 ± 0.04 | 0.13 ± 0.01 | 0.12 ± 0.01 |
MAPEcv | 1.93 ± 0.09 | 1.92 ± 0.12 | 14.80 ± 1.04 | 14.72 ± 1.26 | 23.05 ± 2.18 | 23.53 ± 1.95 | 23.70 ± 2.15 | 49.61 ± 4.60 | 43.99 ± 5.08 |
Chemical Composition | Region No. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Moisture content (495 nm + 500 nm) | 2.39 a ± 1.15 | 1.54 a ± 1.28 | 2.41 a ± 1.82 | 2.52 a ± 1.51 | 2.53 a ± 1.30 | 1.76 a ± 1.22 | 2.17 a ± 1.23 | 1.39 a ± 1.02 | 1.61 a ± 1.23 | 1.67 a ± 1.48 |
Soluble solids content (495 nm) | 16.25 a ± 11.10 | 11.86 a ± 5.31 | 11.26 a ± 6.40 | 13.52 a ± 9.53 | 21.69 a ± 19.19 | 18.54 a ± 15.38 | 16.86 a ± 14.48 | 8.48 a ± 5.69 | 7.50 a ± 5.59 | 7.48 a ± 6.93 |
Titratable acidity (500 nm + 505 nm + 1215 nm) | 27.88 a ± 31.63 | 20.83 a ± 21.22 | 18.70 a ± 17.16 | 18.06 a ± 17.43 | 26.07 a ± 20.16 | 24.05 a ± 21.79 | 28.84 a ± 37.62 | 32.21 a ± 40.01 | 24.64 a ± 26.71 | 21.03 a ± 20.21 |
Titratable acidity (500 nm + 505 nm + 1240 nm) | 26.31 a ± 32.81 | 22.10 a ± 20.58 | 21.47 a ± 14.76 | 18.13 a ± 16.16 | 26.83 a ± 20.68 | 25.45 a ± 23.16 | 28.48 a ± 42.04 | 31.90 a ± 43.28 | 25.53 a ± 29.63 | 21.20 a ± 20.04 |
Carotenoids content (505 nm + 1425 nm) | 27.53 a ± 15.40 | 28.50 a ± 17.80 | 19.43 a ± 17.51 | 32.31 a ± 38.66 | 76.04 a ± 89.12 | 70.63 a ± 70.57 | 52.15 a ± 49.40 | 27.63 a ± 35.82 | 27.33 a ± 20.90 | 34.12 a ± 25.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollazade, K.; Hashim, N.; Zude-Sasse, M. Towards a Multispectral Imaging System for Spatial Mapping of Chemical Composition in Fresh-Cut Pineapple (Ananas comosus). Foods 2023, 12, 3243. https://doi.org/10.3390/foods12173243
Mollazade K, Hashim N, Zude-Sasse M. Towards a Multispectral Imaging System for Spatial Mapping of Chemical Composition in Fresh-Cut Pineapple (Ananas comosus). Foods. 2023; 12(17):3243. https://doi.org/10.3390/foods12173243
Chicago/Turabian StyleMollazade, Kaveh, Norhashila Hashim, and Manuela Zude-Sasse. 2023. "Towards a Multispectral Imaging System for Spatial Mapping of Chemical Composition in Fresh-Cut Pineapple (Ananas comosus)" Foods 12, no. 17: 3243. https://doi.org/10.3390/foods12173243