Optimization of the Process for Green Jujube Vinegar and Organic Acid and Volatile Compound Analysis during Brewing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Green Jujube Juice
2.2. Fermentation
2.3. Experimental Design
2.4. Analysis of Organic Acids
2.4.1. Sample Preparation
2.4.2. HPLC Apparatus and Conditions
2.5. Analysis of Volatile Compounds
2.5.1. Extraction of Volatile Compounds by Headspace Solid Phase Microextraction (HS-SPME)
2.5.2. Analysis of Volatile Compounds by Gas Chromatography-Mass Spectrometer (GC-MS)
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Green Jujube Vinegar Process Optimization
3.1.1. RSM Model for Total Acidity Content
3.1.2. RSM Analysis and Verification of the Optimum Fermentation Parameters
3.2. Analysis of Organic Acids during the Fermentation of Green Jujube Vinegar by HPLC
3.3. Identification and Analysis of Volatile Compounds by HS-SPME and GC-MS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, J.M.; Wu, S.J.; Lin, B.M.; Wu, S.H.; Li, H.H. Research progress of green plum drinks. J. Food Saf. Qual. 2022, 13, 2924–2931. [Google Scholar] [CrossRef]
- Wang, Y.M.; Xia, T.; Qiang, X.; Gen, B.B.; Li, S.P.; Zheng, Y.; Qiao, C.C.; Yue, S.J.; Wang, M. Formulation optimization and quality analysis of Lycium barbarum vinegar beverage. China Brew. 2022, 41, 190–194. [Google Scholar]
- Xia, T.; Zhang, B.; Duan, W.H.; Zhang, J.; Wang, M. Nutrients and bioactive components from vinegar: A fermented and functional food. J. Funct. Foods 2020, 64, 103681. [Google Scholar] [CrossRef]
- Chin, W.H.; Azwan, M.L.; Shazrul, F.; Umi, K.; Lim, S.J. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef]
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Chen, L.; Shi, J.; Zhao, H.; Zhang, X.M.; Wang, Y.L.; Zhang, J.J.; Xue, J. Effects of three kinds of grape vinegar on blood lipid level in rats fed with high-fat diet. Food Ferment. Ind. 2022, 48, 91–97. [Google Scholar] [CrossRef]
- Sakakibara, S.; Yamauchi, T.; Oshima, Y.; Tsukamoto, Y.; Kadowaki, T. Acetic Acid Activates Hepatic AMPK and Reduces Hyperglycemia in Diabetic KK-A(Y) Mice. Biochem. Biophys. Res. Commun. 2006, 344, 597–604. [Google Scholar] [CrossRef]
- Baba, N.; Higashi, Y.; Kamakura, T. The newly developed vinegar “Izumi” inhibits the proliferation of human squamous cell carcinoma cells by inducing programmed cell necrosis. J. Dermatol. Sci. 2013, 69, 21–25. [Google Scholar] [CrossRef]
- Chou, C.H.; Liu, C.W.; Yang, D.J.; Wu, Y.H.; Chen, Y.C. Amino acid, mineral, and polyphenolic profiles of black vinegar, and its lipid-lowering and antioxidant effects in vivo. Food Chem. 2015, 168, 63–69. [Google Scholar] [CrossRef]
- Li, J.W.; Fan, L.P.; Ding, S.D.; Ding, X.L. Nutritional composition of five cultivars of Chinese jujube. Food Chem. 2007, 103, 454–460. [Google Scholar] [CrossRef]
- Li, J.W.; Liu, Y.F.; Fan, L.P.; Ai, L.Z.; Shan, L. Antioxidant activities of polysaccharides from the fruiting bodies of Zizyphus Jujuba cv. Jinsixiaozao. Carbohydr. Polym. 2011, 84, 390–394. [Google Scholar] [CrossRef]
- Song, J.X.; Bi, J.F.; Chen, Q.Q.; Wu, X.Y.; Lu, Y.; Meng, X.J. Assessment of sugar content, fatty acids, free amino acids, and volatile profiles in jujube fruits at different ripening stages. Food Chem. 2019, 270, 344–352. [Google Scholar] [CrossRef]
- Wang, L.N.; Fu, H.Y.; Wang, W.Z.; Wang, Y.Q.; Zheng, F.P.; Ni, H.; Chen, F. Analysis of reducing sugars, organic acids and minerals in 15 cultivars of jujube (Ziziphus jujuba Mill.) fruits in China. J. Food Compos. Anal. 2018, 73, 10–16. [Google Scholar] [CrossRef]
- Wang, B.N.; Huang, Q.Y.; Venkitasamy, C.; Chai, H.K.; Gao, H.; Cheng, N.; Cao, W.; Lv, X.G.; Pan, Z.L. Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. LWT Food Sci. Technol. 2016, 66, 56–62. [Google Scholar] [CrossRef]
- Zhu, S.; Sun, L.; Zhou, J. Effects of nitric oxide fumigation on phenolic metabolism of postharvest Chinese winter jujube (Zizyphus jujube Mill. cv. Dongzao) about fruit quality. LWT Food Sci. Technol. 2009, 42, 1009–1014. [Google Scholar] [CrossRef]
- Jakesevic, M.; Håkansson, Å.; Adawi, D.; Jeppsson, B.; Rumpunen, K.; Ekholm, A.; Siv, A.; Göran, M. Antioxidative protection of dietary rosehips and polyphenol active lactobacilli in mice subjected to intestinal oxidative stress by ischemia-reperfusion. Microb. Ecol. Health Dis. 2009, 21, 193–202. [Google Scholar] [CrossRef]
- Szołtysik, M.; Kucharska, A.Z.; Sokół-Łętowska, A.; Dąbrowska, A.; Bobak, Ł.; Chrzanowska, J. The effect of rosa spinosissima fruits extract on lactic acid bacteria growth and other yoghurt parameters. Foods 2020, 9, 1167. [Google Scholar] [CrossRef]
- Yuan, L.; Li, G.F.; Yan, N.; Wu, J.H.; Du, J.J. Optimization of fermentation conditions for fermented green jujube wine and its quality analysis during winemaking. J. Food Sci. Technol. 2021, 59, 288–299. [Google Scholar] [CrossRef]
- Li, G.F.; Yan, N.; Li, G.Q. The Effect of In Vitro Gastrointestinal Digestion on the Antioxidants, Antioxidant Activity, and Hypolipidemic Activity of Green Jujube Vinegar. Foods 2022, 11, 1647. [Google Scholar] [CrossRef]
- GB/T 12456-2008; Determination of Total Acid in Foods. 2008. Available online: http://www.biaozhun8.cn/biaozhun31536/ (accessed on 25 June 2008).
- Hou, F.N.; Mu, T.H.; Ma, M.M.; Blecker, C. Optimization of processing technology using response surface methodology and physicochemical properties of roasted sweet potato. Food Chem. 2019, 278, 136–143. [Google Scholar] [CrossRef]
- Lei, Y.; Liao, W.Y.; Ye, F. Simultaneous determination of 7 organic acids in fruit vinegar drinks by high performance liquid chromatography. J. Food Saf. Qual. 2019, 10, 5857–5861. [Google Scholar] [CrossRef]
- Wang, Y.F.; Johnson-Cicalese, J.; Singh, A.P.; Vorsa, N. Characterization and quantification of flavonoids and organic acids over fruit development in American cranberry (Vaccinium macrocarpon) cultivars using HPLC and APCI-MS/MS. Plant Sci. 2017, 262, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.M.; Wu, S.M.; Zhou, Y.S.; Liu, Z.M.; Tang, M.Z. Analysis of flavor components in HS-GC-IMS and antioxidant properties of black Lycium barbarum rice wine. J. Food Nutr. Res. 2021, 9, 18–25. [Google Scholar]
- Yu, Y.J.; Lu, Z.M.; Yu, N.H.; Xu, W.; Li, G.Q.; Shi, J.S.; Xu, Z.H. HS-SPME/GC-MS and chemometrics for volatile composition of Chinese traditional aromatic vinegar in the Zhenjiang region. J. Inst. Brew. 2012, 118, 133–141. [Google Scholar] [CrossRef]
- An, X.; Wang, Z.; Li, J.; Nie, X.; Liu, K.; Zhang, Y.; Zhao, Z.; Chitrakar, B.; Ao, C. Analysis of flavor-related compounds in fermented persimmon beverages stored at different temperatures. LWT Food Sci. Technol. 2022, 163, 113524. [Google Scholar] [CrossRef]
- Zheng, H.W.; Zhang, Q.Y.; Quan, J.P.; Zheng, Q.; Xi, W.P. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chem. 2016, 205, 112–121. [Google Scholar] [CrossRef]
- Tian, T.T.; Yang, H.; Yang, F.; Li, B.W.; Sun, J.Y.; Wu, D.H.; Lu, J. Optimization of fermentation conditions and comparison of volatile compounds for three fermented greengage wines. LWT Food Sci. Technol. 2018, 89, 542–550. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, C.X.; Zhao, C.M.; Yang, S.; Zheng, Y.; Xia, M.L.; Yan, Y.F.; Lang, F.F.; Wang, M. Monitoring microbial succession and metabolic activity during manual and mechanical solid-state fermentation of Chinese cereal vinegar. LWT Food Sci. Technol. 2020, 133, 109868. [Google Scholar] [CrossRef]
- Masahiro, K.; Yasushi, O.; Kiyoshi, E.; Hirofumi, A.; Takero, N.; Toshifumi, A.; Kozo, N. Fermentation-induced changes in the concentrations of organic acids, amino acids, sugars, and minerals and superoxide dismutase-like activity in tomato vinegar. Int. J. Food Prop. 2017, 20, 888–898. [Google Scholar] [CrossRef]
- Wu, Y.F.; Xia, M.L.; Zhao, N.; Tu, L.N.; Xue, D.N.; Zhang, X.L.; Zhao, C.M.; Cheng, Y.; Zheng, Y.; Wang, M. Metabolic profile of main organic acids and its regulatory mechanism in solid-state fermentation of Chinese cereal vinegar. Food Res. Int. 2021, 145, 110400. [Google Scholar] [CrossRef]
- Todorov, S.D.; Franco, B.D.G.D.M. Lactobacillus plantarum: Characterization of the species and application in food production. Food Rev. Int. 2010, 26, 205–229. [Google Scholar] [CrossRef]
- Li, T.L.; Jiang, T.; Liu, N.; Wu, C.Y.; Xu, H.D.; Lei, H.J. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.Q.; Zhu, B.Q.; Li, Y.; Zhang, Y.Y.; Zhang, B.L.; Fan, J.F. Acidic electrolyzed water efficiently improves the flavour of persimmon (Diospyros kaki L. cv. Mopan) wine. Food Chem. 2016, 197, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Hu, F.; Song, C.Z.; Xi, Z.M.; Zhang, Z.W. Aromatic profiles of young wines from berries at different heights on grapevines. Food Sci. Technol. 2016, 36, 248–258. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhu, X.Y.; Guo, D.Q. Analysis of aroma components in jujube vinegar. China Condiment 2020, 45, 36–139+144. [Google Scholar] [CrossRef]
- Xing, X.Y.; Yu, D.; Qiao, Y.; Fan, Z.Y.; Wang, R.F. The fermentation technology and analysis of aroma components in Hawthorn fruit vinegar with mixed strains by HS-SPME/GC-MS. China Condiment 2021, 46, 146–152. [Google Scholar] [CrossRef]
- Ozen, M.; Özdemir, N.; Ertekin-Filiz, B.; Budak, N.H.; Kök-Tas, T. Sour cherry (Prunus cerasus L.) vinegars produced from fresh fruit or juice concentrate: Bioactive compounds, volatile aroma compounds and antioxidant capacities. Food Chem. 2019, 309, 125664. [Google Scholar] [CrossRef]
- Pashazadeh, H.; Ozdemir, N.; Zannou, O.; Koca, I. Antioxidant capacity, phytochemical compounds, and volatile compounds related to aromatic property of vinegar produced from black rosehip (Rosa pimpinellifolia L.) juice. Food Biosci. 2021, 44, 101318. [Google Scholar] [CrossRef]
- Ubeda, C.; Hidalgo, C.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Evaluation of antioxidant activity and total phenols index in persimmon vinegars produced by different processes. LWT Food Sci. Technol. 2011, 44, 1591–1596. [Google Scholar] [CrossRef]
- Özdemir, G.B.; Özdemir, N.; Ertekin-Filiz, B.; Gökırmaklı, C.; Kök-Tas, T.; Budak, N.H. Volatile aroma compounds and bioactive compounds of hawthorn vinegar produced from hawthorn fruit (Crataegus tanacetifolia (lam.) pers.). J. Food Biochem. 2021, 45, 13676. [Google Scholar] [CrossRef]
Run | A | B | C | D | Y |
---|---|---|---|---|---|
1 | −1 | 0 | 0 | −1 | 4.63 ± 0.16 |
2 | +1 | −1 | 0 | 0 | 4.77 ± 0.53 |
3 | 0 | 0 | +1 | +1 | 4.85 ± 0.19 |
4 | 0 | 0 | 0 | 0 | 5.25 ± 0.09 |
5 | 0 | +1 | 0 | +1 | 4.79 ± 0.03 |
6 | +1 | +1 | 0 | −1 | 4.38 ± 0.37 |
7 | 0 | 0 | −1 | −1 | 4.71 ± 0.11 |
8 | 0 | −1 | +1 | −1 | 4.65 ± 0.16 |
9 | 0 | 0 | 0 | 0 | 5.38 ± 0.05 |
10 | −1 | 0 | 0 | 0 | 4.59 ± 0.53 |
11 | +1 | −1 | 0 | −1 | 4.50 ± 0.23 |
12 | +1 | 0 | −1 | 0 | 4.54 ± 0.38 |
13 | +1 | 0 | 0 | +1 | 4.85 ± 0.73 |
14 | 0 | 0 | 0 | 0 | 5.20 ± 0.09 |
15 | +1 | 0 | 0 | −1 | 4.41 ± 0.03 |
16 | −1 | 0 | 0 | +1 | 4.85 ± 0.17 |
17 | −1 | 0 | 0 | 0 | 4.72 ± 0.62 |
18 | 0 | +1 | 0 | −1 | 4.45 ± 0.08 |
19 | 0 | 0 | 0 | 0 | 5.13 ± 0.05 |
20 | 0 | 0 | −1 | +1 | 4.72 ± 0.70 |
21 | 0 | 0 | +1 | −1 | 4.41 ± 0.63 |
22 | 0 | 0 | 0 | 0 | 5.27 ± 0.05 |
23 | 0 | +1 | −1 | 0 | 4.58 ± 0.16 |
24 | −1 | +1 | 0 | 0 | 4.71 ± 0.41 |
25 | 0 | −1 | 0 | +1 | 4.83 ± 0.32 |
26 | −1 | 0 | +1 | 0 | 4.72 ± 0.27 |
27 | 1 | 0 | +1 | 0 | 4.59 ± 0.11 |
28 | 0 | 1 | +1 | 0 | 4.65 ± 0.05 |
29 | 0 | −1 | −1 | 0 | 4.86 ± 0.21 |
Source | SS | DF | MS | F-Value | p-Value | Significance | R2 | R2 Adj |
---|---|---|---|---|---|---|---|---|
Model | 1.93 | 14 | 0.14 | 28.59 | <0.0001 | ** | 0.9662 | 0.9324 |
A | 0.039 | 1 | 0.039 | 7.99 | 0.0135 | * | ||
B | 0.034 | 1 | 0.034 | 7.08 | 0.0186 | * | ||
C | 5.633 × 10−3 | 1 | 5.633 × 10−3 | 1.17 | 0.2981 | |||
D | 0.26 | 1 | 0.26 | 54.75 | <0.0001 | ** | ||
A B | 0.065 | 1 | 0.065 | 13.48 | 0.0025 | * | ||
A C | 6.250 × 10−4 | 1 | 6.250 × 10−4 | 0.13 | 0.7242 | |||
A D | 0.012 | 1 | 0.012 | 2.51 | 0.1355 | |||
B D | 2.500 × 10−5 | 1 | 2.500 × 10−5 | 5.184 × 10−3 | 0.9436 | |||
C D | 0.046 | 1 | 0.046 | 9.58 | 0.0079 | ** | ||
A2 | 0.62 | 1 | 0.62 | 128.97 | <0.0001 | ** | ||
B2 | 0.62 | 1 | 0.62 | 128.97 | <0.0001 | ** | ||
C2 | 0.51 | 1 | 0.51 | 105.19 | <0.0001 | ** | ||
D2 | 0.51 | 1 | 0.51 | 105.19 | <0.0001 | ** | ||
Residual | 0.068 | 14 | 4.823 × 10−3 | |||||
Lack of Fit | 0.033 | 10 | 3.340 × 10−3 | 0.39 | 0.8955 | |||
Pure Error | 0.034 | 4 | 8.530 × 10−3 | |||||
Synthesis | 2.00 | 28 |
No. | Volatile Compounds | CAS | Formula | MW | Concentration (mg/L) | ||||
---|---|---|---|---|---|---|---|---|---|
F0 | F1 | F2 | F3 | F4 | |||||
6 alcohols | |||||||||
C1 | Ethanol | 64-17-5 | C2H6O | 46.1 | 0.273 ± 0.031 c | 16.396 ± 1.235 a | 4.949 ± 0.236 b | 2.113 ± 0.167 b | 1.313 ± 0.124 bc |
C2 | Isopentanol | 123-51-3 | C5H12O | 88.2 | 0.112 ± 0.014 c | 2.153 ± 0.117 b | 0.171 ± 0.051 c | ||
C3 | Benzyl alcohol | 100-51-6 | C7H8O | 108.1 | 0.196 ± 0.061 c | ||||
C4 | 2-Methyl-1-butanol | 137-32-6 | C5H12O | 88.2 | 2.330 ± 0.207 b | 0.785 ± 0.036 c | 0.655 ± 0.034 c | 1.022 ± 0.087 c | |
C5 | Linalool | 78-70-6 | C10H18O | 154.3 | 0.647 ± 0.031 c | ||||
C6 | 4-Terpineol | 562-74-3 | C10H18O | 154.3 | 0.555 ± 0.034 c | 0.120 ± 0.025 c | 0.125 ± 0.064 c | 1.920 ± 0.238 bc | |
5 acids | |||||||||
C7 | Isobutyric acid | 79-31-2 | C4H8O2 | 88.2 | 0.271 ± 0.013 c | 0.156 ± 0.055 c | 0.299 ± 0.041 c | ||
C8 | Acetic acid | 64-19-7 | C2H4O2 | 60.1 | 0.905 ± 0.015 c | 11.450 ± 0.465 b | 22.457 ± 2.241 a | 26.165 ± 2.005 a | |
C9 | Hexanoic acid | 142-62-1 | C6H12O2 | 116.2 | 0.213 ± 0.028 c | ||||
C10 | 2-Methylbutanoic acid | 116-53-0 | C5H10O2 | 102.1 | 0.304 ± 0.025 c | 0.122 ± 0.024 c | 0.434 ± 0.123 c | ||
C12 | Isovaleric acid | 503-74-2 | C5H10O2 | 102.1 | 0.419 ± 0.033 c | 0.163 ± 0.015 c | 0.339 ± 0.021 c | ||
8 aldehydes | |||||||||
C13 | Hexanal | 66-25-1 | C6H12O | 100.2 | 0.391 ± 0.052 b | 0.223 ± 0.105 b | |||
C14 | (E)-2-Hexenal | 6728-26-3 | C6H10O | 98.1 | 0.767 ± 0.036 b | ||||
C15 | Benzaldehyde | 100-52-7 | C7H6O | 106.1 | 1.714 ± 0.122 b | 0.384 ± 0.062 b | 0.239 ± 0.231 b | ||
C16 | Phenylethanal | 122-78-1 | C8H8O | 120.2 | 0.997 ± 0.065 b | 0.831 ± 0.153 b | 0.578 ± 0.063 b | 0.054 ± 0.002 c | |
C17 | trans-2-Octenal | 2548-87-0 | C8H14O | 126.2 | 1.073 ± 0.232 b | ||||
C18 | n-Decanal | 112-31-2 | C10H20O | 156.3 | 0.051 ± 0.009 c | 0.048 ± 0.019 c | 0.045 ± 0.006 c | ||
C19 | Isovaleraldehyde | 590-86-3 | C5H10O | 86.1 | 5.121 ± 0.931 a | ||||
C20 | 3-Methyl-Butanal | 590-86-3 | C5H10O | 86.1 | 0.251 ± 0.013 c | 0.443 ± 0.034 c | |||
27 esters | |||||||||
C21 | Isoamyl formate | 110-45-2 | C6H12O2 | 116.2 | 0.183 ± 0.012 c | 0.171 ± 0.013 c | |||
C22 | Isoamyl acetate | 102-19-2 | C7H14O2 | 130.2 | 8.511 ± 0.335 ab | 11.672 ± 0.765 a | 13.874 ± 1.521 a | 15.707 ± 1.876 a | 16.422 ± 3.532 a |
C23 | Methyl dodecanoic | 111-82-0 | C14H28O3 | 244.4 | 0.583 ± 0.053 c | 1.470 ± 0.065 b | 0.317 ± 0.042 c | 0.469 ± 0.003 c | 0.584 ± 0.013 c |
C24 | Ethyl laurate | 106-33-2 | C14H28O2 | 228.4 | 0.129 ± 0.087 c | 1.056 ± 0.023 b | 0.046 ± 0.009 c | ||
C25 | Acetic acid-methyl ester | 79-20-9 | C3H6O2 | 74.1 | 0.382 ± 0.05 c | 0.392 ± 0.003 c | 0.704 ± 0.234 bc | ||
C26 | Ethyl acetate | 141-78-6 | C4H8O2 | 88.1 | 0.857 ± 0.098 bc | 3.487 ± 0.243 b | 4.896 ± 0.125 b | 6.123 ± 0.053 ab | |
C27 | Phenethyl acetate | 103-45-7 | C10H12O2 | 164.2 | 1.211 ± 0.034 b | 0.181 ± 0.005 c | |||
C28 | Isobutyl acetate | 110-19-0 | C6H12O2 | 116.2 | 0.121 ± 0.032 c | 0.369 ± 0.030 c | 0.269 ± 0.006 c | 0.382 ± 0.004 c | |
C29 | 2-Methylbutyl acetate | 624-41-9 | C7H14O2 | 130.2 | 0.273 ± 0.062 c | 0.904 ± 0.018 bc | 0.457 ± 0.022 c | 0.831 ± 0.032 bc | |
C30 | Methyl octanoate | 111-11-5 | C9H18O2 | 158.2 | 0.901 ± 0.112 bc | 1.064 ± 0.043 b | 0.121 ± 0.006 c | 0.468 ± 0.043 c | |
C31 | Ethyl octanoate | 106-32-1 | C10H20O2 | 172.3 | 0.871 ± 0.085 bc | 0.066 ± 0.037 c | |||
C32 | Methyl oleate | 112-62-9 | C19H36O2 | 296.5 | 0.129 ± 0.002 c | ||||
C33 | Ethyl decanoate | 110-38-3 | C12H24O2 | 200.3 | 0.863 ± 0.064 bc | 0.058 ± 0.033 c | |||
C34 | Methyl myristoleate | 56219-06-8 | C15H28O2 | 240.4 | 0.692 ± 0.098 bc | 0.620 ± 0.007 c | 0.160 ± 0.009 c | 0.169 ± 0.023 c | |
C35 | Methyl myristate | 124-10-7 | C15H30O2 | 242.4 | 1.248 ± 0.085 b | 0.408 ± 0.001 c | 0.152 ± 0.000 c | 0.204 ± 0.025 c | 0.232 ± 0.065 c |
C36 | Ethyl myristate | 124-06-1 | C16H32O2 | 256.4 | 0.190 ± 0.000 c | ||||
C37 | Methyl palmitoleate | 1120-25-8 | C17H32O2 | 268.4 | 3.647 ± 0.014 b | 2.165 ± 0.034 b | 0.781 ± 0.005 c | 0.840 ± 0.053 c | 0.811 ± 0.018 bc |
C38 | Methyl palmitate | 112-39-0 | C17H34O2 | 270.5 | 2.210 ± 0.059 b | 1.223 ± 0.063 b | 0.925 ± 0.013 c | 1.209 ± 0.024 b | 1.480 ± 0.085 b |
C39 | Ethyl palmitate | 628-97-7 | C18H36O2 | 284.5 | 0.445 ± 0.009 c | 0.067 ± 0.003 c | 0.054 ± 0.006 c | ||
C40 | Ethyl palmitoleate | 56219-10-4 | C18H34O2 | 282.5 | 1.101 ± 0.063 b | ||||
C41 | Methyl caproate | 106-70-7 | C7H14O2 | 130.2 | 1.515 ± 0.042 b | 0.358 ± 0.005 c | 0.071 ± 0.006 c | ||
C42 | Ethyl caproate | 123-66-0 | C8H16O2 | 144.2 | 1.941 ± 0.086 b | 0.181 ± 0.013 c | 0.164 ± 0.033 c | 0.162 ± 0.042 c | |
C43 | Methyl phenylacetate | 101-41-7 | C9H10O2 | 150.2 | 0.826 ± 0.098 bc | 0.107 ± 0.005 c | 0.095 ± 0.000 c | 0.151 ± 0.033 c | 0.086 ± 0.036 c |
C44 | Ethyl benzoate | 93-89-0 | C9H10O2 | 150.2 | 0.139 ± 0.004 c | ||||
C45 | Methyl linoleate | 112-63-0 | C19H34O2 | 294.5 | 0.070 ± 0.013 c | 0.070 ± 0.007 c | |||
C46 | Methyl elaidate | 1937-62-8 | C19H36O2 | 296.5 | 0.228 ± 0.063 c | 0.153 ± 0.032 c | 0.501 ± 0.002 c | 0.364 ± 0.009 c | 0.485 ± 0.074 c |
C47 | 2-Methyl-1-butanol acetate | 624-41-9 | C7H14O2 | 130.2 | 0.304 ± 0.013 c | 0.852 ± 0.63 bc | 0.831 ± 0.054 bc | ||
6 hydrocarbons and derivatives | |||||||||
C48 | Hexamethyl- cyclotrisiloxane | 541-05-9 | C6H18O3Si3 | 222.5 | 0.323 ± 0.006 ab | 0.275 ± 0.003 ab | 0.311 ± 0.005 ab | 0.478 ± 0.007 ab | |
C49 | Octamethyl-cyclotetrasiloxane | 556-67-2 | C8H24O4Si4 | 296.6 | 0.502 ± 0.009 ab | 0.640 ± 0.005 b | 0.731 ± 0.004 b | 0.641 ± 0.086 b | |
C50 | Tetradecamethyl-cycloheptasiloxane | 107-50-6 | C14H42O7Si7 | 519.1 | 1.304 ± 0.132 a | 0.491 ± 0.052 ab | 0.515 ± 0.021 ab | 0.647 ± 0.016 b | 0.748 ± 0.009 b |
C51 | Octadecamethyl-cyclopentasiloxane | 556-71-8 | C18H54O9Si9 | 667.4 | 0.300 ± 0.015 c | 0.113 ± 0.009 c | 0.173 ± 0.002 c | 0.241 ± 0.002 c | 0.208 ± 0.015 c |
C52 | Eicosamethyl-cyclopentasiloxane | 18772-36-6 | C20H60O10Si10 | 741.5 | 0.147 ± 0.022 c | 0.106 ± 0.003 c | |||
C53 | 3, 4-Dihydroxyphenylglycol-4TMS derivative | 56114-62-6 | C20H42O4Si4 | 458.9 | 2.182 ± 0.132 a | 0.755 ± 0.086 b | 1.244 ± 0.160 a | 1.831 ± 0.87 a | |
2 ketones | |||||||||
C54 | 3-Hydroxy-2-butanone | 513-86-0 | C4H8O2 | 88.1 | 0.181 ± 0.012 c | 0.849 ± 0.014 b | 1.589 ± 0.075 a | ||
C55 | 1-Octen-3-one | 4312-99-6 | C8H14O | 126.2 | 0.118 ± 0.004 c | ||||
6 others | |||||||||
C56 | Eucalyptol | 470-82-6 | C10H18O | 154.3 | 0.680 ± 0.036 b | 0.251 ± 0.007 c | 0.498 ± 0.012 bc | ||
C57 | 7-Hydroxytotarol, di(trimethylsilyl) ether | 1000386-45-3 | C18H38 | 254.5 | 0.212 ± 0.006 c | 0.157 ± 0.025 c | |||
C58 | 2-Phenylcyclopropionamid-e, N-(4phenylazo)phenyl- | 303097-62-3 | C22H19N3O | 341.4 | 0.159 ± 0.002 c | ||||
C59 | Ammonium acetate | 631-61-8 | C2H7NO2 | 77.1 | 0.205 ± 0.006 c | ||||
C60 | Silane, methyl vinyl(2-methylpent-3-yloxy)(methylvinyldodec-yloxysilyloxy)- | 1000421-54-9 | C11H24O2Si | 216.4 | 0.357 ± 0.009 bc | 0.192 ± 0.003 c | |||
C61 | Oxime-, methoxy-phenyl- | 1000222-86-6 | C7H6ClNO2 | 171.6 | 0.270 ± 0.007 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Yan, N.; Li, G.; Wang, J. Optimization of the Process for Green Jujube Vinegar and Organic Acid and Volatile Compound Analysis during Brewing. Foods 2023, 12, 3168. https://doi.org/10.3390/foods12173168
Li G, Yan N, Li G, Wang J. Optimization of the Process for Green Jujube Vinegar and Organic Acid and Volatile Compound Analysis during Brewing. Foods. 2023; 12(17):3168. https://doi.org/10.3390/foods12173168
Chicago/Turabian StyleLi, Guifeng, Ni Yan, Guoqin Li, and Jing Wang. 2023. "Optimization of the Process for Green Jujube Vinegar and Organic Acid and Volatile Compound Analysis during Brewing" Foods 12, no. 17: 3168. https://doi.org/10.3390/foods12173168
APA StyleLi, G., Yan, N., Li, G., & Wang, J. (2023). Optimization of the Process for Green Jujube Vinegar and Organic Acid and Volatile Compound Analysis during Brewing. Foods, 12(17), 3168. https://doi.org/10.3390/foods12173168