Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Bivalve Samples
2.3. Moisture Content Determination
2.4. Analysis of Pb and Cd Levels in Bivalve Samples
2.5. Determination of MP-like Particle Contents in Bivalve Samples
2.6. Bivalve Mollusk Consumption Data for the Thai Population
2.7. Assessment of Exposure to Pb, Cd and MP-like Particles Due to Bivalve Consumption
- (1)
- Average exposure (average consumption x average concentration);
- (2)
- High contaminant level exposure (average consumption × 97.5 PCTL concentration);
- (3)
- High consumption exposure (97.5 PCTL consumption × average concentration);
- (4)
- Worst-case exposure (97.5 PCTL consumption × 97.5 PCTL concentration).
2.8. Risk Characterization of Exposure to Pb, Cd and MP-like Particles Due to Bivalve Consumption
2.9. Statistical Analysis
3. Results
3.1. Lead and Cadmium Contents in Bivalves
3.2. MP-like Particles Detected in Bivalves
3.3. Exposure Assessment and Risk Characterization of Exposure to Pb and Cd from Bivalve Consumption
3.4. Assessment of Exposure to MP-like Particles Due to Bivalve Consumption
4. Discussion
4.1. Lead and Cadmium Contents in Bivalves
4.2. Microplastic-like Particles in Bivalves
4.3. Exposure Assessment and Risk Characterization of Pb and Cd from Bivalve Consumption
4.4. Assessment of Exposure to MP-like Particles Due to Bivalve Consumption
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crovato, S.; Mascarello, G.; Marcolin, S.; Pinto, A.; Ravarotto, L. From purchase to consumption of bivalve molluscs: A qualitative study on consumers’ practices and risk perceptions. Food Control 2019, 96, 410–420. [Google Scholar] [CrossRef]
- Wijsman, J.W.M.; Troost, K.; Fang, J.; Roncarati, A. Global production of marine bivalves. Trends and challenges. In Goods and Services of Marine Bivalves; Smaal, A.C., Ferreira, J.G., Grant, J., Petersen, J.K., Strand, Ø., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 7–26. [Google Scholar]
- Beal, T.; Ortenzi, F. Priority micronutrient density in foods. Front. Nutr. 2022, 9, 806566. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Patra, R.C.; Swarup, D.; Kumar, P.; Nandi, D.; Naresh, R.; Ali, S.L. Milk trace elements in lactating cows environmentally exposed to higher level of lead and cadmium around different industrial units. Sci. Total Environ. 2008, 404, 36–43. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Backstrand, J.R. Lead toxicity and pollution in Poland. Int. J. Environ. Res. Public Health. 2020, 17, 4385. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: http://monographs.iarc.who.int/list-of-classifications (accessed on 20 January 2023).
- Joint FAO/WHO Expert Committee on Food Additives. Safety Evaluation of Certain Food Additives and Contaminants. Seventy-Third Report of the Joint FAO/WHO Expert Committee on Food Additives. Available online: http://apps.who.int/iris/handle/10665/44813 (accessed on 2 October 2022).
- Kumar, A.; Dey, P.K.; Singla, P.N.; Ambasht, R.S.; Upadhyay, S.K. Blood lead levels in children with neurological disorders. J. Trop. Pediatr. 1998, 44, 320–322. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- Alexander, J.; Benford, D.; Cockburn, A.; Cravedi, J.P.; Dogliotti, E.; Di Domenico, A.; Férnandez-Cruz, M.L.; Fürst, P.; Fink-Gremmels, J.; Galli, C.L.; et al. Cadmium in food-Scientific opinion of the panel on contaminants in the food chain. EFSA J. 2009, 980, 1–139. [Google Scholar]
- Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic pollution in table salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. [Google Scholar] [CrossRef]
- GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment (Part 2). Available online: http://www.gesamp.org/publications/microplastics-in-the-marine-environment-part-2 (accessed on 2 October 2022).
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, 46687. [Google Scholar] [CrossRef]
- Coffin, S.; Bouwmeester, H.; Brander, S.; Damdimopoulou, P.; Gouin, T.; Hermabessiere, L.; Khan, E.; Koelmans, A.A.; Lemieux, C.L.; Teerds, K.; et al. Development and application of a health-based framework for informing regulatory action in relation to exposure of microplastic particles in California drinking water. Microplast. Nanoplast. 2022, 2, 12. [Google Scholar] [CrossRef]
- Su, L.; Cai, H.; Kolandhasamy, P.; Wu, C.; Rochman, C.M.; Shi, H. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ. Pollut. 2018, 234, 347–355. [Google Scholar] [CrossRef]
- Latimer, G. (Ed.) Official Methods of Analyses of AOAC International, 21st ed.; AOAC International: Rockville, Maryland, 2019; ISBN 0-935584-89-7. [Google Scholar]
- Sadiq, M.; Zaidi, T.H.; Alam, I.A. Bioaccumulation of lead by clams (Meretrix meretrix) collected from the Saudi Coast of the Arabian Gulf. Chem. Speciat. Bioavailab. 1992, 4, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Yang, D.; Li, L.; Jabeen, K.; Shi, H. Microplastics in commercial bivalves from China. Environ. Pollut. 2015, 207, 190–195. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Karami, A.; Golieskardi, A.; Choo, C.K.; Larat, V.; Galloway, T.S.; Salamatinia, B. The presence of microplastics in commercial salts from different countries. Sci. Rep. 2017, 7, 46173. [Google Scholar] [CrossRef]
- The National Bureau of Agricultural Commodity and Food Standards (ACFS). Food Consumption Data of Thailand. Available online: http://www.thaincd.com/document/file/info/non-communicable-disease/Thai_Food_Consumption_Data_2016.pdf (accessed on 10 November 2022). (In Thai).
- Banjong, O.; Viriyapanich, T.; Chittchang, U. Food Quantity Conversion Handbook; Institute of Nutrition, Mahidol University: Salaya, Thailand, 2013. (In Thai) [Google Scholar]
- World Health Organization. Principles and Methods for the Risk Assessment of Chemicals in Food; Food and Agriculture Organization of the United Nations; World Health Organization: Geneva, Switzerland, 2009; ISBN 978 92 4 157240 8.
- Bureau of Fisheries Development and Technology Transfer. Cockle Farming. 2007. Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand. Available online: https://www.fisheries.go.th/it-database/dbweb/ebook/pdf (accessed on 21 February 2023). (In Thai)
- Bureau of Fisheries Development and Technology Transfer. Bivalves Farming. 2019. Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand. Available online: https://www4.fisheries.go.th/local/file_document/20190612162228_1_file.pdf (accessed on 21 February 2023). (In Thai)
- George, R.; Martin, G.D.; Nair, S.M.; Chandramohanakumar, N. Biomonitoring of trace metal pollution using the bivalve molluscs, Villorita cyprinoides, from the Cochin backwaters. Environ. Monit. Assess. 2013, 185, 10317–10331. [Google Scholar] [CrossRef]
- Wang, W.-X.; Lu, G. Chapter 21—Heavy Metals in Bivalve Mollusks. In Chemical Contaminants and Residues in Food, 6th ed.; Schrenk, D., Cartus, A., Eds.; Woodhead Publishing: Thorston, UK, 2017; pp. 553–594. [Google Scholar]
- Notification of Ministry of Public Health No. 414 (B.E. 2563) Issued by Virtue of the Food Act B.E. 2522. Re: Standards for Contaminants in Food. Available online: https://fsvps.gov.ru/sites/default/files/files/ehksport-import/tailand/umz_414.pdf (accessed on 21 February 2023).
- FAO/WHO Codex Alimentarius. Codex Stan 193-1995 (Revised in 2019), General Standard for Contaminants and Toxins in Food and Feed. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 2 March 2023).
- Commission Regulation (EC) No. 1881/2006. 2006. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/lexuriserv/lexuriserv.do?uri=oj:l:2006:364:0005:0024:en:pdf (accessed on 2 March 2023).
- Pan, X.-D.; Han, J.-L. Heavy metals accumulation in bivalve mollusks collected from coastal areas of southeast China. Mar. Pollut. Bull. 2023, 189, 114808. [Google Scholar] [CrossRef]
- Thang, N.Q.; Huy, B.T.; Khanh, D.N.; Vy, N.T.; Phuong, T.H.; Sy, D.T.; Tham, L.T.; Phuong, N.T. Potential health risks of toxic heavy metals and nitrate via commonly consumed bivalve and vegetable species in Ho Chi Minh City, Vietnam. Environ. Sci. Pollut. Res. 2021, 28, 54960–54971. [Google Scholar] [CrossRef]
- Soegianto, A.; Putranto, T.W.C.; Payus, C.M.; Wahyuningsih, D.; Wati, F.N.I.R.; Utamadi, F.H.B.; Widyaningsih, N.S.; Sinuraya, S. Metal concentrations and potential health risk in clam (Meretrix lyrata Sowerby 1851) tissues from East Java Coast, Indonesia. Environ. Monit. Assess. 2021, 193, 753. [Google Scholar] [CrossRef]
- Rattikansukha, C.; Sratongtian, S.; Janta, R.; Sichum, S. Health risk assessment of cadmium and mercury via seafood consumption in coastal area of Nai Thung, Nakhon Si Thammarat Province, Thailand. WJST 2021, 18, 9244. [Google Scholar] [CrossRef]
- Peycheva, K.; Panayotova, V.; Stancheva, R.; Merdzhanova, A.; Dobreva, D.; Parrino, V.; Cicero, N.; Fazio, F.; Licata, P. Seasonal variations in the trace elements and mineral profiles of the bivalve species, Mytilus galloprovincialis, Chamelea gallina and Donax trunculus, and human health risk assessment. Toxics 2023, 11, 319. [Google Scholar] [CrossRef]
- Sudsandee, S.; Tantrakarnapa, K.; Tharnpoophasiam, P.; Limpanont, Y.; Mingkhwan, R.; Worakhunpiset, S. Evaluating health risks posed by heavy metals to humans consuming blood cockles (Anadara granosa) from the Upper Gulf of Thailand. Environ. Sci. Pollut. Res. 2017, 24, 14605–14615. [Google Scholar] [CrossRef]
- Claessens, M.; van Cauwenberghe, L.; Vandegehuchte, M.B.; Janssen, C.R. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 2013, 70, 227–233. [Google Scholar] [CrossRef]
- Pinto da Costa, J.; Reis, V.; Paço, A.; Costa, M.; Duarte, A.C.; Rocha-Santos, T. Micro(nano)plastics—Analytical challenges towards risk evaluation. TrAC Trends Anal. Chem. 2019, 111, 173–184. [Google Scholar] [CrossRef]
- Teng, J.; Wang, Q.; Ran, W.; Wu, D.; Liu, Y.; Sun, S.; Liu, H.; Cao, R.; Zhao, J. Microplastic in cultured oysters from different coastal areas of China. Sci. Total Environ. 2019, 653, 1282–1292. [Google Scholar] [CrossRef]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ. Pollut. 2019, 245, 1107–1116. [Google Scholar] [CrossRef]
- Renzi, M.; Guerranti, C.; Blašković, A. Microplastic contents from maricultured and natural mussels. Mar. Pollut. Bull. 2018, 131, 248–251. [Google Scholar] [CrossRef]
- Acharya, S.; Rumi, S.S.; Hu, Y.; Abidi, N. Microfibers from synthetic textiles as a major source of microplastics in the environment: A review. Text. Res. J. 2021, 91, 2136–2156. [Google Scholar] [CrossRef]
- Thongra-ar, W.; Musika, C.; Wongsudawan, W.; Munhapon, A. Health risk assessment of heavy metals via consumption of seafood from coastal area of Map Ta Phut industrial estate, Rayong Province. Burapha J. 2014, 19, 39–54. (In Thai) [Google Scholar]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.G.A.; Vethaak, A.D.; Lavorante, B.R.; Lundebye, A.K.; Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, H.; Hollman, P.C.; Peters, R.J. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ. Sci. Technol. 2015, 49, 8932–8947. [Google Scholar] [CrossRef] [PubMed]
- Baechler, B.R.; Granek, E.F.; Hunter, M.V.; Conn, K.E. Microplastic concentrations in two Oregon bivalve species: Spatial, temporal, and species variability. Limnol. Oceanogr. Lett. 2020, 5, 54–65. [Google Scholar] [CrossRef]
Type of Bivalve | Collection Year | Heavy Metal Contents | |||
---|---|---|---|---|---|
Pb (mg/kg Wet wt.) | Cd (mg/kg Wet wt.) | Pb (mg/kg Dry wt.) | Cd (mg/kg Dry wt.) | ||
Clam | Rainy, 2017 | 0.078 ± 0.037 c | 0.103 ± 0.064 b | 0.497 ± 0.239 c | 0.630 ± 0.403 b |
Winter, 2018 | 0.219 ± 0.062 a | 0.216 ± 0.063 a | 1.445 ± 0.062 a | 1.433 ± 0.410 a | |
Summer, 2019 | 0.098 ± 0.041 b | 0.109 ± 0.026 b | 0.624 ± 0.242 b | 0.694 ± 0.137 b | |
Total | 0.112 ± 0.068 B | 0.126 ± 0.067 B | 0.722 ± 0.440 B | 0.802 ± 0.440 B | |
Mussel | Rainy, 2017 | 0.036 ± 0.029 c | 0.116 ± 0.135 a | 0.290 ± 0.225 c | 0.878 ± 0.876 a |
Winter, 2018 | 0.095 ± 0.052 a | 0.101 ± 0.070 a | 1.669 ± 2.777 a | 1.039 ± 0.630 a | |
Summer, 2019 | 0.062 ± 0.039 b | 0.103 ± 0.073 a | 0.599 ± 0.382 b | 0.934 ± 0.631 a | |
Total | 0.064 ± 0.047 C | 0.107 ± 0.098 B | 0.853 ± 1.728 B | 0.950 ± 0.725 B | |
Cockle | Rainy, 2017 | 0.080 ± 0.040 c | 0.252 ± 0.077 b | 0.509 ± 0.227 c | 1.625 ± 0.551 b |
Winter, 2018 | 0.214 ± 0.071 a | 0.523 ± 0.174 a | 1.438 ± 0.420 a | 3.803 ± 1.860 a | |
Summer, 2019 | 0.159 ± 0.063 b | 0.596 ± 0.229 a | 1.011 ± 0.332 b | 3.807 ± 1.127 a | |
Total | 0.151 ± 0.081 A | 0.457 ± 0.227 A | 0.987 ± 0.505 A | 3.078 ± 1.654 A |
Type of Bivalve | Collection Year | Number of MP-like Particles | |
---|---|---|---|
Item/g Wet wt. | Item/Individual | ||
Clam | Rainy, 2017 | 0.08 ± 0.10 b (ND-0.30) | 0.18 ± 0.23 b (ND-0.68) |
Winter, 2018 | 0.13 ± 0.12 a (ND-0.30) | 0.30 ± 0.28 a (ND-0.68) | |
Summer, 2019 | 0.03 ± 0.10 c (ND-0.30) | 0.08 ± 0.23 c (ND-0.68) | |
Total | 0.06 ± 0.04 B (ND-0.30) | 0.14 ± 0.35 C (ND-0.68) | |
Mussel | Rainy, 2017 | 0.11 ± 0.17 a (ND-0.50) | 0.95 ± 1.42 a (ND-4.26) |
Winter, 2018 | 0.03 ± 0.09 c (ND-0.30) | 0.28 ± 0.80 c (ND-2.55) | |
Summer, 2019 | 0.067 ± 0.11 b (ND-0.30) | 0.57 ± 0.90 b (ND-2.55) | |
Total | 0.07 ± 0.13 B (ND-0.50) | 0.60 ± 1.11 A (ND-4.26) | |
Cockle | Rainy, 2017 | 0.18 ± 0.20 a (ND-0.60) | 0.55 ± 0.62 a (ND-1.87) |
Winter, 2018 | 0.04 ± 0.08 b (ND-0.20) | 0.14 ± 0.26 b (ND-0.62) | |
Summer, 2019 | 0.15 ± 0.40 a (ND-1.20) | 0.47 ± 1.23 a (ND-3.73) | |
Total | 0.12 ± 0.26 A (ND-1.20) | 0.38 ± 0.81 B (ND-3.73) |
Bivalve/ Age Group | Exposure to Pb (µg/kg bw/day) | MOE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3–5.9 | 6–12.9 | 13–17.9 | 18–34.9 | 35–64.9 | ≥65 | 3–5.9 | 6–12.9 | 13–17.9 | 18–34.9 | 35–64.9 | ≥65 | |
Average exposure scenario (average consumption × average content) | ||||||||||||
Clam | 0.0018 | 0.0018 | 0.0011 | 0.0014 | 0.0012 | 0.0005 | 278 | 278 | 573 | 450 | 525 | 1260 |
Mussel | 0.0036 | 0.0029 | 0.0016 | 0.0025 | 0.0013 | 0.0005 | 139 | 172 | 394 | 252 | 485 | 1260 |
Cockle | 0.0138 | 0.0126 | 0.0083 | 0.0080 | 0.0039 | 0.0014 | 36 | 40 | 76 | 79 | 162 | 450 |
Total | 0.0192 | 0.0173 | 0.011 | 0.0119 | 0.0064 | 0.0024 | 26 | 29 | 57 | 53 | 98 | 263 |
High-concentration exposure scenario (average consumption × 97.5 PCTL content) | ||||||||||||
Clam | 0.0042 | 0.0044 | 0.0027 | 0.0033 | 0.0027 | 0.0012 | 119 | 114 | 233 | 191 | 233 | 525 |
Mussel | 0.0093 | 0.0075 | 0.0042 | 0.0063 | 0.0034 | 0.0013 | 54 | 67 | 150 | 100 | 185 | 485 |
Cockle | 0.0263 | 0.0240 | 0.0159 | 0.0153 | 0.0075 | 0.0027 | 19 | 21 | 40 | 41 | 84 | 233 |
High consumer-exposure scenario (97.5 PCTL consumption × average content) | ||||||||||||
Clam | 0.0200 | 0.0207 | 0.0129 | 0.0153 | 0.0109 | 0.0058 | 25 | 24 | 49 | 41 | 58 | 109 |
Mussel | 0.0492 | 0.0254 | 0.0159 | 0.0202 | 0.0133 | 0.0053 | 10 | 20 | 40 | 31 | 47 | 119 |
Cockle | 0.0730 | 0.1510 | 0.0943 | 0.0798 | 0.0397 | 0.0113 | 7 | 3 | 7 | 8 | 16 | 56 |
Worst-case exposure scenario (97.5 PCTL consumption × 97.5 PCTL content) | ||||||||||||
Clam | 0.0477 | 0.0493 | 0.0308 | 0.0365 | 0.0259 | 0.0138 | 49 | 41 | 20 | 17 | 24 | 46 |
Mussel | 0.1266 | 0.0654 | 0.0409 | 0.0519 | 0.0344 | 0.0137 | 37 | 29 | 15 | 12 | 18 | 46 |
Cockle | 0.1395 | 0.2884 | 0.1802 | 0.1525 | 0.0758 | 0.0216 | 8 | 10 | 3 | 4 | 8 | 29 |
Bivalve/ Age Group | Exposure to Cd (µg/kg bw/month) | HQ of Exposure to Cd | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3–5.9 | 6–12.9 | 13–17.9 | 18–34.9 | 35–64.9 | ≥65 | 3–5.9 | 6–12.9 | 13–17.9 | 18–34.9 | 35–64.9 | ≥65 | |
Average exposure scenario (average consumption × average content) | ||||||||||||
Clam | 0.0597 | 0.0617 | 0.0385 | 0.0471 | 0.0386 | 0.0170 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.001 |
Mussel | 0.1816 | 0.1464 | 0.0825 | 0.1228 | 0.0660 | 0.0257 | 0.007 | 0.006 | 0.003 | 0.005 | 0.003 | 0.001 |
Cockle | 1.2483 | 1.1373 | 0.7563 | 0.7245 | 0.3564 | 0.1274 | 0.050 | 0.045 | 0.030 | 0.029 | 0.014 | 0.005 |
Total | 1.4896 | 1.3454 | 0.8773 | 0.8944 | 0.461 | 0.1701 | 0.060 | 0.054 | 0.035 | 0.036 | 0.018 | 0.007 |
High-concentration exposure scenario (average consumption × 97.5 PCTL content) | ||||||||||||
Clam | 0.1221 | 0.1262 | 0.0788 | 0.0962 | 0.0790 | 0.0349 | 0.005 | 0.005 | 0.003 | 0.004 | 0.003 | 0.001 |
Mussel | 0.5921 | 0.4771 | 0.2689 | 0.4004 | 0.2153 | 0.0838 | 0.024 | 0.019 | 0.011 | 0.016 | 0.009 | 0.003 |
Cockle | 2.6333 | 2.3990 | 1.5955 | 1.5284 | 0.7519 | 0.2687 | 0.105 | 0.096 | 0.064 | 0.061 | 0.030 | 0.011 |
High consumer-exposure scenario (97.5 PCTL consumption × average content) | ||||||||||||
Clam | 0.6726 | 0.6952 | 0.4344 | 0.5144 | 0.3653 | 0.1938 | 0.027 | 0.028 | 0.017 | 0.021 | 0.015 | 0.008 |
Mussel | 2.4626 | 1.2726 | 0.7952 | 1.0095 | 0.6687 | 0.2666 | 0.099 | 0.051 | 0.032 | 0.040 | 0.027 | 0.011 |
Cockle | 6.6150 | 13.6805 | 8.5484 | 7.2347 | 3.5958 | 1.0230 | 0.265 | 0.547 | 0.342 | 0.289 | 0.144 | 0.041 |
Worst-case exposure scenario (97.5 PCTL consumption × 97.5 PCTL content) | ||||||||||||
Clam | 1.3758 | 1.4220 | 0.8885 | 1.0523 | 0.7471 | 0.3965 | 0.055 | 0.057 | 0.036 | 0.042 | 0.030 | 0.016 |
Mussel | 8.0278 | 4.1486 | 2.5923 | 3.2909 | 2.1798 | 0.8691 | 0.321 | 0.166 | 0.104 | 0.132 | 0.087 | 0.035 |
Cockle | 13.9540 | 28.8584 | 18.0324 | 15.2613 | 7.5851 | 2.1580 | 0.558 | 1.154 | 0.721 | 0.610 | 0.303 | 0.086 |
Bivalve/ Age Group | Exposure to MP-like Particles Due to Bivalve Consumption (Items/Person/Day) | |||||
---|---|---|---|---|---|---|
3–5.9 | 6–12.9 | 13–17.9 | 18–34.9 | 35–64.9 | ≥65 | |
Average exposure scenario (average consumption × average content) | ||||||
Clam | 0.016 | 0.033 | 0.033 | 0.047 | 0.039 | 0.015 |
Mussel | 0.068 | 0.107 | 0.096 | 0.169 | 0.092 | 0.031 |
Cockle | 0.188 | 0.332 | 0.353 | 0.400 | 0.198 | 0.062 |
Total | 0.272 | 0.472 | 0.482 | 0.616 | 0.329 | 0.108 |
High-concentration exposure scenario (average consumption × 97.5 PCTL content) | ||||||
Clam | 0.082 | 0.164 | 0.164 | 0.236 | 0.195 | 0.076 |
Mussel | 0.360 | 0.562 | 0.507 | 0.892 | 0.483 | 0.165 |
Cockle | 1.297 | 2.286 | 2.433 | 2.754 | 1.364 | 0.428 |
High consumer-exposure scenario (97.5 PCTL consumption × average content) | ||||||
Clam | 0.185 | 0.369 | 0.369 | 0.517 | 0.369 | 0.172 |
Mussel | 0.928 | 0.928 | 0.928 | 1.392 | 0.928 | 0.325 |
Cockle | 0.997 | 3.991 | 3.991 | 3.991 | 1.996 | 0.499 |
Worst-case exposure scenario (97.5 PCTL consumption × 97.5 PCTL content) | ||||||
Clam | 0.923 | 1.846 | 1.846 | 2.583 | 1.846 | 0.860 |
Mussel | 4.888 | 4.888 | 4.888 | 7.332 | 4.888 | 1.711 |
Cockle | 6.872 | 27.502 | 27.502 | 27.502 | 13.758 | 3.436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaviyutpakdee, P.; Karnpanit, W. Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves. Foods 2023, 12, 3018. https://doi.org/10.3390/foods12163018
Tanaviyutpakdee P, Karnpanit W. Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves. Foods. 2023; 12(16):3018. https://doi.org/10.3390/foods12163018
Chicago/Turabian StyleTanaviyutpakdee, Pharrunrat, and Weeraya Karnpanit. 2023. "Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves" Foods 12, no. 16: 3018. https://doi.org/10.3390/foods12163018
APA StyleTanaviyutpakdee, P., & Karnpanit, W. (2023). Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves. Foods, 12(16), 3018. https://doi.org/10.3390/foods12163018