Effect of Trehalose/OEO/Tween 80/Tween 20 Addition on Physical Stability of Edible Packaging during Storage in Different Humidity Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Different Humidity Conditions
2.3. Preparation of Edible Packaging
2.4. Storage of Packaging
2.5. Water Content and Solubility
2.6. Textural Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Water Content and Solubility
3.2. Textural Properties
3.3. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef] [PubMed]
- Salgado, P.R.; Ortiz, C.M.; Musso, Y.S.; Di Giorgio, L.; Mauri, A.N. Edible films and coatings containing bioactives. Curr. Opin. Food Sci. 2015, 5, 86–92. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Y.; Bai, R.; Zhang, X.; Yuan, L.; Liu, J. Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. Int. J. Biol. Macromol. 2019, 134, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential oils as additives in active food packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef] [PubMed]
- Elbein, A.D.; Pan, Y.T.; Pastuszak, I.; Carroll, D. New insights on trehalose: A multifunctional molecule. Glycobiology 2003, 13, 17R–27R. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.K.; Roy, I. Effect of trehalose on protein structure. Protein Sci. 2009, 18, 24–36. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Kearsley, M.W. Part Four: Other sweeteners trehalose. In Sweeteners and Sugar Alternatives in Food Technology, 2nd ed.; Blackwell Publishing: Oxford, UK, 2012; pp. 417–431. [Google Scholar]
- Javadian, N.; Mirzai, H.; Mohammadi, N.A. The effects of ribose on mechanical and physicochemical properties of cold water fish gelatin films. J. Chem. Health Risks 2014, 4, 39–45. [Google Scholar]
- Alvarado, S.; Sandoval, G.; Palos, I.; Tellez, S.; Aguirre-Loredo, Y.; Velazquez, G. The effect of relative humidity on tensile strength and water vapor permeability in chitosan, fish gelatin and transglutaminase edible films. Food Sci. Technol. 2015, 35, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. J. Food Eng. 2012, 110, 208–213. [Google Scholar] [CrossRef]
- Sørensen, G.; Hoffmann, J. Moisture-induced effects on stacking strength of moulded-fibre packaging in varying environmental conditions. Packag. Technol. Sci.: Int. J. 2004, 17, 257–265. [Google Scholar] [CrossRef]
- Rhim, J.W. Effect of moisture content on tensile properties of paper-based food packaging materials. Food Sci. Biotechnol. 2010, 19, 243–247. [Google Scholar] [CrossRef]
- Jancikova, S.; Dordevic, D.; Sedlacek, P.; Nejezchlebova, M.; Treml, J.; Tremlova, B. Edible films from carrageenan/orange essential oil/trehalose—Structure, optical properties, and antimicrobial activity. Polymers 2021, 13, 332. [Google Scholar]
- Greenspan, L. Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. 1977, 81, 89–96. [Google Scholar] [CrossRef]
- Kavoosi, G.; Rahmatollahi, A.; Dadfar, S.M.M.; Purfard, A.M. Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT-Food Sci. Technol. 2014, 57, 556–561. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Fernando, A.L.; Pires, J.R.A.; Rodrigues, P.F.; Lopes, A.A.; Fernandes, F.M.B. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crops Prod. 2017, 107, 565–572. [Google Scholar] [CrossRef]
- Pérez, L.M.; Piccirilli, G.N.; Delorenzi, N.J.; Verdini, R.A. Effect of different combinations of glycerol and/or trehalose on physical and structural properties of whey protein concentrate-based edible films. Food Hydrocoll. 2016, 56, 352–359. [Google Scholar] [CrossRef]
- Mali, S.; Sakanaka, L.S.; Yamashita, F.; Grossmann, M.V.E. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr. Polym. 2005, 60, 283–289. [Google Scholar] [CrossRef]
- Osés, J.; Fernández-Pan, I.; Mendoza, M.; Maté, J.I. Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity. Food Hydrocoll. 2009, 23, 125–131. [Google Scholar] [CrossRef]
- Crowe, J.H.; Crowe, L.M.; Jackson, S.A. Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum. Arch. Biochem. Biophys. 1983, 220, 477–484. [Google Scholar] [CrossRef]
- Crowe, L.M.; Mouradian, R.; Crowe, J.H.; Jackson, S.A.; Womersley, C. Effects of carbohydrates on membrane stability at low water activities. Biochim. Biophys. Acta Biomembr. 1984, 769, 141–150. [Google Scholar] [CrossRef]
- Costa, E.; Usall, J.; Teixido, N.; Garcia, N.; Vinas, I. Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying. J. Appl. Microbiol. 2000, 89, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A.; Yarmand, M.S. Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. Int. J. Biol. Macromol. 2011, 49, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Ojagh, S.M.; Hosseini, S.M.; Khaksar, R. Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int. J. Biol. Macromol. 2013, 52, 116–124. [Google Scholar] [CrossRef]
- Jancikova, S.; Dordevic, D.; Jamroz, E.; Behalova, H.; Tremlova, B. Chemical and physical characteristics of edible films, based on κ-and ι-carrageenans with the addition of lapacho tea extract. Foods 2020, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Holm, V.K.; Ndoni, S.; Risbo, J. The stability of poly (lactic acid) packaging films as influenced by humidity and temperature. J. Food Sci. 2006, 71, E40–E44. [Google Scholar] [CrossRef]
- Othman, S.H.; Kechik, N.R.; Shapi’i, R.A.; Talib, R.A.; Tawakkal, I.S. Water sorption and mechanical properties of starch/chitosan nanoparticle films. J. Nanomater. 2019, 2019, 3843949. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Yan, J.; Rajulu, A.V.; Xiang, A.; Luo, X. Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. Int. J. Biol. Macromol. 2017, 96, 518–523. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Grossmann, M.V.; Yamashita, F.; Pineda, E.A.G. Antimicrobial, mechanical, and barrier properties of cassava starch− chitosan films incorporated with oregano essential oil. J. Agric. Food Chem. 2009, 57, 7499–7504. [Google Scholar] [CrossRef]
- Suppakul, P.; Chalernsook, B.; Ratisuthawat, B.; Prapasitthi, S.; Munchukangwan, N. Empirical modeling of moisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticizing–antiplasticizing effects. LWT-Food Sci. Technol. 2013, 50, 290–297. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Aliheidari, N.; Fahmi, R.; Shojaee-Aliabadi, S.; Keshavarz, B.; Cran, M.J.; Khaksar, R. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr. Polym. 2013, 98, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Suput, D.; Lazic, V.; Pezo, L.; Markov, S.; Vastag, Z.; Popovic, L.; Rudulovic, A.; Ostojic, S.; Zlatanovic, S.; Popovic, S. Characterization of starch edible films with different essential oils addition. Pol. J. Food Nutr. Sci. 2016, 66, 277–285. [Google Scholar] [CrossRef]
Sample | Composition |
---|---|
c | 0.3 g κ-carrageenan + glycerol |
OT80 | 0.3 g κ-carrageenan + tween 80 + orange essential oil + glycerol |
OT20 | 0.3 g κ-carrageenan + tween 20 + orange essential oil + glycerol |
cTre0.5 | 0.3 g κ-carrageenan + 0.5% trehalose + glycerol |
Tre0.5OT80 | 0.3 g κ-carrageenan + 0.5% trehalose + tween 80 + orange essential oil + glycerol |
Tre0.5OT20 | 0.3 g κ-carrageenan + 0.5% trehalose + tween 20 + orange essential oil + glycerol |
cTre1 | 0.3 g κ-carrageenan + 1% trehalose + glycerol |
Tre1OT80 | 0.3 g κ-carrageenan + 1% trehalose + tween 80 + orange essential oil + glycerol |
Tre1OT20 | 0.3 g κ-carrageenan + 1% trehalose + tween 20 + orange essential oil + glycerol |
cTre3 | 0.3 g κ-carrageenan + 3% trehalose + glycerol |
Tre3OT80 | 0.3 g κ-carrageenan + 3% trehalose + tween 80 + orange essential oil + glycerol |
Tre3OT20 | 0.3 g κ-carrageenan + 3% trehalose + tween 20 + orange essential oil + glycerol |
Samples | Silica gel (0%) | MgCl2 (32%) | Standard (45%) | NaBr (57%) | NaCl (74%) | KNO3 (92%) |
---|---|---|---|---|---|---|
c | 6.68 ± 1.84 D | 18.94 ± 0.13 A | 15.31 ± 1.46 A | 17.93 ± 1.07 A | 30.24 ± 0.65 B | 55.86 ± 3.00 C |
OT80 | 4.08 ± 0.51 A | 7.19 ± 1.01 EF | 5.17 ± 0.60 AF | 8.61 ± 1.46 DE | 24.48 ± 1.02 B | 32.78 ± 1.02 C |
OT20 | 4.99 ± 0.39 A | 8.24 ± 0.44 D | 4.40 ± 0.10 A | 9.11 ± 1.58 D | 22.72 ± 0.42 B | 36.32 ± 0.69 C |
cTre0.5 | 7.76 ± 2.07 C | 15.26 ± 1.77 AC | 14.79 ± 2.17 AC | 17.38 ± 0.72 A | 17.52 ± 0.56 A | 48.23 ± 1.75 B |
Tre0.5OT80 | 4.58 ± 0.99 A | 7.73 ± 0.75 A | 5.02 ± 0.72 A | 12.85 ± 3.04 AD | 22.81 ± 0.93 BD | 32.78 ± 1.02 C |
Tre0.5OT20 | 3.90 ± 0.70 D | 8.43 ± 0.20 A | 6.35 ± 0.82 AD | 8.34 ± 0.13 A | 21.86 ± 0.29 B | 39.66 ± 0.61 C |
cTre1 | 6.22 ± 0.40 D | 13.79 ± 1.03 B | 10.45 ± 0.89 A | 13.85 ± 1.23 B | 16.09 ± 0.71 B | 45.91 ± 0.60 C |
Tre1OT80 | 4.17 ± 0.11 A | 6.92 ± 0.42 E | 4.48 ± 0.32 A | 10.07 ± 0.61 D | 19.36 ± 0.87 B | 29.07 ± 0.55 C |
Tre1OT20 | 4.66 ± 0.62 A | 6.83 ± 0.68 E | 5.52 ± 0.21 AE | 8.97 ± 0.33 D | 20.69 ± 0.97 B | 38.63 ± 0.76 C |
cTre3 | 5.18 ± 0.08 A | 9.29 ± 0.21 E | 4.93 ± 0.21 A | 11.56 ± 0.22 D | 20.62 ± 0.88 B | 34.08 ± 0.56 C |
Tre3OT80 | 3.43 ± 0.45 A | 7.62 ± 0.12 E | 4.04 ± 0.21 A | 13.62 ± 2.96 ADE | 17.03 ± 0.15 BD | 30.31 ± 0.35 C |
Tre3OT20 | 3.52 ± 0.25 D | 6.97 ± 0.44 A | 6.96 ± 0.43 A | 9.26 ± 0.35 C | 15.39 ± 0.24 B | 37.91 ± 8.07 |
Sample | Silica gel (0%) | MgCl2 (32%) | Standard (45%) | NaBr (57%) | NaCl (74%) | KNO3 (92%) |
---|---|---|---|---|---|---|
c | 0.10 ± 0.01 AB | 0.11 ± 0.01 AB | 0.14 ± 0.03 A | 0.10 ± 0.01 AB | 0.13 ± 0.04 AB | 0.06 ± 0.03 B |
cTre0.5 | 0.13 ± 0.02 A | 0.08 ± 0.00 B | 0.15 ± 0.02 A | 0.13 ± 0.03 A | 0.14 ± 0.01 A | 0.12 ± 0.04 AB |
cTre1 | 0.15 ± 0.01 C | 0.09 ± 0.03 B | 0.20 ± 0.02 A | 0.16 ± 0.01 AC | 0.13 ± 0.00 B | 0.17 ± 0.04 ABC |
cTre3 | 0.32 ± 0.13 ABC | 0.10 ± 0.04 ABC | 0.10 ± 0.03 BC | 0.14 ± 0.01 A | 0.12 ± 0.01 AB | 0.07 ± 0.02 C |
Samples | Silica gel (0%) | MgCl2 (32%) | Standard (45%) | NaBr (57%) | NaCl (74%) | KNO3 (92%) |
---|---|---|---|---|---|---|
OT80 | 0.08 ± 0.01 D | 0.05 ± 0.00 C | 0.10 ± 0.01 B | 0.03 ± 0.01 A | 0.05 ± 0.00 C | 0.06 ± 0.00 C |
OT20 | 0.06 ± 0.00 A | 0.04 ± 0.01 B | 0.07 ± 0.01 A | 0.06 ± 0.01 A | 0.05 ± 0.00 B | 0.05 ± 0.00 B |
Tre0.5OT80 | 0.08 ± 0.00 C | 0.06 ± 0.01 AB | 0.11 ± 0.02 AC | 0.08 ± 0.01 ABC | 0.06 ± 0.00 AB | 0.05 ± 0.01 B |
Tre0.5OT20 | 0.09 ± 0.01 B | 0.06 ± 0.01 AC | 0.09 ± 0.02 B | 0.07 ± 0.01 A | 0.05 ± 0.01 C | 0.06 ± 0.00 AC |
Tre1OT80 | 0.11 ± 0.01 B | 0.07 ± 0.00 AC | 0.10 ± 0.03 AB | 0.05 ± 0.02 AC | 0.05 ± 0.01 C | 0.07 ± 0.00 AC |
Tre1OT20 | 0.07 ± 0.00 A | 0.05 ± 0.01 AC | 0.09 ± 0.02 B | 0.07 ± 0.00 A | 0.04 ± 0.01 C | 0.05 ± 0.00 C |
Tre3OT80 | 0.24 ± 0.02 B | 0.06 ± 0.01 AC | 0.20 ± 0.04 B | 0.07 ± 0.01 A | 0.05 ± 0.01 AC | 0.04 ± 0.01 C |
Tre3OT20 | 0.13 ± 0.03 C | 0.03 ± 0.01 A | 0.08 ± 0.01 BC | 0.03 ± 0.02 A | 0.05 ± 0.01 AB | 0.05 ± 0.00 A |
Sample | Silica gel (0%) | MgCl2 (32%) | Standard (45%) | NaBr (57%) | NaCl (74%) | KNO3 (92%) |
---|---|---|---|---|---|---|
c | 66.54 ± 2.85 A | 81.25 ± 0.84 B | 63.01 ± 1.18 A | 10.27 ± 3.92 A | 69.95 ± 4.99 A | 63.87 ± 1.00 A |
cTre0.5 | 78.71 ± 4.33 B | 76.88 ± 3.75 AB | 76.13 ± 6.43 AB | 69.05 ± 7.29 AC | 79.32 ± 2.31 B | 65.39 ± 3.97 C |
cTre1 | 72.03 ± 10.16 ABCD | 73.08 ± 3.30 CD | 71.01 ± 5.42 ABCD | 67.40 ± 2.89 AC | 77.48 ± 3.35 BD | 65.77 ± 2.00 A |
cTre3 | 62.44 ± 1.06 AC | 62.62 ± 0.37 A | 60.87 ± 0.41 C | 62.14 ± 0.65 AC | 66.18 ± 1.08 B | 70.24 ± 3.25 B |
Samples | Silica gel (0%) | MgCl2 (32%) | Standard (45%) | NaBr (57%) | NaCl (74%) | KNO3 (92%) |
---|---|---|---|---|---|---|
OT80 | 102.64 ± 2.73 C | 99.28 ± 3.26 C | 84.22 ± 7.82 B | 10.30 ± 8.40 A | 74.50 ± 2.42 AB | 84.45 ± 3.96 B |
OT20 | 101.65 ± 5.51 C | 95.78 ± 4.49 AC | 92.42 ± 4.27 A | 92.40 ± 3.42 A | 83.38 ± 5.60 B | 87.41 ± 1.62 AB |
Tre0.5OT80 | 99.64 ± 4.71 A | 100.24 ± 6.06 A | 69.77 ± 4.30 B | 103.39 ± 6.40 A | 82.62 ± 1.57 C | 85.63 ± 9.46 C |
Tre0.5OT20 | 107.78 ± 5.75 B | 108.67 ± 11.39 AB | 108.29 ± 2.62 B | 95.30 ± 3.81 A | 84.21 ± 3.86 C | 87.55 ± 2.97 AC |
Tre1OT80 | 95.80 ± 2.95 BD | 100.86 ± 5.80 B | 72.89 ± 6.53 A | 79.18 ± 8.83 AC | 74.00 ± 5.78 AC | 85.24 ± 1.90 CD |
Tre1OT20 | 93.87 ± 0.85 A | 86.43 ± 11.36 AC | 111.24 ± 12.71 B | 89.26 ± 1.45 AC | 79.15 ± 6.63 C | 86.82 ± 2.71 AC |
Tre3OT80 | 66.91 ± 0.95 BC | 74.75 ± 4.36 AC | 64.00 ± 1.65 B | 73.83 ± 2.58 A | 82.44 ± 5.76 AC | 69.48 ± 6.27 ABC |
Tre3OT20 | 73.44 ± 2.26 AB | 69.02 ± 2.77 B | 74.91 ± 4.23 AB | 69.11 ± 9.03 AB | 73.95 ± 6.21 AB | 75.24 ± 2.32 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dordevic, S.; Dordevic, D.; Tesikova, K.; Tremlova, B. Effect of Trehalose/OEO/Tween 80/Tween 20 Addition on Physical Stability of Edible Packaging during Storage in Different Humidity Conditions. Foods 2023, 12, 2903. https://doi.org/10.3390/foods12152903
Dordevic S, Dordevic D, Tesikova K, Tremlova B. Effect of Trehalose/OEO/Tween 80/Tween 20 Addition on Physical Stability of Edible Packaging during Storage in Different Humidity Conditions. Foods. 2023; 12(15):2903. https://doi.org/10.3390/foods12152903
Chicago/Turabian StyleDordevic, Simona, Dani Dordevic, Karolina Tesikova, and Bohuslava Tremlova. 2023. "Effect of Trehalose/OEO/Tween 80/Tween 20 Addition on Physical Stability of Edible Packaging during Storage in Different Humidity Conditions" Foods 12, no. 15: 2903. https://doi.org/10.3390/foods12152903
APA StyleDordevic, S., Dordevic, D., Tesikova, K., & Tremlova, B. (2023). Effect of Trehalose/OEO/Tween 80/Tween 20 Addition on Physical Stability of Edible Packaging during Storage in Different Humidity Conditions. Foods, 12(15), 2903. https://doi.org/10.3390/foods12152903