Evaluation of Dual-Band Near-Infrared Spectroscopy and Chemometric Analysis for Rapid Quantification of Multi-Quality Parameters of Soy Sauce Stewed Meat
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling of SSSM
2.2. Physical Analysis and Statistics
2.3. Spectra Collection
2.4. Spectral Preprocessings
2.5. Model Development
2.6. Effective Wavelength Selection
2.7. Model Performance Evaluation
3. Results and Discussion
3.1. Spectral Profiles
3.2. Statistics of Reference Analysis
3.3. Correlation between Spectra and Quality Parameters
3.4. Evaluation of PLSR Predictive Models
3.5. Selection of Sensitive Wavelengths
3.6. Multi-Spectral Model Development
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, W.; Wen, W.; Deng, Y.; Tian, Y.; Sun, H.; Sun, Q. Chinese ethnic meat products: Continuity and development. Meat Sci. 2016, 120, 37–46. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Y.; He, J.; Pan, D.; Wang, H.; Zhou, G.; Cao, J. The comparative research of structural and textural characteristics of six kinds of collagen-based sauce braised meat products. J. Food Sci. 2020, 85, 1675–1680. [Google Scholar] [CrossRef]
- Ren, Q.S.; Fang, K.; Yang, X.T.; Han, J.W. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends Food Sci. Technol. 2022, 119, 133–151. [Google Scholar] [CrossRef]
- Fernandes, D.D.d.S.; Romeo, F.; Krepper, G.; Di Nezio, M.S.; Pistonesi, M.F.; Centurión, M.E.; Araújo, M.C.U.d.; Diniz, P.H.G.D. Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools. LWT 2019, 100, 20–27. [Google Scholar] [CrossRef]
- Monago-Maraña, O.; Wold, J.P.; Rødbotten, R.; Dankel, K.R.; Afseth, N.K. Raman, near-infrared and fluorescence spectroscopy for determination of collagen content in ground meat and poultry by-products. LWT 2021, 140, 110592. [Google Scholar] [CrossRef]
- Aburto, N.J.; Ziolkovska, A.; Hooper, L.; Elliott, P.; Cappuccio, F.P.; Meerpohl, J.J. Effect of lower sodium intake on health: Systematic review and meta-analyses. BMJ 2013, 346, f1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bejerholm, C.; Aaslyng, M.D. The influence of cooking technique and core temperature on results of a sensory analysis of pork—Depending on the raw meat quality. Food Qual. Prefer. 2004, 15, 19–30. [Google Scholar] [CrossRef]
- Holm, E.S.; Adamsen, A.P.S.; Feilberg, A.; Schäfer, A.; Løkke, M.M.; Petersen, M.A. Quality changes during storage of cooked and sliced meat products measured with PTR-MS and HS-GC-MS. Meat Sci. 2013, 95, 302–310. [Google Scholar] [CrossRef]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of volatile compounds of dry-cured meat products using HS-SPME-GC/MS technique. Food Anal. Method. 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Xu, C.H.; Chen, G.S.; Xiong, Z.H.; Fan, Y.X.; Wang, X.C.; Liu, Y. Applications of solid-phase microextraction in food analysis. TrAC Trends Anal. Chem. 2016, 80, 12–29. [Google Scholar] [CrossRef]
- Berg, H.; Mågård, M.; Johansson, G.; Mathiasson, L. Development of a supercritical fluid extraction method for determination of lipid classes and total fat in meats and its comparison with conventional methods. J. Chromatogr. A 1997, 785, 345–352. [Google Scholar] [CrossRef]
- Perez-Palacios, T.; Ávila, M.; Antequera, T.; Torres, J.P.; González-Mohino, A.; Caro, A. MRI-computer vision on fresh and frozen-thawed beef: Optimization of methodology for classification and quality prediction. Meat Sci. 2023, 197, 109054. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pan, D.; Sun, Y.; Wang, Y.; Xu, F.; Cao, J. 1H NMR-based metabolomics profiling and taste of stewed pork-hock in soy sauce. Food Res. Int. 2019, 121, 658–665. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Fatahi, S.; Omid, M.; Makino, Y. Meat quality evaluation based on computer vision technique: A review. Meat Sci. 2019, 156, 183–195. [Google Scholar] [PubMed]
- ElMasry, G.; Barbin, D.F.; Sun, D.W.; Allen, P. Meat quality evaluation by hyperspectral imaging technique: An overview. Crit. Rev. Food Sci. Nutr. 2012, 52, 689–711. [Google Scholar]
- Zhang, H.; Wang, L.; Jin, X.; Bian, L.; Ge, Y. High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing. Crop J. 2023, in press. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y.; Sun, Y.; Zhou, H.; Chen, K. Identification of apple varieties using a multichannel hyperspectral imaging system. Sensors 2020, 20, 5120. [Google Scholar] [CrossRef]
- Ni, C.; Li, Z.; Zhang, X.; Sun, X.; Huang, Y.; Zhao, L.; Zhu, T.; Wang, D. Online sorting of the film on cotton based on deep learning and hyperspectral imaging. IEEE Access 2020, 8, 93028–93038. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Osborne, B.G.; Fearn, T.; Hindle, P.H. Near Infrared Spectroscopy in Food Analysis; Longman Scientific and Technical: Harlow, UK, 1993. [Google Scholar]
- Jiang, X.; Mo, X.; Sun, T.; Hu, D. Determination of Trans Fatty Acids in Edible Vegetable Oil by Laser Raman Spectroscopy. Spectrosc. Spectral Anal. 2019, 39, 3821–3825. [Google Scholar]
- Huang, Y.; Xiong, J.; Jiang, X.; Chen, K.; Hu, D. Assessment of firmness and soluble solids content of peaches by spatially resolved spectroscopy with a spectral difference technique. Comput. Electron. Agr. 2022, 200, 107212. [Google Scholar] [CrossRef]
- Xie, W.; Wei, S.; Yang, D. Morphological measurement for carrot based on three-dimensional reconstruction with a ToF sensor. Postharvest Biol. Technol. 2023, 197, 112216. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Fei, Y.; Liu, Y.; Zhang, X. Research on the prediction of green plum acidity based on improved XGBoost. Sensors 2021, 21, 930. [Google Scholar] [CrossRef]
- De Marchi, M.; Manuelian, C.L.; Ton, S.; Manfrin, D.; Meneghesso, M.; Cassandro, M.; Penasa, M. Prediction of sodium content in commercial processed meat products using near infrared spectroscopy. Meat Sci. 2017, 125, 61–65. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Zhang, F.; Peng, Y.; Sun, J. Real-Time and Online Inspection of Multiple Pork Quality Parameters Using Dual-Band Visible/Near-Infrared Spectroscopy. Food Anal. Method. 2020, 13, 1764–1773. [Google Scholar] [CrossRef]
- Wang, W.; Peng, Y.; Sun, H.; Wei, W.; Zheng, X.; Yang, Q. Development and test of on-line detection system for meat freshness evaluation based on spectroscopy technology. Spectrosc. Spectral Anal. 2019, 39, 1169–1176. [Google Scholar]
- AOAC. Official Methods of Analysis, 14th ed.; The Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Zheng, X.; Chen, L.; Li, X.; Zhang, D. Non-Destructive Detection of Meat Quality Based on Multiple Spectral Dimension Reduction Methods by Near-Infrared Spectroscopy. Foods 2023, 12, 300. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, W.; Zhuang, H.; Yoon, S.C.; Yang, Y.; Zhao, X. Hyperspectral imaging for a rapid detection and visualization of duck meat adulteration in beef. Food Anal. Method. 2019, 12, 2205–2215. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Res. Int. 2011, 44, 2624–2633. [Google Scholar]
- Shi, H.; Lei, Y.; Prates, L.L.; Yu, P. Evaluation of near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy techniques combined with chemometrics for the determination of crude protein and intestinal protein digestibility of wheat. Food Chem. 2019, 272, 507–513. [Google Scholar] [CrossRef]
- Andrés, S.; Silva, A.; Soares-Pereira, A.L.; Martins, C.; Bruno-Soares, A.M.; Murray, I. The use of visible and near infrared reflectance spectroscopy to predict beef M. longissimus thoracis et lumborum quality attributes. Meat Sci. 2008, 78, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Karoui, R.; Mouazen, A.M.; Dufour, É.; Pillonel, L.; Picque, D.; Bosset, J.O.; De Baerdemaeker, J. Mid-infrared spectrometry: A tool for the determination of chemical parameters in Emmental cheeses produced during winter. Le Lait 2006, 86, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Bowker, B.; Hawkins, S.; Zhuang, H. Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy. Poult. Sci. 2014, 93, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Barlocco, N.; Vadell, A.; Ballesteros, F.; Galietta, G.; Cozzolino, D. Predicting intramuscular fat, moisture and Warner-Bratzler shear force in pork muscle using near infrared reflectance spectroscopy. Anim. Sci. 2006, 82, 111–116. [Google Scholar] [CrossRef]
- Prieto, N.; Andrés, S.; Giráldez, F.J.; Mantecón, A.R.; Lavín, P. Ability of near infrared reflectance spectroscopy (NIRS) to estimate physical parameters of adult steers (oxen) and young cattle meat samples. Meat Sci. 2008, 79, 692–699. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Anal. Chim. Acta 2012, 714, 57–67. [Google Scholar] [CrossRef]
- Ritthiruangdej, P.; Ritthiron, R.; Shinzawa, H.; Ozaki, Y. Non-destructive and rapid analysis of chemical compositions in Thai steamed pork sausages by near-infrared spectroscopy. Food Chem. 2011, 129, 684–692. [Google Scholar] [CrossRef]
- Cozzolino, D.; Bureš, D.; Hoffman, L.C. Evaluating the Use of a Similarity Index (SI) Combined with near Infrared (NIR) Spectroscopy as Method in Meat Species Authenticity. Foods 2023, 12, 182. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, X.; Ru, Y.; Wang, J.; Xu, L.; Zhou, H. Application of hyperspectral imaging for detecting and visualizing leaf lard adulteration in minced pork. Infrared Phys. Technol. 2020, 110, 103467. [Google Scholar] [CrossRef]
- Hussain, M.N.; Basri, K.N.; Arshad, S.; Mustafa, S.; Khir, M.F.A.; Bakar, J. Analysis of Lard in Palm Oil Using Long-Wave Near-Infrared (LW-NIR) Spectroscopy and Gas Chromatography-Mass Spectroscopy (GC–MS). Food Anal. Method. 2023, 16, 349–355. [Google Scholar] [CrossRef]
- Zhao, M.; O’Donnell, C.P.; Downey, G. Detection of offal adulteration in beefburgers using near infrared reflectance spectroscopy and multivariate modelling. J. Near Infrared Spectrosc. 2013, 21, 237–248. [Google Scholar] [CrossRef]
- Bao, J.S.; Cai, Y.Z.; Corke, H. Prediction of rice starch quality parameters by near-infrared reflectance spectroscopy. J. Food Sci. 2001, 66, 936–939. [Google Scholar] [CrossRef]
- Jiang, H.; Yoon, S.C.; Zhuang, H.; Wang, W. Predicting color traits of intact broiler breast fillets using visible and near-infrared spectroscopy. Food Anal. Method. 2017, 10, 3443–3451. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.; Liu, H.; Liu, L.; Du, Y. Determining the contents of protein and amino acids in peanuts using near-infrared reflectance spectroscopy. J. Sci. Food Agric. 2013, 93, 118–124. [Google Scholar] [CrossRef]
- Alomar, D.; Gallo, C.; Castaneda, M.; Fuchslocher, R. Chemical and discriminant analysis of bovine meat by near infrared reflectance spectroscopy (NIRS). Meat Sci. 2003, 63, 441–450. [Google Scholar] [CrossRef]
- Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef]
- González-Martın, I.; González-Pérez, C.; Hernández-Méndez, J.; Alvarez-Garcıa, N. Mineral analysis (Fe, Zn, Ca, Na, K) of fresh Iberian pork loin by near infrared reflectance spectrometry: Determination of Fe, Na and K with a remote fibre-optic reflectance probe. Anal. Chim. Acta 2002, 468, 293–301. [Google Scholar] [CrossRef]
- Prevolnik, M.; Škrlep, M.; Janeš, L.; Velikonja-Bolta, Š.; Škorjanc, D.; Čandek-Potokar, M. Accuracy of near infrared spectroscopy for prediction of chemical composition, salt content and free amino acids in dry-cured ham. Meat Sci. 2011, 88, 299–304. [Google Scholar] [CrossRef]
- Knight, M.I.; Linden, N.; Ponnampalam, E.N.; Kerr, M.G.; Brown, W.G.; Hopkins, D.L.; Baud, S.; Ball, A.J.; Borggaard, C.; Wesley, I. Development of VISNIR predictive regression models for ultimate pH, meat tenderness (shear force) and intramuscular fat content of Australian lamb. Meat Sci. 2019, 155, 102–108. [Google Scholar] [CrossRef]
- Lambe, N.R.; Clelland, N.; Draper, J.; Smith, E.M.; Yates, J.; Bunger, L. Prediction of intramuscular fat in lamb by visible and near-infrared spectroscopy in an abattoir environment. Meat Sci. 2021, 171, 108286. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Murray, I. Effect of sample presentation and animal muscle species on the analysis of meat by near infrared reflectance spectroscopy. J. Near Infrared Spectrosc. 2002, 10, 37–44. [Google Scholar] [CrossRef]
- Patel, N.; Toledo-Alvarado, H.; Bittante, G. Performance of different portable and hand-held near-infrared spectrometers for predicting beef composition and quality characteristics in the abattoir without meat sampling. Meat Sci. 2021, 178, 108518. [Google Scholar] [CrossRef]
- Barbin, D.F.; ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem. 2013, 138, 1162–1171. [Google Scholar] [CrossRef]
Parameters | Calibration Set (70 Samples) | Prediction Set (27 Samples) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Range | CV (%) | Mean | SD | Range | CV (%) | |
Fat (g/kg) | 51.2 | 33.2 | 16.5 to 162.5 | 64.8 | 50.5 | 33.5 | 19.0 to 143.5 | 66.4 |
Protein (g/kg) | 256.2 | 56.4 | 146.5 to 425.5 | 22.0 | 294.5 | 62.8 | 189.5 to 404.0 | 21.3 |
Collagen (g/kg) | 26.1 | 18.6 | 0.1 to 104.0 | 71.1 | 32.2 | 18.5 | 1.8 to 90.5 | 57.3 |
Ash (g/kg) | 28.0 | 5.3 | 12.0 to 40.5 | 18.9 | 27.4 | 5.0 | 18.0 to 35.0 | 18.2 |
Na (g/kg) | 8.5 | 2.4 | 1.3 to 16.2 | 28.8 | 8.1 | 2.2 | 2.6 to 12.1 | 27.1 |
Parameters | Fat (g/kg) | Protein (g/kg) | Collagen (g/kg) | Ash (g/kg) | Na (g/kg) |
---|---|---|---|---|---|
Fat (g/kg) | 1 | ||||
Protein (g/kg) | −0.078 | 1 | |||
Collagen (g/kg) | −0.021 | 0.353 ** | 1 | ||
Ash (g/kg) | −0.142 | −0.218 * | 0.038 | 1 | |
Na (g/kg) | −0.124 | −0.282 ** | 0.043 | 0.769 ** | 1 |
Wavebands | Traits | Preprocessings | LVs | Calibration Set | Cross-Validation Set | Prediction Set | RPD | |||
---|---|---|---|---|---|---|---|---|---|---|
Rc | RMSEC (g/kg) | Rcv | RMSECV (g/kg) | Rp | RMSEP (g/kg) | |||||
650–950 nm | Fat | Der1 | 3 | 0.487 | 2.880 | 0.070 | 3.543 | 0.382 | 3.573 | 0.938 |
Protein | Der1 | 4 | 0.742 | 3.755 | 0.503 | 4.945 | 0.617 | 5.264 | 1.193 | |
Collagen | Der1 | 8 | 0.782 | 1.150 | 0.157 | 2.131 | 0.524 | 1.970 | 0.936 | |
Ash | Der1 | 2 | 0.470 | 0.466 | 0.075 | 0.564 | 0.384 | 0.524 | 0.953 | |
Na | SNVD | 3 | 0.310 | 2.308 | 0.032 | 2.541 | 0.242 | 2.097 | 1.042 | |
960–1660 nm | Fat | Der1 | 7 | 0.967 | 0.842 | 0.912 | 1.366 | 0.808 | 2.013 | 1.666 |
Protein | Der1 | 9 | 0.951 | 1.731 | 0.824 | 3.214 | 0.863 | 3.372 | 1.863 | |
Collagen | SNV | 3 | 0.481 | 1.617 | 0.257 | 1.818 | 0.403 | 1.666 | 1.108 | |
Ash | none | 3 | 0.346 | 0.495 | 0.107 | 0.540 | 0.206 | 0.501 | 0.997 | |
Na | none | 2 | 0.290 | 2.323 | 0.109 | 2.453 | 0.201 | 2.123 | 0.976 |
Methods | Traits | Numbers | Selected Wavelengths (nm) |
---|---|---|---|
RCs | Fat | 7 | 1191, 1228, 1453, 1474, 1501, 1530, 1556 |
Protein | 8 | 1019, 1097, 1160, 1194, 1245, 1413, 1441, 1489 | |
RF | Fat | 10 | 1048, 1051, 1184, 1191, 1222,1225, 1228, 1450, 1456, 1510 |
Protein | 10 | 1019, 1150, 1153, 1191, 1194, 1198, 1255, 1259, 1285, 1629 |
Traits | Models | LVs | Calibration Set | Cross-Validation Set | Prediction Set | RPD | |||
---|---|---|---|---|---|---|---|---|---|
Rc | RMSEC (g/kg) | Rcv | RMSECV (g/kg) | Rp | RMSEP (g/kg) | ||||
Fat | RC-PLSR | 5 | 0.919 | 1.299 | 0.884 | 1.550 | 0.775 | 2.274 | 1.475 |
Protein | RC-PLSR | 6 | 0.882 | 2.639 | 0.831 | 3.122 | 0.855 | 3.367 | 1.866 |
Fat | RF-PLSR | 3 | 0.928 | 1.229 | 0.912 | 1.357 | 0.812 | 1.930 | 1.737 |
Protein | RF-PLSR | 5 | 0.885 | 2.602 | 0.828 | 3.146 | 0.870 | 3.708 | 1.694 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhou, Y.; Zhang, C.; Yuan, W.; Zhou, H. Evaluation of Dual-Band Near-Infrared Spectroscopy and Chemometric Analysis for Rapid Quantification of Multi-Quality Parameters of Soy Sauce Stewed Meat. Foods 2023, 12, 2882. https://doi.org/10.3390/foods12152882
Jiang H, Zhou Y, Zhang C, Yuan W, Zhou H. Evaluation of Dual-Band Near-Infrared Spectroscopy and Chemometric Analysis for Rapid Quantification of Multi-Quality Parameters of Soy Sauce Stewed Meat. Foods. 2023; 12(15):2882. https://doi.org/10.3390/foods12152882
Chicago/Turabian StyleJiang, Hongzhe, Yu Zhou, Cong Zhang, Weidong Yuan, and Hongping Zhou. 2023. "Evaluation of Dual-Band Near-Infrared Spectroscopy and Chemometric Analysis for Rapid Quantification of Multi-Quality Parameters of Soy Sauce Stewed Meat" Foods 12, no. 15: 2882. https://doi.org/10.3390/foods12152882
APA StyleJiang, H., Zhou, Y., Zhang, C., Yuan, W., & Zhou, H. (2023). Evaluation of Dual-Band Near-Infrared Spectroscopy and Chemometric Analysis for Rapid Quantification of Multi-Quality Parameters of Soy Sauce Stewed Meat. Foods, 12(15), 2882. https://doi.org/10.3390/foods12152882