High-Pressure Processing of Traditional Hardaliye Drink: Effect on Quality and Shelf-Life Extension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Materials and Equipment
2.1.2. Reagents
2.1.3. Samples
2.2. Microbial Cultures
2.3. High Hydrostatic Pressure
2.4. Measurement of Physicochemical Properties
2.5. Measurement of Bioactive Properties
2.6. Inactivation of Endogenous Microflora
2.7. Sensory Analyses
2.8. Shelf-Life Studies
2.9. Experimental Design
2.10. Optimization
3. Results
3.1. Changes in Properties of Hardaliye Processed with High Hydrostatic Pressure
3.2. Optimization of High-Hydrostatic-Pressure Conditions for Hardaliye Drink
3.3. Shelf-Life Studies of Hardaliye Drink
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arici, M.; Coskun, F. Hardaliye: Fermented Grape Juice as a Traditional Turkish Beverage. Food Microbiol. 2001, 18, 417–421. [Google Scholar] [CrossRef]
- Prado, F.C.; Parada, J.L.; Pandey, A.; Soccol, C.R. Trends in Non-Dairy Probiotic Beverages. Food Res. Int. 2008, 41, 111–123. [Google Scholar] [CrossRef]
- Aşkın, B.; Atik, A. Color, Phenolic Composition, and Antioxidant Properties of Hardaliye(Fermented Grape Beverage) under Different Storage Conditions. Turk. J. Agric. For. 2016, 40, 803–812. [Google Scholar] [CrossRef]
- Aladeboyeje, O.; Şanli, N.Ö. Fermented Traditional Probiotic Beverages of Turkish Origin: A Concise Review. Int. J. Life Sci. Biotechnol. 2021, 4, 546–564. [Google Scholar] [CrossRef]
- Ates, C.; Akdemir Evrendilek, G.; Uzuner, S. High-Pressure Processing of Shalgam with Respect to Quality Characteristics, Microbial Inactivation, and Shelflife Extension. J. Food Process. Preserv. 2021, 45, e15598. [Google Scholar] [CrossRef]
- Guerrero-Beltrán, J.A.; Barbosa-Cánovas, G.V.; Swanson, B.G. High Hydrostatic Pressure Processing of Fruit and Vegetable Products. Food Rev. Int. 2005, 21, 411–425. [Google Scholar] [CrossRef]
- Inada, K.O.; Torres, A.G.; Perrone, D.; Monteiro, M. High Hydrostatic Pressure Processing Affects the Phenolic Profile, Preserves Sensory Attributes and Ensures Microbial Quality of Jabuticaba (Myrciaria jaboticaba) Juice. J. Sci. Food Agric. 2018, 98, 231–239. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; de Ancos, B.; Sánchez-Moreno, C.; Cano, M.P.; Elez-Martínez, P.; Martín-Belloso, O. Impact of Food Matrix and Processing on the in Vitro Bioaccessibility of Vitamin C, Phenolic Compounds, and Hydrophilic Antioxidant Activity from Fruit Juice-Based Beverages. J. Funct. Foods 2015, 14, 33–43. [Google Scholar] [CrossRef]
- Song, B.; Zhu, P.; Zhang, Y.; Ju, N.; Si, X.; Pang, X.; Lv, J.; Zhang, S. Preparation and Quality Assessment of Processed Cream Cheese by High Hydrostatic Pressure Combined Thermal Processing and Spore-Induced Germination. J. Food Eng. 2023, 341, 111319. [Google Scholar] [CrossRef]
- Patrignani, F.; Lanciotti, R. Applications of High and Ultra High Pressure Homogenization for Food Safety. Front. Microbiol. 2016, 7, 1132. [Google Scholar] [CrossRef]
- Levy, R.; Okun, Z.; Shpigelman, A. High-Pressure Homogenization: Principles and Applications Beyond Microbial Inactivation. Food Eng. Rev. 2021, 13, 490–508. [Google Scholar] [CrossRef]
- Elez-Martínez, P.; Escolà-Hernández, J.; Soliva-Fortuny, R.C.; Martín-Belloso, O. Inactivation of Lactobacillus brevis in Orange Juice by High-Intensity Pulsed Electric Fields. Food Microbiol. 2005, 22, 311–319. [Google Scholar] [CrossRef]
- van Wyk, S.; Silva, F.V.M. High Pressure Inactivation of Brettanomyces bruxellensis in Red Wine. Food Microbiol. 2017, 63, 199–204. [Google Scholar] [CrossRef]
- Sarrazin, E.; Dubourdieu, D.; Darriet, P. Characterization of Key-Aroma Compounds of Botrytized Wines, Influence of Grape Botrytization. Food Chem. 2007, 103, 536–545. [Google Scholar] [CrossRef]
- Sengupta, S.; Jana, M.L.; Sengupta, D.; Naskar, A.K. A Note on the Estimation of Microbial Glycosidase Activities by Dinitrosalicylic Acid Reagent. Appl. Microbiol. Biotechnol. 2000, 53, 732–735. [Google Scholar] [CrossRef]
- Akdemir Evrendilek, G.; Tanriverdi, H.; Demir, I.; Uzuner, S. Shelf-Life Extension of Traditional Licorice Root “Sherbet” with a Novel Pulsed Electric Field Processing. Front. Food Sci. Technol. 2023, 3, 1157649. [Google Scholar] [CrossRef]
- Akdemir Evrendilek, G.; Bakay, S.; Uzuner, S. High Pressure Processing of Licorice Drink with Respect to Quality Characteristics, Microbial Inactivation, and Shelf-Life Extension. J. Food Process. Preserv. 2021, 45, e15465. [Google Scholar] [CrossRef]
- Bayram, M.; Esİn, Y.; Kaya, C.; İlhan, M.; Akın, G.; Etdöğer, R. Determination of some properties of hardaliye produced with Müșküle grapes by traditional method. Akad. Gida 2015, 13, 119–126. [Google Scholar]
- Oey, I.; Lille, M.; Van Loey, A.; Hendrickx, M. Effect of High-Pressure Processing on Colour, Texture and Flavour of Fruit- and Vegetable-Based Food Products: A Review. Trends Food Sci. Technol. 2008, 19, 320–328. [Google Scholar] [CrossRef]
- Muntean, M.-V.; Marian, O.; Barbieru, V.; Cătunescu, G.M.; Ranta, O.; Drocas, I.; Terhes, S. High Pressure Processing in Food Industry—Characteristics and Applications. Agric. Agric. Sci. Procedia 2016, 10, 377–383. [Google Scholar] [CrossRef]
- Fernández García, A.; Butz, P.; Bognàr, A.; Tauscher, B. Antioxidative Capacity, Nutrient Content and Sensory Quality of Orange Juice and an Orange-Lemon-Carrot Juice Product after High Pressure Treatment and Storage in Different Packaging. Eur. Food Res. Technol. 2001, 213, 290–296. [Google Scholar] [CrossRef]
- Garcia, A.F.; Butz, P.; Tauscher, B. Effects of High-Pressure Processing on Carotenoid Extractability, Antioxidant Activity, Glucose Diffusion, and Water Binding of Tomato Puree (Lycopersicon esculentum Mill.). J. Food Sci. 2001, 66, 1033–1038. [Google Scholar] [CrossRef]
- Indrawati; Van Loey, A.; Hendrickx, M. Pressure and Temperature Stability of Water-Soluble Antioxidants in Orange and Carrot Juice: A Kinetic Study. Eur. Food Res. Technol. 2004, 219, 161–166. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Plaza, L.; de Ancos, B.; Cano, M.P. Impact of High-Pressure and Traditional Thermal Processing of Tomato Purée on Carotenoids, Vitamin C and Antioxidant Activity. J. Sci. Food Agric. 2006, 86, 171–179. [Google Scholar] [CrossRef]
- Corrales, M.; García, A.F.; Butz, P.; Tauscher, B. Extraction of Anthocyanins from Grape Skins Assisted by High Hydrostatic Pressure. J. Food Eng. 2009, 90, 415–421. [Google Scholar] [CrossRef]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of Anthocyanins from Grape By-Products Assisted by Ultrasonics, High Hydrostatic Pressure or Pulsed Electric Fields: A Comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Prasad, K.N.; Yang, E.; Yi, C.; Zhao, M.; Jiang, Y. Effects of High Pressure Extraction on the Extraction Yield, Total Phenolic Content and Antioxidant Activity of Longan Fruit Pericarp. Innov. Food Sci. Emerg. Technol. 2009, 10, 155–159. [Google Scholar] [CrossRef]
- Prasad, K.N.; Hao, J.; Shi, J.; Liu, T.; Li, J.; Wei, X.; Qiu, S.; Xue, S.; Jiang, Y. Antioxidant and Anticancer Activities of High Pressure-Assisted Extract of Longan (Dimocarpus longan Lour.) Fruit Pericarp. Innov. Food Sci. Emerg. Technol. 2009, 10, 413–419. [Google Scholar] [CrossRef]
- Prasad, N.K.; Yang, B.; Zhao, M.; Wang, B.S.; Chen, F.; Jiang, Y. Effects of High-Pressure Treatment on the Extraction Yield, Phenolic Content and Antioxidant Activity of Litchi (Litchi chinensis Sonn.) Fruit Pericarp. Int. J. Food Sci. Technol. 2009, 44, 960–966. [Google Scholar] [CrossRef]
- Yordanov, D.G.; Angelova, G.V. High Pressure Processing for Foods Preserving. Biotechnol. Biotechnol. Equip. 2010, 24, 1940–1945. [Google Scholar] [CrossRef]
- Huang, H.-W.; Wu, S.-J.; Lu, J.-K.; Shyu, Y.-T.; Wang, C.-Y. Current Status and Future Trends of High-Pressure Processing in Food Industry. Food Control 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Terefe, N.S.; Buckow, R.; Versteeg, C. Quality-Related Enzymes in Fruit and Vegetable Products: Effects of Novel Food Processing Technologies, Part 1: High-Pressure Processing. Crit. Rev. Food Sci. Nutr. 2014, 54, 24–63. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Wang, Y.-T.; Wu, S.-J.; Shyu, Y.-T. Quality Changes in High Hydrostatic Pressure and Thermal Pasteurized Grapefruit Juice during Cold Storage. J. Food Sci. Technol. 2018, 55, 5115–5122. [Google Scholar] [CrossRef]
- Torres-Ossandón, M.J.; Castillo, L.; Ah-Hen, K.S.; Vega-Gálvez, A. Effect of High Hydrostatic Pressure Processing on Phytochemicals, Antioxidant Activity, and Behavior of Botrytis Cinerea in White Grape Juice Concentrate. J. Food Process. Preserv. 2020, 44, e14864. [Google Scholar] [CrossRef]
- Chen, D.; Pan, S.; Chen, J.; Pang, X.; Guo, X.; Gao, L.; Liao, X.; Wu, J. Comparing the Effects of High Hydrostatic Pressure and Ultrahigh Temperature on Quality and Shelf Life of Cloudy Ginger Juice. Food Bioprocess Technol. 2016, 9, 1779–1793. [Google Scholar] [CrossRef]
Process | Pressure (P, MPa) | Treatment Time (t, min) | Temperature (T, °C) | pH | Titratable Acidity (g/L) | TSS (°Brix) | Conductivity (mS/cm) | Turbidity (NTU) | Reducing Sugar (g/L) |
---|---|---|---|---|---|---|---|---|---|
Control | - | - | - | 3.80 ± 0.0 ef | 5.80 ± 0.1 ab | 27.02 ± 0.2 a | 3.61 ± 0.0 f | 862.89 ± 3.9 a | 220.32 ± 2.1 bcde |
HHP1 | 350 | 3 | 40 | 3.78 ± 0.0 g | 5.35 ± 0.2 cdef | 27.00 ± 0.0 a | 3.67 ± 0.0 bc | 439.53 ± 2.5 c | 211.39 ± 7.3 de |
HHP2 | 200 | 3 | 22 | 3.80 ± 0.0 ef | 5.55 ± 0.2 abcde | 27.02 ± 0.1 a | 3.67 ± 0.0 bc | 359.41 ± 2.1 fgh | 242.50 ± 12.5 abc |
HHP3 | 350 | 15 | 40 | 3.81 ± 0.0 bcde | 5.65 ± 0.17 abc | 27.00 ± 0.1 a | 3.62 ± 0.0 ef | 340.48 ± 1.3 ı | 227.66 ± 8.6 abcde |
HHP4 | 350 | 9 | 22 | 3.79 ± 0.0 f | 5.50 ± 0.2 abcde | 27.02 ± 0.0 a | 3.69 ± 0.0 b | 357.27 ± 1.9 h | 245.41 ± 17.6 ab |
HHP5 | 200 | 15 | 22 | 3.80 ± 0.0 def | 5.65 ± 0.1 abc | 27.00 ± 0.0 a | 3.64 ± 0.0 cdef | 373.92 ± 2.0 de | 226.79 ± 5.8 bcde |
HHP6 | 350 | 3 | 4 | 3.80 ± 0.0 cdef | 5.20 ± 0.1 def | 27.00 ± 0.0 a | 3.63 ± 0.0 cdef | 373.84 ± 2.8 de | 218.99 ± 3.9 cde |
HHP7 | 500 | 3 | 22 | 3.80 ± 0.0 cdef | 5.30 ± 0.1 cdef | 27.00 ± 0.0 a | 3.65 ± 0.1 cdef | 369.98 ± 4.5 defg | 219.56 ± 3.5 bcde |
HHP8 | 350 | 15 | 4 | 3.81 ± 0.0 abcd | 5.35 ± 0.2 cdef | 26.87 ± 0.1 a | 3.62 ± 0.0 ef | 358.90 ± 2.9 gh | 208.32 ± 1.5 e |
HHP9 | 500 | 9 | 4 | 3.80 ± 0.0 cdef | 5.60 ± 0.2 abcd | 27.00 ± 0.0 a | 3.67 ± 0.0 bc | 482.19 ± 10.9 b | 253.19 ± 5.4 a |
HHP10 | 350 | 9 | 22 | 3.82 ± 0.0 ab | 4.95 ± 0.0 f | 27.00 ± 0.0 a | 3.70 ± 0.0 b | 363.84 ± 2.5 efgh | 220.43 ± 8.7 bcde |
HHP11 | 500 | 15 | 22 | 3.82 ± 0.0 a | 5.25 ± 0.2 cdef | 26.89 ± 0.1 a | 3.62 ± 0.0 def | 381.23 ± 1.1 d | 238.74 ± 11.6 abc |
HHP12 | 200 | 9 | 40 | 3.81 ± 0.0 bcdef | 5.15 ± 0.1 ef | 26.89 ± 0.1 a | 3.76 ± 0.1 a | 371.21 ± 3.9 def | 237.30 ± 5.9 abcd |
HHP13 | 200 | 9 | 4 | 3.81 ± 0.0 abc | 5.90 ± 0.2 a | 26.98 ± 0.0 a | 3.67 ± 0.0 bcd | 479.29 ± 5.0 b | 232.14 ± 3.1 abcde |
HHP14 | 500 | 9 | 40 | 3.81 ± 0.0 bcde | 5.45 ± 0.1 bcde | 27.00 ± 0.0 a | 3.78 ± 0.0 a | 370.57 ± 0.1 defg | 238.21 ± 13.4 abc |
HHP15 | 350 | 9 | 22 | 3.82 ± 0.0 a | 5.45 ± 0.2 bcde | 27.00 ± 0.0 a | 3.66 ± 0.0 bcde | 364.69 ± 3.8 efgh | 228.44 ± 8.2 abcde |
Process | L* | a* | b* | Chroma | Hue | Total Color Difference | Color Intensity (IC) | Color Tone | %OD420 | %OD520 | %OD620 |
---|---|---|---|---|---|---|---|---|---|---|---|
Control | 3.33 ± 0.2 ab | 8.37 ± 0.8 b | 0.95 ± 0.3 abcd | 8.44 ± 0.8 b | 0.12 ± 0.0 bcde | ― | 4.85 ± 0.0 ab | 0.43 ± 0.0 ab | 21.44 ± 0.0 b | 50.41 ± 0.1 de | 28.15 ± 0.1 ab |
HHP1 | 2.89 ± 0.3 abcde | 8.74 ± 0.4 ab | 0.63 ± 0.3 cd | 8.77 ± 0.5 ab | 0.07 ± 0.0 de | 0.75 ± 0.1 bc | 4.85 ± 0.0 abc | 0.43 ± 0.0 ab | 21.60 ± 0.1 ab | 50.57 ± 0.2 cde | 27.83 ± 0.1 bcd |
HHP2 | 2.22 ± 0.1 de | 8.14 ± 0.8 b | 1.67 ± 0.3 ab | 8.32 ± 0.9 b | 0.20 ± 0.0 a | 1.62 ± 0.2 abc | 4.79 ± 0.0 d | 0.43 ± 0.0 ab | 21.61 ± 0.1 ab | 50.73 ± 0.3 bcde | 27.65 ± 0.36 cdef |
HHP3 | 2.33 ± 0.1 de | 8.71 ± 1.2 ab | 1.71 ± 0.5 a | 8.89 ± 1.2 ab | 0.19 ± 0.0 ab | 1.607 ± 0.5 abc | 4.74 ± 0.0 e | 0.42 ± 0.0 ab | 21.48 ± 0.3 ab | 51.28 ± 0.2 a | 27.24 ± 0.2 fg |
HHP4 | 2.35 ± 0.2 de | 9.07 ± 1.1 ab | 1.73 ± 0.4 a | 9.24 ± 1.1 ab | 0.19 ± 0.0 ab | 1.58 ± 0.4 abc | 4.81 ± 0.0 bcd | 0.42 ± 0.0 ab | 21.64 ± 0.3 ab | 50.91 ± 0.4 abcd | 27.46 ± 0.2 defg |
HHP5 | 3.27 ± 0.1 abc | 10.64 ± 1.1 a | 1.74 ± 0.5 a | 10.78 ± 1.2 a | 0.16 ± 0.0 abc | 2.08 ± 1.2 a | 4.80 ± 0.0 cd | 0.43 ± 0.0 ab | 21.76 ± 0.3 ab | 50.89 ± 0.1 abcd | 27.35 ± 0.2 efg |
HHP6 | 2.29 ± 0.1 de | 8.08 ± 0.6 b | 1.47 ± 0.2 abc | 8.23 ± 0.6 b | 0.18 ± 0.0 ab | 1.41 ± 0.2 abc | 4.79 ± 0.0 d | 0.43 ± 0.0 ab | 21.78 ± 0.1 ab | 50.91 ± 0.1 abcd | 27.31 ± 0.1 fg |
HHP7 | 3.50 ± 0.5 a | 8.72 ± 0.8 ab | 0.61 ± 0.4 cd | 8.75 ± 0.8 ab | 0.07 ± 0.0 de | 0.93 ± 0.0 abc | 4.81 ± 0.0 cd | 0.43 ± 0.0 ab | 21.58 ± 0.2 ab | 51.09 ± 0.1 ab | 27.32 ± 0.1 fg |
HHP8 | 2.31 ± 0.1 de | 7.95 ± 0.1 b | 0.70 ± 0.1 cd | 7.99 ± 0.1 b | 0.09 ± 0.0 cde | 1.33 ± 0.1 abc | 4.80 ± 0.0 cd | 0.43 ± 0.0 ab | 21.64 ± 0.2 ab | 51.03 ± 0.2 abc | 27.34 ± 0.1 fg |
HHP9 | 3.55 ± 0.8 a | 8.36 ± 0.6 b | 0.99 ± 0.2 abcd | 8.43 ± 0.6 b | 0.12 ± 0.0 bcde | 0.95 ± 0.3 abc | 4.81 ± 0.0 bcd | 0.43 ± 0.0 ab | 21.53 ± 0.1 ab | 50.61 ± 0.2 bcde | 27.86 ± 0.1 bcd |
HHP10 | 2.38 ± 0.1 de | 8.14 ± 0.4 b | 0.85 ± 0.3 abcd | 8.19 ± 0.4 b | 0.10 ± 0.0 cde | 1.18 ± 0.3 abc | 4.82 ± 0.0 bcd | 0.42 ± 0.0 ab | 21.48 ± 0.0 ab | 50.84 ± 0.1 abcd | 27.68 ± 0.1 cdef |
HHP11 | 3.46 ± 0.2 a | 8.84 ± 0.5 ab | 0.43 ± 0.1 d | 8.85 ± 0.5 ab | 0.05 ± 0.0 e | 0.72 ± 0.2 bc | 4.80 ± 0.0 d | 0.42 ± 0.0 b | 21.39 ± 0.1 b | 51.09 ± 0.1 ab | 27.51 ± 0.1 cdefg |
HHP12 | 2.45 ± 0.3 cde | 8.82 ± 0.5 ab | 0.82 ± 0.2 bcd | 8.86 ± 0.5 ab | 0.09 ± 0.0 cde | 1.02 ± 0.2 abc | 4.84 ± 0.0 abcd | 0.42 ± 0.0 ab | 21.61 ± 0.2 ab | 50.46 ± 0.1 de | 27.94 ± 0.2 bc |
HHP13 | 2.97 ± 0.2 abcd | 8.41 ± 0.5 b | 1.09 ± 0.1 abcd | 8.48 ± 0.5 b | 0.13 ± 0.0 abcd | 0.67 ± 0.3 c | 4.87 ± 0.0 a | 0.43 ± 0.0 ab | 21.36 ± 0.2 b | 50.21 ± 0.1 e | 28.43 ± 0.1 a |
HHP14 | 2.05 ± 0.1 e | 7.38 ± 0.3 b | 1.18 ± 0.1 abcd | 7.48 ± 0.3 b | 0.16 ± 0.0 abc | 1.90 ± 0.2 ab | 4.84 ± 0.0 abcd | 0.43 ± 0.0 ab | 21.53 ± 0.1 ab | 50.68 ± 0.1 bcde | 27.79 ± 0.2 bcde |
HHP15 | 2.56 ± 0.1 bcde | 8.41 ± 0.2 b | 1.25 ± 0.2 abcd | 8.51 ± 0.2 b | 0.15 ± 0.0 abc | 0.94 ± 0.1 abc | 4.81 ± 0.0 bcd | 0.43 ± 0.0 a | 21.97 ± 0.2 a | 50.83 ± 0.2 abcd | 27.19.06 g |
Process | TPSC (mg/L) | TAC (%) | TMAC (mg/L) |
---|---|---|---|
Control | 2310.02 ± 22.9 abc | 70.20 ± 0.9 a | 126.91 ± 9.3 b |
HHP1 | 2222.18 ± 36.6 c | 71.09 ± 0.9 a | 137.21 ± 8.6 ab |
HHP2 | 2312.55 ± 25.9 abc | 69.80 ± 0.9 a | 133.03 ± 2.9 ab |
HHP3 | 2278.35 ± 14.4 bc | 70.03 ± 1.4 a | 136.42 ± 6.1 ab |
HHP4 | 2340.01 ± 32.5 ab | 71.06 ± 1.4 a | 140.04 ± 4.4 ab |
HHP5 | 2236.12 ± 12.3 c | 70.75 ± 0.9 a | 140.41 ± 2.1 ab |
HHP6 | 2332.83 ± 28.6 ab | 70.29 ± 0.8 a | 135.12 ± 2.3 ab |
HHP7 | 2348.03 ± 30.5 ab | 70.79 ± 0.9 a | 131.23 ± 9.3 ab |
HHP8 | 2351.83 ± 33.2 ab | 68.95 ± 0.3 a | 123.25 ± 1.12 b |
HHP9 | 2382.24 ± 17.1 a | 69.51 ± 0.8 a | 130.53 ± 4.3 ab |
HHP10 | 2277.93 ± 47.7 bc | 69.57 ± 0.9 a | 137.63 ± 8.9 ab |
HHP11 | 2346.76 ± 45.4 ab | 69.81 ± 0.7 a | 139.25 ± 7.9 ab |
HHP12 | 2347.61 ± 27.7 ab | 69.61 ± 0.9 a | 133.17 ± 3.6 ab |
HHP13 | 2302.84 ± 37.5 abc | 69.97 ± 0.9 a | 128.58 ± 15.2 ab |
HHP14 | 2236.12 ± 12.0 c | 68.91 ± 1.0 a | 130.67 ± 10.9 ab |
HHP15 | 2290.38 ± 18.8 abc | 69.07 ± 0.9 a | 150.71 ± 7.3 a |
Process | TMAB Inactivation (log cfu/mL) | TMY Inactivation (log cfu/mL) | Brettanomyces bruxellensis Inactivation (log cfu/mL) | Lactobacillus brevis Inactivation (log cfu/mL) |
---|---|---|---|---|
Control | - | - | - | - |
HHP1 | 3.06 ± 0.1 d | 3.21 ± 0.0 b | 0.56 ± 0.4 e | 1.57 ± 0.2 cd |
HHP2 | 0.46 ± 0.1 k | 0.57 ± 0.1 h | 0.50 ± 0.3 e | 0.16 ± 0.0 g |
HHP3 | 5.10 ± 0.0 a | 4.21 ± 0.0 a | 4.36 ± 0.4 a | 3.94 ± 0.5 b |
HHP4 | 2.56 ± 0.1 ef | 2.73 ± 0.0 c | 0.92 ± 0.5 cde | 1.77 ± 0.3 cd |
HHP5 | 1.10 ± 0.0 j | 1.17 ± 0.1 g | 0.75 ± 0.4 de | 0.75 ± 0.2 efg |
HHP6 | 2.36 ± 0.0 g | 2.51 ± 0.1 e | 0.53 ± 0.4 e | 1.13 ± 0.1 def |
HHP7 | 4.10 ± 0.0 b | 4.21 ± 0.0 a | 4.38 ± 0.4 a | 5.05 ± 0.2 a |
HHP8 | 3.62 ± 0.0 c | 3.21 ± 0.0 b | 2.44 ± 0.2 b | 1.66 ± 0.6 cd |
HHP9 | 5.10 ± 0.0 a | 4.21 ± 0.0 a | 5.38 ± 0.7 a | 4.05 ± 0.2 b |
HHP10 | 2.56 ± 0.0 e | 2.73 ± 0.1 c | 2.04 ± 0.2 bc | 1.71 ± 0.7 cd |
HHP11 | 4.10 ± 0.0 b | 4.21 ± 0.0 a | 5.38 ± 0.6 a | 5.05 ± 0.2 a |
HHP12 | 1.76 ± 0.1 h | 1.77 ± 0.0 f | 1.07 ± 0.8 cde | 1.17 ± 0.2 de |
HHP13 | 1.56 ± 0.1 ı | 1.69 ± 0.0 f | 1.54 ± 0.4 bcde | 0.46 ± 0.2 fg |
HHP14 | 5.10 ± 0.0 a | 4.21 ± 0.0 a | 1.90 ± 0.2 a | 5.05 ± 0.4 a |
HHP15 | 2.46 ± 0.0 f | 2.61 ± 0.0 d | 1.97 ± 0.3 bcd | 2.23 ± 0.3 c |
Term | OD520 | Inactivation of Lactobacillus brevis | ||||
---|---|---|---|---|---|---|
Coeff. | VIF | p Value | Coeff. | VIF | p Value | |
Regression | ||||||
Linear | ||||||
X1 (P) | 0.148 | 1.00 | 0.000 | −1.754 | 1.00 | 0.000 |
X2 (T) | −0.645 | 1.00 | 0.012 | |||
X3 (Trt) | 0.124 | 1.00 | 0.002 | |||
Square | ||||||
X1 × X1 | −0.182 | 1.01 | 0.002 | |||
X2 × X2 | −0.187 | 1.01 | 0.001 | |||
X3 × X3 | 0.276 | 1.01 | 0.000 | |||
Interaction | ||||||
X1 × X2 | 0.731 | 1.00 | 0.040 | |||
X1 × X3 | ||||||
X2 × X3 | 0.151 | 1.00 | 0.006 | |||
Lack-of-fit | 0.163 | 0.316 | ||||
Constant | 50.86 | 0.000 | 1.608 | 0.000 | ||
R2 | 0.70 | 0.61 | ||||
R2(adj) | 0.65 | 0.58 | ||||
R2(pred) | 0.58 | 0.54 |
Storage Temperature | |||||
---|---|---|---|---|---|
4 °C | 22 °C | ||||
TMAB (log cfu/mL) | Days | Control | HHP treated | Control | HHP treated |
0 | 4.00 ± 0.5 Aa | 0.00 ± 0.0 Bd | 4.00 ± 0.3 A | 0.3 ± 0.0 Be | |
15 | 6.56 ± 0.2 Ab | 0.47 ± 0.1 Cc | 1.02 ± 0.0 Bd | ||
30 | 0.49 ± 0.1 Bc | 1.12 ± 0.2 Ad | |||
45 | 0.58 ± 0.1 Ac | 1.31 ± 0.2 Ad | |||
66 | 1.38 ± 0.2 Ab | 2.06 ± 0.2 Ac | |||
87 | 1.40 ± 0.2 Ab | 2.61 ± 0.2 Ab | |||
108 | 2.62 ± 0.2 Aa | 3.56 ± 0.3 Aa | |||
142 | 2.24 ± 0.1 Aa | ||||
180 | 2.31 ± 0.1 Aa | ||||
228 | 2.62 ± 0.1 Aa | ||||
TMY (log cfu/mL) | Days | Control | HHP treated | Control | HHP treated |
0 | 3.33 ± 0.3 Aa | 0.00 ± 0.0 Be | 3.67 ± 0.4 A | 0.00 ± 0.0 g | |
15 | 4.37 ± 0.2 Ab | 0.00 ± 0.0 Ce | 0.56 ± 0.0 Bf | ||
30 | 0.00 ± 0.0 e | 0.84 ± 0.2 Ae | |||
45 | 0.38 ± 0.1 Ad | 1.04 ± 0.1 Ad | |||
66 | 1.55 ± 0.2 Ac | 1.46 ± 0.1 Ac | |||
87 | 1.86 ± 0.2 Ac | 2.02 ± 0.5 Ab | |||
108 | 1.98 ± 0.2 Ac | 2.84 ± 0.3 Aa | |||
142 | 2.12 ± 0.1 Ab | ||||
180 | 2.48 ± 0.2 Ab | ||||
228 | 2.78 ± 0.2 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atmaca, B.; Demiray, M.; Akdemir Evrendilek, G.; Bulut, N.; Uzuner, S. High-Pressure Processing of Traditional Hardaliye Drink: Effect on Quality and Shelf-Life Extension. Foods 2023, 12, 2876. https://doi.org/10.3390/foods12152876
Atmaca B, Demiray M, Akdemir Evrendilek G, Bulut N, Uzuner S. High-Pressure Processing of Traditional Hardaliye Drink: Effect on Quality and Shelf-Life Extension. Foods. 2023; 12(15):2876. https://doi.org/10.3390/foods12152876
Chicago/Turabian StyleAtmaca, Bahar, Merve Demiray, Gulsun Akdemir Evrendilek, Nurullah Bulut, and Sibel Uzuner. 2023. "High-Pressure Processing of Traditional Hardaliye Drink: Effect on Quality and Shelf-Life Extension" Foods 12, no. 15: 2876. https://doi.org/10.3390/foods12152876
APA StyleAtmaca, B., Demiray, M., Akdemir Evrendilek, G., Bulut, N., & Uzuner, S. (2023). High-Pressure Processing of Traditional Hardaliye Drink: Effect on Quality and Shelf-Life Extension. Foods, 12(15), 2876. https://doi.org/10.3390/foods12152876