Nutritional Composition of Hass Avocado Pulp
Abstract
:1. Introduction
2. Unique Nutritional Physiology and Ripening of Hass Avocados
3. Nutritional Composition of Ripe Hass Avocado Pulp
3.1. Energy and Water
3.2. Lipids
USDA Food Data Central | Literature, Other Government Databases and Commercial Analyses | ||||||
---|---|---|---|---|---|---|---|
g/100 g | Mean | Min, Max | n | Pooled Mean | Min, Max | n | Refs. |
Total Fat | 15.4 | 8.4, 23.2 | 31 | 17.77 | 12.9, 26.7 | 28 | [16,17,18,19,20,21,23,24] |
Saturated fatty acids | 2.13 | NA | 1 | 3.18 | 0.85, 6.3 | 18 | [16,17,18,19,20,21,24] |
16:0 Palmitic acid | 2.08 | 1.73, 2.54 | 8 | 1.27 | 0.54, 4.32 | 121 | [17,18,24,33,34] |
18:0 Stearic acid | 0.05 | 0.007, 0.082 | 8 | 0.03 | 0, 1.98 | 202 | [17,18,24,34] |
Monounsaturated fatty acids | 9.8 | NA | 1 | 12.37 | 8.48, 19.51 | 18 | [16,17,18,19,20,21,24] |
16:1n-7 Palmitoleic acid | 0.698 | 0.5, 0.881 | 8 | 0.53 | 0.11, 1.98 | 121 | [17,18,24,33,34] |
17:1 | 0.01 | 0, 0.016 | 8 | 0 | NA | 2 | [18] |
18:1n-9 Oleic acid | 9.07 | 7.44, 10.9 | 8 | 4.07 | 1.5, 19.4 | 121 | [17,18,24,33,34] |
18:1n-7 Cis-Vaccenic acid | NA | 0.627 | 0.35, 0.84 | 109 | [34] | ||
20:1n-9 Gondoic acid | 0.025 | 0.02, 0.033 | 8 | 0.02 | 0.02, 0.02 | 2 | [18] |
Polyunsaturated fatty acids | 1.82 | NA | 1 | 2.46 | 0.46, 4.55 | 18 | [16,17,18,19,20,21,24] |
18:2n-6 Linoleic acid | 1.67 | 1.44, 1.97 | 8 | 0.93 | 0.29, 2.68 | 121 | [17,18,24,33,34] |
18:2n-6 Linolelaidic acid | NA | 1.60 | 1.54, 1.66 | 6 | [24] | ||
18:3n-3 α-Linolenic acid | 0.11 | 0.096, 0.128 | 4 | 0.135 | 0, 0.33 | 13 | [17,18,24,33] |
18:3n-6 γ-Linolenic acid | 0.015 | 0.015, 0.015 | 4 | 0.068 | 0, 0.1 | 110 | [18,34] |
20:3n-6 | 0.016 | 0, 0.04 | 8 | NA |
3.3. Carbohydrates
USDA Food Data Central | Literature, Other Government Databases and Commercial Analyses | ||||||
---|---|---|---|---|---|---|---|
g/100 g | Mean | Min, Max | n | Pooled Mean | Min, Max | n | Refs. |
Total carbohydrates | 8.64 | NA | 1 | 5.82 | 3, 12.2 | 16 | [17,18,19,20,21,24] |
Dietary fiber | 6.8 | 3.2, 12.7 | 21 | 3.87 | 2.2, 7.5 | 17 | [17,18,19,20,21,24] |
Insoluble fiber | NA | 2.63 | 2.56, 2.7 | 2 | [16] | ||
Soluble fiber | NA | 2.05 | 1.99, 2.11 | 2 | [16] | ||
Total sugars | 0.3 | 0, 0.55 | 11 | 0.1 | 0, 0.8 | 8 | [18,19,20,21] |
Sucrose | 0.06 | 0, 0.15 | 9 | 0.11 | 0.002, 0.43 | 25 | [33,40,41] |
Glucose | 0.08 | 0.06, 0.24 | 9 | 0.03 | 0.002, 0.1 | 22 | [40,41] |
Fructose | 0.08 | 0.07, 0.15 | 9 | 0.04 | 0.01, 0.1 | 22 | [40,41] |
Galactose | 0.08 | 0, 0.3 | 8 | NA | |||
Starch | 0.11 | 0.05, 0.17 | 4 | NA |
3.4. Protein and Amino Acids
USDA Food Data Central | Literature, Other Government Databases and Commercial Analyses | ||||||
---|---|---|---|---|---|---|---|
g/100 g | Mean | Min, Max | n | Pooled Mean | Min, Max | n | Refs. |
Total protein | 1.96 | 1.53, 3 | 30 | 1.59 | 1.05, 2.4 | 45 | [17,18,19,20,21,23,24,40] |
Amino acids | |||||||
Taurine | NA | 0.02 | NA | 1 | |||
Hydroxyproline | NA | 0.04 | NA | 1 | |||
Aspartic acid | 0.232 | 1 | 0.14 | 0.12, 0.15 | 2 | [18] | |
Threonine * | 0.072 | 1 | 0.07 | 0.06, 0.08 | 2 | [18] | |
Serine | 0.112 | 1 | 0.08 | 0.08, 0.08 | 2 | [18] | |
Glutamic acid | 0.28 | 1 | 0.15 | 0.14, 0.16 | 2 | [18] | |
Proline | 0.096 | 1 | 0.07 | 0.06, 0.08 | 2 | [18] | |
Lanthionine | NA | 0.04 | 1 | ||||
Glycine | 0.102 | 1 | 0.08 | 0.07,0.09 | 2 | [18] | |
Alanine | 0.11 | 1 | 0.09 | 0.07, 0.1 | 2 | [18] | |
Cysteine | NA | 0.03 | 0.03, 0.04 | 2 | [43] | ||
Cystine | 0.027 | 1 | ND | ||||
Valine * | 0.11 | 1 | 0.09 | 0.08, 0.1 | 2 | [18] | |
Methionine * | 0.04 | 1 | 0.03 | 0.02, 0.04 | 3 | [18,43] | |
Isoleucine * | 0.08 | 1 | 0.07 | 0.06, 0.08 | 2 | [18] | |
Leucine * | 0.14 | 1 | 0.11 | 0.1, 0.1 | 2 | [18] | |
Tyrosine | 0.05 | 1 | 0.1 | 0.04, 0.15 | 2 | [18] | |
Phenylalanine * | 0.1 | 1 | 0.07 | 0.06, 0.07 | 2 | [18] | |
Hydroxylysine | NA | 0.03 | 1 | ||||
Lysine * | 0.13 | 1 | 0.09 | 0.08, 0.1 | 2 | [18] | |
Histidine * | 0.05 | 1 | 0.03 | 0.03, 0.04 | 2 | [18] | |
Arginine | 0.09 | 1 | 0.08 | 0.07, 0.09 | 2 | [18] | |
Tryptophan * | 0.03 | 1 | 0.02 | 0.02, 0.02 | 2 | [18] |
3.5. Vitamins
USDA Food Data Central | Literature, Other Government Databases and Commercial Analyses | ||||||
---|---|---|---|---|---|---|---|
Per 100 g | Mean | Min, Max | n | Pooled Mean | Min, Max | n | Refs. |
Vitamin C (mg) | 8.8 | 6.3, 13.9 | 16 | 6.19 | 1.9, 13 | 15 | [16,17,18,19,20,21,41] |
Thiamin (mg) | 0.075 | 0.052, 0.1 | 12 | 0.069 | 0.03, 0.119 | 10 | [17,18,19,20,21] |
Riboflavin (mg) | 0.143 | 0.119, 0.18 | 12 | 0.139 | 0.12, 0.183 | 10 | [17,18,19,20,21] |
Niacin (mg) | 1.91 | 1.46, 2.51 | 12 | 2.07 | 1.59, 2.6 | 10 | [17,18,19,20,21] |
Pantothenic acid (mg) | 1.46 | 0.93, 2.71 | 12 | 0.89 | 0.65, 1.2 | 6 | [17,18,19,20,21] |
Pyroxidine (mg) | 0.287 | 0.196, 0.452 | 11 | 0.28 | 0.1, 0.69 | 10 | [17,18,19,20,21] |
Folate (µg) | 89 | 71, 155 | 20 | 90 | 61,120 | 10 | [17,18,19,20,21] |
Biotin (µg) | NA | 2.73 | 0, 5.6 | 6 | [17,18,19,20,21] | ||
Vitamin A * (µg) | 7 | NA | NA | 10.5 | 6, 16 | 4 | [18,19,20,21] |
α-tocopherol (mg) | 1.97 | 0.66, 3.28 | 22 | 2.13 | 0.94, 3.28 | 20 | [17,18,41,47] |
β-tocopherol (mg) | 0.04 | 0.02, 0.06 | 9 | 0.01 | 0, 0.05 | 5 | [18] |
γ-tocopherol (mg) | 0.32 | 0.09, 0.75 | 18 | 0.25 | 0, 0.75 | 14 | [18,47] |
δ-tocohpherol (mg) | 0.02 | 0.01, 0.03 | 9 | 0.03 | 0,0.13 | 9 | [18,41] |
Vitamin K (µg) | 21 | 15.7, 27 | 8 | 16.55 | 5, 25 | 6 | [19,20,21] |
Other | |||||||
Choline (mg) | 14.2 | NA | NA | 19.5 | 19.3, 19.6 | 2 | [17] |
3.6. Minerals
USDA Food Data Central | Literature, Other Government Databases and Commercial Analyses | ||||||
---|---|---|---|---|---|---|---|
Per 100 g | Mean | Min, Max | n | Pooled Mean | Min, Max | n | Refs. |
Calcium (mg) | 13 | 8, 19 | 24 | 11.7 | 8, 15 | 43 | [17,18,19,20,21,24,53] |
Iron (mg) | 0.61 | 0.29, 1.06 | 34 | 0.65 | 0.4, 2.3 | 43 | [17,18,19,20,21,24,53] |
Magnesium (mg) | 29 | 19, 34 | 12 | 30.64 | 19, 64 | 43 | [17,18,19,20,21,24,53] |
Phosphorus (mg) | 54 | 41, 70 | 12 | 44.0 | 26.3, 55 | 43 | [17,18,19,20,21,24,53] |
Potassium (mg) | 507 | 356, 691 | 24 | 478.0 | 408, 1010 | 44 | [16,17,18,19,20,21,24,53] |
Sodium (mg) | 8 | 2, 17 | 18 | 3.57 | 1.5, 18 | 43 | [17,18,19,20,21,24,53] |
Zinc (mg) | 0.68 | 0.49, 0.83 | 12 | 0.52 | 0.35, 1.1 | 41 | [18,19,20,21,24,53] |
Copper (mg) | 0.17 | 0.09, 0.38 | 12 | 0.25 | 0.15, 0.34 | 43 | [17,18,19,20,21,24,53] |
Manganese (mg) | 0.149 | 0.106, 0.19 | 12 | 0.17 | 0.08, 0.4 | 43 | [17,18,19,20,21,24,53] |
Selenium (µg) | 0.4 | 0.2, 0.6 | 5 | 0.1 | 0, 0.9 | 31 | [18,19,20,21,53] |
Fluoride (µg) | NA | 230 | 1 | [18] | |||
Iodine (µg) | NA | 0.08 | 0, 1.5 | 31 | [18,19,20,21,53] | ||
Nickle (mg) | NA | 0.03 | 0, 0.21 | 30 | [17,18,53] | ||
Chloride (mg) | NA | 30 | 1 | [18] | |||
Chromium (mg) | NA | 0.001 | 0, 0.018 | 30 | [17,18,53] | ||
Molybdenum (µg) | NA | 0.0003 | 0.0002, 0.0003 | 28 | [18,53] | ||
Silicon (mg) | NA | 31 | 10, 51 | 2 | [17] | ||
Boron (mg) | NA | 3.7 | 2.6, 4.8 | 2 | [17] | ||
Strontium (mg) | NA | 0.15 | 0.11,0.97 | 29 | [17,53] |
4. Bioactive Compounds in Hass Avocado Pulp
4.1. Fatty Alcohols
mg/100 g | Pooled Mean | Min, Max | n | Refs. |
---|---|---|---|---|
Avocadyne | 4.99 * | NA | 3 | [63] |
Avocadene | 6.09 * | NA | 3 | [63] |
Personone A | 172.5 | 163, 182 | 6 | [13,64] |
Persenone B | 56.5 | 34, 79 | 6 | [13,64] |
Persenone C | 31 | 26, 36 | 6 | [13,64] |
Persediene | 4 | NA | 3 | [13] |
Acetylated-avocadene | 1 | NA | 3 | [13] |
Acetylated-avocadyne | 40.5 | 30, 51 | 6 | [13,64] |
Avoenin | 0.98 * | NA | 1 | [65] |
4.2. Seven-Carbon Carbohydrates
4.3. Phenolics and Organic Acids
mg/100 g | Pooled Mean | Min, Max | n | Refs. |
---|---|---|---|---|
Total Phenolic Content (GAE) | 20 § | 13.3, 26 | 15 | [23,41,73] |
Total Phenolic Content | 6.1 * | 1.5, 10.7 | 2 | [74,75] |
Epicatechin | 0.48 | 0.08, 1.11 | 12 | [74,76,77] |
Epigallocatechin | 1.03 | 0.96, 1.1 | 2 | [76] |
Cyanadin | 0.5 | 0.42, 0.58 | 4 | [76] |
Nargenin | 0.007 | NA | 1 | [77] |
Quercetin | 0.557 | NA | 1 | [77] |
Rutin | 0.006 | NA | 1 | [74] |
Taxifolin | 0.005 | NA | 1 | [74] |
Vanillin | 0.002 | NA | 1 | [74] |
4-hydroxybenzoic acid | 0.02 | 0.005, 0.03 | 2 | [74,77] |
Caffeic acid | 0.02 | NA | 1 | [74] |
Caffeic acid glucoside | 0.27 *,§ | NA | 1 | [75] |
Chlorogenic acid | 0.015 | 0.006, 0.023 | 2 | [74,77] |
Ferulic acid | 0.19 | 0.15, 0.23 | 2 | [74,77] |
Ferulic acid glucoside isomers | 0.75 *,§ | NA | 1 | [75] |
3-feruloylquinic acid | 0.21 § | NA | 1 | [75] |
5-feruloylquinic acid | 2.11 § | NA | 1 | [75] |
4-feruloylquinic acid | 0.22 § | NA | 1 | [75] |
Gentisic acid | 0.02 | NA | 1 | [74] |
Isoramnetin | 0.003 | NA | 1 | [74] |
Coumaric acid | 0.64 * | 0.47, 0.82 | 2 | [75,77] |
p-coumaric acid | 0.58 | 0.36, 0.79 | 2 | [74,77] |
m-coumaric acid | 0.032 | NA | 1 | [77] |
p-coumaric acid glucoside isomers | 2.62 *,§ | NA | 1 | [75] |
p-coumaric acid pentoside | 0.29 *,§ | NA | 1 | [75] |
p-coumaric acid rutinoside | 0.45 *,§ | NA | 1 | [75] |
Sinapic acid-C-hexoside | 0.21 *,§ | NA | 1 | [75] |
Sinapic acid | 0.03 | NA | 1 | [77] |
Tyrosol-hexoside-pentoside | 0.63 *,§ | NA | 1 | [75] |
Octyl gallate | 0.26 *,§ | NA | 1 | [75] |
Trans-cinnamic acid | 0.052 | 0.005, 0.98 | 2 | [74,77] |
Sinapinic acid | 0.04 | NA | 1 | [73,74] |
mg/100 g | Pooled Mean | Min, Max | n | Refs. |
---|---|---|---|---|
Succinic acid | 1 *,§ | 0.3, 1.2 | 5 | [41,75] |
Fumaric acid | 26.9 | NA | 4 | [41] |
Quinic acid | 20.6 *,§ | 0.03, 30.9 | 6 | [41,75,77] |
Malic acid | 119.2 | NA | 4 | [41] |
Citric acid | 216 * | NA | 5 | [41,75] |
Oxalic acid | ND | 4 | [41] | |
Benzoic acid | 0.11 | 0.1, 0.13 | 2 | [74,77] |
Abscisic acid | 0.267 | NA | 1 | [77] |
Homovanillic acid | 0.002 | NA | 1 | [77] |
4.4. Carotenoids and Other Pigments
USDA Food Data Central | Literature, Other Government Databases and Commercial Analyses | ||||||
---|---|---|---|---|---|---|---|
µg/100 g | Mean | Min, Max | n | Pooled Mean | Min, Max | n | Refs. |
Lutein and Zeaxanthin | 271 | 170, 379 | 16 | 541 | 223, 874 | 209 | [41,47,83] |
Lutein | NA | 514 | 140, 842 | 224 | [41,47,82,83] | ||
Zeaxanthin | NA | 8 | 1, 100 | 209 | [41,47,83] | ||
β-cryptoxanthin | 27 | 0, 120 | 25 | 23 | 17, 64 | 206 | [18,47,83] |
Neoxanthin | NA | 448 | 46, 1190 | 192 | [83] | ||
Lutein-5,6-epoxide | NA | 402 | 2, 899 | 196 | [41,83] | ||
9′-cis-neoxanthin | NA | 102 | 6, 216 | 196 | [41,83] | ||
cis-violaxanthin | NA | 202 | 44, 475 | 192 | [83] | ||
Neochrome | NA | 96 | 37, 161 | 192 | [83] | ||
Chrysanthemaxanthin | NA | 159 | 31, 272 | 192 | [83] | ||
15-cis-zeaxanthin | NA | 13 | NA | 4 | [41] | ||
13-cis-lutein | NA | 6 | NA | 4 | [41] | ||
15-cis-lutein | NA | 36 | NA | 4 | [41] | ||
Alpha-carotene | 24 | 0, 100 | 27 | 40 | 3, 89 | 206 | [18,47,83] |
Chlorophyll a | NA | 1.84 | NA | 1 | [41] | ||
Chlorophyll b | NA | 1.16 | NA | 1 | [41] | ||
Pheophorbide a | NA | 0.006 | NA | 1 | [41] | ||
Pheophytin a | NA | 0.015 | NA | 1 | [41] |
4.5. Phytosterols
USDA Food Data Central | Literature, Other Government Databases and Commercial Analyses | ||||||
---|---|---|---|---|---|---|---|
mg/100 g | Mean | Min, Max | n | Pooled Mean | Min, Max | n | Refs. |
β-sitosterol | 76 | 62, 98 | 6 | 57 | 24, 105 | 85 | [34,41,114] |
Stigmasterol | 2 | 2, 2 | 6 | 0.94 | 0.14, 10 | 85 | [34,41,114] |
Campesterol | 5 | 5, 6 | 6 | 6 | 4, 11 | 85 | [34,41,114] |
Cycloartenol | NA | 17 | NA | 4 | [41] | ||
Avenasterol | NA | 3.9 | NA | 8 | [114] | ||
Stanol | NA | 0.5 | NA | 8 | [114] |
4.6. Glutathione and Betaine
5. Challenges in Moving toward Precision Nutrition
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FruiTrop. Close-up avocado. In FruiTrop Magazine; Loeillet, D., Imbert, E., Eds.; Cirad: Montpellier, France, 2015; pp. 1–96. [Google Scholar]
- Dreher, M.L.; Davenport, A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreher, M.L.; Cheng, F.W.; Ford, N.A. A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms. Nutrients 2021, 13, 4376. [Google Scholar] [CrossRef]
- Henning, S.M.; Guzman, J.B.; Thames, G.; Yang, J.; Tseng, C.H.; Heber, D.; Kim, J.; Li, Z. Avocado Consumption Increased Skin Elasticity and Firmness in Women—A Pilot Study. J. Cosmet. Dermatol. 2022, 21, 4028–4034. [Google Scholar] [CrossRef]
- Edwards, C.G.; Walk, A.M.; Thompson, S.V.; Reeser, G.E.; Erdman, J.W., Jr.; Burd, N.A.; Holscher, H.D.; Khan, N.A. Effects of 12-week avocado consumption on cognitive function among adults with overweight and obesity. Int. J. Psychophysiol. 2020, 148, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.V.; Bailey, M.A.; Taylor, A.M.; Kaczmarek, J.L.; Mysonhimer, A.R.; Edwards, C.G.; Reeser, G.E.; Burd, N.A.; Khan, N.A.; Holscher, H.D. Avocado Consumption Alters Gastrointestinal Bacteria Abundance and Microbial Metabolite Concentrations among Adults with Overweight or Obesity: A Randomized Controlled Trial. J. Nutr. 2021, 151, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.M.; Rasmussen, H.M.; Chen, O.; Johnson, E.J. Avocado Consumption Increases Macular Pigment Density in Older Adults: A Randomized, Controlled Trial. Nutrients 2017, 9, 919. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.W.; Ford, N.A.; Taylor, M.K. US Older Adults That Consume Avocado or Guacamole Have Better Cognition Than Non-consumers: National Health and Nutrition Examination Survey 2011–2014. Front. Nutr. 2021, 8, 746453. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Forester, S.; Jennings-Dobbs, E.; Heber, D. Perspective: A Comprehensive Evaluation of Data Quality in Nutrient Databases. Adv. Nutr. 2023, 14, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Pedreschi, R.; Uarrota, V.; Fuentealba, C.; Alvaro, J.E.; Olmedo, P.; Defilippi, B.G.; Meneses, C.; Campos-Vargas, R. Primary Metabolism in Avocado Fruit. Front. Plant. Sci. 2019, 10, 795. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, V.; Rolshausen, P. Avocado Cultivars, Botanical Races and Genetic Footprints. Available online: https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=21125 (accessed on 6 March 2023).
- Rodriguez-Lopez, C.E.; Hernandez-Brenes, C.; Trevino, V.; Diaz de la Garza, R.I. Avocado fruit maturation and ripening: Dynamics of aliphatic acetogenins and lipidomic profiles from mesocarp, idioblasts and seed. BMC Plant. Biol. 2017, 17, 159. [Google Scholar] [CrossRef] [Green Version]
- Hernández, I.; Fuentealba, C.; Olaeta, J.A.; Lurie, S.; Defilippi, B.G.; Campos-Vargas, R.; Pedreschi, R. Factors associated with postharvest ripening heterogeneity of ‘Hass’ avocados (Persea americana Mill). Fruits 2016, 79, 259–268. [Google Scholar] [CrossRef] [Green Version]
- FoodData Central. Avocados, Raw, California. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/171706/nutrients (accessed on 1 March 2023).
- Smith, J.; Goldweber, S.; Lamberts, M.; Tyson, R.; Reynolds, J.S. Utilization potential of semi-tropical and tropical fruits and vegetables in therapeutic and family diets. Proc. Fla. State Hort. Soc. 1983, 96, 241–244. [Google Scholar]
- Slater, G.G.; Shankman, S.; Shepherd, J.S.; Alfin-Slater, R.B. Seasonal variation in the composition of California avocados. J. Agric. Food Chem. 1975, 23, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Australian Food Composition Database. F000162: Avocado, Raw. Available online: https://www.foodstandards.gov.au/science/monitoringnutrients/afcd/Pages/fooddetails.aspx?PFKID=F000162 (accessed on 1 March 2023).
- New Zealand Food Composition Data. Avocado, ‘Hass’, New Zealand. Available online: https://www.foodcomposition.co.nz/search/food/L1159/nip (accessed on 1 March 2023).
- New Zealand Food Composition Data. Avocado, Flesh, Fresh, Raw, late Season (April), ‘Hass’, New Zealand. Available online: https://www.foodcomposition.co.nz/search/food/L1157/nip (accessed on 1 March 2023).
- New Zealand Food Composition Data. Avocado, California, Flesh, Raw. Available online: https://www.foodcomposition.co.nz/search/food/L221/nip (accessed on 1 March 2023).
- Kant, A.K.; Graubard, B.I. Energy density of diets reported by American adults: Association with food group intake, nutrient intake, and body weight. Int. J. Obes. (Lond.) 2005, 29, 950–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Carpena, J.G.; Morcuende, D.; Andrade, M.J.; Kylli, P.; Estevez, M. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef] [PubMed]
- Viera, W.; Gaona, P.; Samaniego, I.; Sotomayor, A.; Viteri, P.; Noboa, M.; Merino, J.; Mejia, P.; Park, C.H. Mineral Content and Phytochemical Composition of Avocado var. Hass Grown Using Sustainable Agriculture Practices in Ecuador. Plants (Basel) 2023, 12, 1791. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.D.; Terry, L.A. Fatty acid and sugar composition of avocado, cv. Hass, in response to treatment with an ethylene scavenger or 1-methylcyclopropene to extend storage life. Food Chem. 2010, 121, 1203–1210. [Google Scholar] [CrossRef]
- Ferreyra, R.; Sellés, G.; Saavedra, J.; Ortiz, J.; Zúñiga, C.; Troncoso, C.; Rivera, S.A.; González-Agüero, M.; Defilippi, B.G. Identification of pre-harvest factors that affect fatty acid profiles of avocado fruit (Persea americana Mill) cv. ‘Hass’ at harvest. S. Afr. J. Bot. 2016, 104, 15–20. [Google Scholar] [CrossRef]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020. [Google Scholar]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 74, 1376–1414. [Google Scholar] [CrossRef]
- Fats and Fatty Acids in Human Nutrition. Report of an expert consultation. FAO Food Nutr. Pap. 2010, 91, 1–166. [Google Scholar]
- Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; et al. Saturated Fats Compared With Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort Study. J. Am. Coll. Cardiol. 2015, 66, 1538–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, L.S.; Li, Y.; Rimm, E.B.; Manson, J.E.; Sun, Q.; Rexrode, K.; Hu, F.B.; Guasch-Ferre, M. Avocado Consumption and Risk of Cardiovascular Disease in US Adults. J. Am. Heart Assoc. 2022, 11, e024014. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Li, Y.; Chiuve, S.E.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Association of Specific Dietary Fats With Total and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.D.; Terry, L.A. Development of a rapid method for the sequential extraction and subsequent quantification of fatty acids and sugars from avocado mesocarp tissue. J. Agric. Food Chem. 2008, 56, 7439–7445. [Google Scholar] [CrossRef]
- Plaza, L.; Sanchez-Moreno, C.; de Pascual-Teresa, S.; de Ancos, B.; Cano, M.P. Fatty acids, sterols, and antioxidant activity in minimally processed avocados during refrigerated storage. J. Agric. Food Chem. 2009, 57, 3204–3209. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Agricultural Research Service. FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 1 March 2023).
- McKeown, N.M.; Fahey, G.C., Jr.; Slavin, J.; van der Kamp, J.W. Fibre intake for optimal health: How can healthcare professionals support people to reach dietary recommendations? BMJ 2022, 378, e054370. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [Green Version]
- Makki, K.; Deehan, E.C.; Walter, J.; Backhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids; National Academies Press: Washington, DC, USA, 2002. [Google Scholar]
- Blakey, R.J.; Tesfay, S.Z.; Bertling, I.; Bower, J.P. Changes in sugars, total protein, and oil in ‘Hass’ avocado (Persea americana Mill.) fruit during ripening. J. Hortic. Sci. Biotechnol. 2012, 87, 381–387. [Google Scholar] [CrossRef]
- Ramos-Aguilar, A.L.; Ornelas-Paz, J.; Tapia-Vargas, L.M.; Gardea-Bejar, A.A.; Yahia, E.M.; Ornelas-Paz, J.J.; Perez-Martinez, J.D.; Rios-Velasco, C.; Escalante-Minakata, P. Metabolomic analysis and physical attributes of ripe fruits from Mexican Creole (Persea americana var. Drymifolia) and ‘Hass’ avocados. Food Chem. 2021, 354, 129571. [Google Scholar] [CrossRef] [PubMed]
- USDA Economic Research Service. Potatoes and tomatoes Are the Most Commonly Consumed Vegetables. Available online: https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=58340 (accessed on 12 April 2023).
- Jones, D.P.; Coates, R.J.; Flagg, E.W.; Eley, J.W.; Block, G.; Greenberg, R.S.; Gunter, E.W.; Jackson, B. Glutathione in foods listed in the National Cancer Institute’s Health Habits and History Food Frequency Questionnaire. Nutr. Cancer 1992, 17, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.R.; Bellinge, J.W.; Dalgaard, F.; Sim, M.; Murray, K.; Connolly, E.; Blekkenhorst, L.C.; Bondonno, C.P.; Croft, K.D.; Gislason, G.; et al. Association between vitamin K(1) intake and mortality in the Danish Diet, Cancer, and Health cohort. Eur. J. Epidemiol. 2021, 36, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, Y.; Guo, H.; Jabir, M.S.; Liu, X.; Cui, W.; Li, D. Associations between Folate and Vitamin B12 Levels and Inflammatory Bowel Disease: A Meta-Analysis. Nutrients 2017, 9, 382. [Google Scholar] [CrossRef]
- Bo, Y.; Zhu, Y.; Tao, Y.; Li, X.; Zhai, D.; Bu, Y.; Wan, Z.; Wang, L.; Wang, Y.; Yu, Z. Association Between Folate and Health Outcomes: An Umbrella Review of Meta-Analyses. Front. Public. Health 2020, 8, 550753. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.Y.; Arteaga, J.R.; Zhang, Q.; Huerta, S.; Go, V.L.; Heber, D. Inhibition of prostate cancer cell growth by an avocado extract: Role of lipid-soluble bioactive substances. J. Nutr. Biochem. 2005, 16, 23–30. [Google Scholar] [CrossRef]
- Morrell, A.; Tallino, S.; Yu, L.; Burkhead, J.L. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 2017, 69, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Sodium and Potassium; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- D’Elia, L.; Masulli, M.; Cappuccio, F.P.; Zarrella, A.F.; Strazzullo, P.; Galletti, F. Dietary Potassium Intake and Risk of Diabetes: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2022, 14, 4785. [Google Scholar] [CrossRef]
- Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med 1993, 328, 833–838. [Google Scholar] [CrossRef]
- Curhan, G.C.; Willett, W.C.; Speizer, F.E.; Spiegelman, D.; Stampfer, M.J. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med 1997, 126, 497–504. [Google Scholar] [CrossRef]
- United States Food and Drug Administration. FDA Total Diet Study (TDS): Results. Available online: https://www.fda.gov/food/fda-total-diet-study-tds/fda-total-diet-study-tds-results (accessed on 1 March 2023).
- Kim, O.K.; Murakami, A.; Nakamura, Y.; Takeda, N.; Yoshizumi, H.; Ohigashi, H. Novel nitric oxide and superoxide generation inhibitors, persenone A and B, from avocado fruit. J. Agric. Food Chem. 2000, 48, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Aguilar, A.L.; Ornelas-Paz, J.; Tapia-Vargas, L.M.; Ruiz-Cruz, S.; Gardea-Béjar, A.A.; Yahia, E.M.; de Jesús Ornelas-Paz, J.; Pérez-Martínez, J.D.; Rios-Velasco, C.; Ibarra-Junquera, V. The importance of the bioactive compounds of avocado fruit (Persea americana Mill) on human health. Biotecnia 2019, 21, 154–162. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, D.G.; Flores-Garcia, M.; Silva-Platas, C.; Rizzo, S.; Torre-Amione, G.; De la Pena-Diaz, A.; Hernandez-Brenes, C.; Garcia-Rivas, G. Isolation and chemical identification of lipid derivatives from avocado (Persea americana) pulp with antiplatelet and antithrombotic activities. Food Funct. 2015, 6, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Carranza, M.J.; Alvizouri, M.M.; Herrera, J.E.; Chávez, F. Efectos del aguacate como fuente de ácidos grasos monoinsaturados en lípidos séricos, metabolismo de la glucosa y reología en pacientes con diabetes tipo 2. Med. Int. Mex. 2008, 24, 267–272. [Google Scholar]
- Salinas-Salazar, C.; Hernandez-Brenes, C.; Rodriguez-Sanchez, D.G.; Castillo, E.C.; Navarro-Silva, J.M.; Pacheco, A. Inhibitory Activity of Avocado Seed Fatty Acid Derivatives (Acetogenins) Against Listeria Monocytogenes. J. Food Sci. 2017, 82, 134–144. [Google Scholar] [CrossRef]
- Tcheng, M.; Roma, A.; Ahmed, N.; Smith, R.; Jayanth, P.; Minden, M.D.; Hurren, R.; Schimmer, A.D.; Bozzo, G.; Hess, D.; et al. Inhibiting Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Induces Selective Leukemia Cell Death. Blood 2019, 134, 3922. [Google Scholar] [CrossRef]
- Tcheng, M.; Roma, A.; Ahmed, N.; Smith, R.W.; Jayanth, P.; Minden, M.D.; Schimmer, A.D.; Hess, D.A.; Hope, K.; Rea, K.A.; et al. Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood 2021, 137, 3518–3532. [Google Scholar] [CrossRef]
- Lee, E.A.; Angka, L.; Rota, S.G.; Hanlon, T.; Mitchell, A.; Hurren, R.; Wang, X.M.; Gronda, M.; Boyaci, E.; Bojko, B.; et al. Targeting Mitochondria with Avocatin B Induces Selective Leukemia Cell Death. Cancer Res. 2015, 75, 2478–2488. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Tcheng, M.; Roma, A.; Buraczynski, M.; Jayanth, P.; Rea, K.; Akhtar, T.A.; Spagnuolo, P.A. Avocatin B Protects Against Lipotoxicity and Improves Insulin Sensitivity in Diet-Induced Obesity. Mol. Nutr. Food Res. 2019, 63, e1900688. [Google Scholar] [CrossRef]
- Ahmed, N.; Smith, R.W.; Henao, J.J.A.; Stark, K.D.; Spagnuolo, P.A. Analytical Method To Detect and Quantify Avocatin B in Hass Avocado Seed and Pulp Matter. J. Nat. Prod. 2018, 81, 818–824. [Google Scholar] [CrossRef]
- Rodríguez-López, C.E.; Hernández-Brenes, C.; Díaz de la Garza, R.I. A targeted metabolomics approach to characterize acetogenin profiles in avocado fruit (Persea americana Mill. ) RSC Adv. 2015, 5, 106019. [Google Scholar] [CrossRef]
- Arita, M.; Fuchino, H.; Kawakami, H.; Ezaki, M.; Kawahara, N. Characterization of a New Antienterovirus D68 Compound Purified from Avocado. ACS Infect. Dis. 2020, 6, 2291–2300. [Google Scholar] [CrossRef] [PubMed]
- Absorption and effect of ingested mannoheptulose. Nutr. Rev. 1969, 27, 206–208. [CrossRef]
- Ingram, D.K.; Roth, G.S. Glycolytic inhibition: An effective strategy for developing calorie restriction mimetics. Geroscience 2021, 43, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Ingram, D.K.; Pistell, P.J.; Wang, Z.Q.; Yu, Y.; Massimino, S.; Davenport, G.M.; Hayek, M.; Roth, G.S. Characterization and Mechanisms of Action of Avocado Extract Enriched in Mannoheptulose as a Candidate Calorie Restriction Mimetic. J. Agric. Food Chem. 2021, 69, 7367–7376. [Google Scholar] [CrossRef] [PubMed]
- Viktora, J.K.; Johnson, B.F.; Penhos, J.C.; Rosenberg, C.A.; Wolff, F.W. Effect of ingested mannoheptulose in animals and man. Metabolism 1969, 18, 87–102. [Google Scholar] [CrossRef]
- Pistell, P.J.; Utsuki, T.; Francis, J.; Ebenezer, P.J.; Terrebonne, J.; Roth, G.S.; Ingram, D.K. An Avocado Extract Enriched in Mannoheptulose Prevents the Negative Effects of a High-Fat Diet in Mice. Nutrients 2021, 14, 155. [Google Scholar] [CrossRef]
- Mills, E.; O’Neill, L.A. Succinate: A metabolic signal in inflammation. Trends Cell. Biol. 2014, 24, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Teucher, B.; Olivares, M.; Cori, H. Enhancers of iron absorption: Ascorbic acid and other organic acids. Int. J. Vitam. Nutr. Res. 2004, 74, 403–419. [Google Scholar] [CrossRef]
- Lyu, X.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants 2023, 12, 185. [Google Scholar] [CrossRef]
- Di Stefano, V.; Avellone, G.; Bongiorno, D.; Indelicato, S.; Massenti, R.; Lo Bianco, R. Quantitative evaluation of the phenolic profile in fruits of six avocado (Persea americana) cultivars by ultra-high-performance liquid chromatography-heated electrospray-mass spectrometry. Int. J. Food Prop. 2017, 20, 1302–1312. [Google Scholar] [CrossRef] [Green Version]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Bhagwat, S.; Haytowitz, D.B.; Wasswa-Kintu, S. USDA’s Expanded Flavonoid Database for the Assessment of Dietary Intakes. Available online: https://data.nal.usda.gov/dataset/usda-special-interest-databases-flavonoids (accessed on 1 March 2023).
- Hurtado-Fernández, E.; Pacchiarotta, T.; Mayboroda, O.A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Quantitative characterization of important metabolites of avocado fruit by gas chromatography coupled to different detectors (APCI-TOF MS and FID). Food Res. Int. 2014, 62, 801–811. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Qu, Z.; Liu, A.; Li, P.; Liu, C.; Xiao, W.; Huang, J.; Liu, Z.; Zhang, S. Advances in physiological functions and mechanisms of (-)-epicatechin. Crit. Rev. Food Sci. Nutr. 2021, 61, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zhang, J.; Nageswaran, D.; Li, L. Carotenoid metabolism and regulation in horticultural crops. Hortic. Res. 2015, 2, 15036. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Ashton, O.B.; Wong, M.; McGhie, T.K.; Vather, R.; Wang, Y.; Requejo-Jackman, C.; Ramankutty, P.; Woolf, A.B. Pigments in avocado tissue and oil. J. Agric. Food Chem. 2006, 54, 10151–10158. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.Y.; Zhang, Y.; Wang, Y.; Wang, D.; Lee, R.P.; Gao, K.; Byrns, R.; Heber, D. California Hass avocado: Profiling of carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas. J. Agric. Food Chem. 2009, 57, 10408–10413. [Google Scholar] [CrossRef] [Green Version]
- Cervantes-Paz, B.; Yahia, E.M.; Ornelas-Paz, J.J.; Victoria-Campos, C.I.; Perez-Martinez, J.D.; Reyes-Hernandez, J. Bioaccessibility of fat-soluble bioactive compounds (FSBC) from avocado fruit as affected by ripening and FSBC composition in the food matrix. Food Res. Int. 2021, 139, 109960. [Google Scholar] [CrossRef]
- Noakes, M.; Clifton, P.; Ntanios, F.; Shrapnel, W.; Record, I.; McInerney, J. An increase in dietary carotenoids when consuming plant sterols or stanols is effective in maintaining plasma carotenoid concentrations. Am. J. Clin. Nutr. 2002, 75, 79–86. [Google Scholar] [CrossRef] [Green Version]
- van Het Hof, K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G. Dietary factors that affect the bioavailability of carotenoids. J. Nutr. 2000, 130, 503–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unlu, N.Z.; Bohn, T.; Clinton, S.K.; Schwartz, S.J. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J. Nutr. 2005, 135, 431–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopec, R.E.; Cooperstone, J.L.; Schweiggert, R.M.; Young, G.S.; Harrison, E.H.; Francis, D.M.; Clinton, S.K.; Schwartz, S.J. Avocado consumption enhances human postprandial provitamin A absorption and conversion from a novel high-beta-carotene tomato sauce and from carrots. J. Nutr. 2014, 144, 1158–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giossi, C.; Cartaxana, P.; Cruz, S. Photoprotective Role of Neoxanthin in Plants and Algae. Molecules 2020, 25, 4617. [Google Scholar] [CrossRef] [PubMed]
- Havaux, M.; Niyogi, K.K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. USA 1999, 96, 8762–8767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terasaki, M.; Asai, A.; Zhang, H.; Nagao, A. A highly polar xanthophyll of 9’-cis-neoxanthin induces apoptosis in HCT116 human colon cancer cells through mitochondrial dysfunction. Mol. Cell. Biochem. 2007, 300, 227–237. [Google Scholar] [CrossRef]
- Kotake-Nara, E.; Asai, A.; Nagao, A. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Lett. 2005, 220, 75–84. [Google Scholar] [CrossRef]
- Chang, J.M.; WC, C.H.; Hong, D.; Lin, J.K. The inhibition of DMBA-induced carcinogenesis by neoxanthin in hamster buccal pouch. Nutr. Cancer 1995, 24, 325–333. [Google Scholar] [CrossRef]
- Sekiya, M.; Suzuki, S.; Ushida, Y.; Suganuma, H. Neoxanthin in young vegetable leaves prevents fat accumulation in differentiated adipocytes. Biosci. Biotechnol. Biochem. 2021, 85, 2145–2152. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Y.; Yin, W.; Zhang, L.; Li, G.; Ma, J.; Xu, L.; Xiong, Y.; Liu, L.; Zhang, W.; et al. Neoxanthin alleviates the chronic renal failure-induced aging and fibrosis by regulating inflammatory process. Int. Immunopharmacol. 2023, 114, 109429. [Google Scholar] [CrossRef]
- Gyemant, N.; Tanaka, M.; Molnar, P.; Deli, J.; Mandoky, L.; Molnar, J. Reversal of multidrug resistance of cancer cells in vitro: Modification of drug resistance by selected carotenoids. Anticancer. Res. 2006, 26, 367–374. [Google Scholar] [PubMed]
- Cha, K.H.; Koo, S.Y.; Lee, D.U. Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. J. Agric. Food Chem. 2008, 56, 10521–10526. [Google Scholar] [CrossRef] [PubMed]
- Stringham, J.M.; Johnson, E.J.; Hammond, B.R. Lutein across the Lifespan: From Childhood Cognitive Performance to the Aging Eye and Brain. Curr. Dev. Nutr. 2019, 3, nzz066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, E.J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr. Rev. 2014, 72, 605–612. [Google Scholar] [CrossRef]
- Johra, F.T.; Bepari, A.K.; Bristy, A.T.; Reza, H.M. A Mechanistic Review of beta-Carotene, Lutein, and Zeaxanthin in Eye Health and Disease. Antioxidants 2020, 9, 1046. [Google Scholar] [CrossRef]
- Ma, L.; Dou, H.L.; Wu, Y.Q.; Huang, Y.M.; Huang, Y.B.; Xu, X.R.; Zou, Z.Y.; Lin, X.M. Lutein and zeaxanthin intake and the risk of age-related macular degeneration: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107, 350–359. [Google Scholar] [CrossRef]
- Hammond, B.R., Jr.; Miller, L.S.; Bello, M.O.; Lindbergh, C.A.; Mewborn, C.; Renzi-Hammond, L.M. Effects of Lutein/Zeaxanthin Supplementation on the Cognitive Function of Community Dwelling Older Adults: A Randomized, Double-Masked, Placebo-Controlled Trial. Front. Aging Neurosci. 2017, 9, 254. [Google Scholar] [CrossRef]
- Johnson, E.J.; McDonald, K.; Caldarella, S.M.; Chung, H.Y.; Troen, A.M.; Snodderly, D.M. Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr. Neurosci. 2008, 11, 75–83. [Google Scholar] [CrossRef]
- Juturu, V.; Bowman, J.P.; Deshpande, J. Overall skin tone and skin-lightening-improving effects with oral supplementation of lutein and zeaxanthin isomers: A double-blind, placebo-controlled clinical trial. Clin. Cosmet. Investig. Dermatol. 2016, 9, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palombo, P.; Fabrizi, G.; Ruocco, V.; Ruocco, E.; Fluhr, J.; Roberts, R.; Morganti, P. Beneficial long-term effects of combined oral/topical antioxidant treatment with the carotenoids lutein and zeaxanthin on human skin: A double-blind, placebo-controlled study. Skin. Pharmacol. Physiol. 2007, 20, 199–210. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Cruz-Martins, N.; Nigam, M.; Mishra, A.P.; Konovalov, D.A.; Orobinskaya, V.; Abu-Reidah, I.M.; Zam, W.; et al. Phytosterols: From Preclinical Evidence to Potential Clinical Applications. Front. Pharmacol. 2020, 11, 599959. [Google Scholar] [CrossRef] [PubMed]
- Duester, K.C. Avocado fruit is a rich source of beta-sitosterol. J. Am. Diet. Assoc. 2001, 101, 404–405. [Google Scholar] [CrossRef] [PubMed]
- United States Food and Drug Administration. CFR-Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.83 (accessed on 1 March 2023).
- Trautwein, E.A.; Vermeer, M.A.; Hiemstra, H.; Ras, R.T. LDL-Cholesterol Lowering of Plant Sterols and Stanols-Which Factors Influence Their Efficacy? Nutrients 2018, 10, 1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilt, T.; Ishani, A.; MacDonald, R.; Stark, G.; Mulrow, C.; Lau, J. Beta-sitosterols for benign prostatic hyperplasia. Cochrane Database Syst. Rev. 2000, 1999, CD001043. [Google Scholar] [CrossRef] [PubMed]
- Berges, R.R.; Windeler, J.; Trampisch, H.J.; Senge, T. Randomised, placebo-controlled, double-blind clinical trial of beta-sitosterol in patients with benign prostatic hyperplasia. Beta-sitosterol Study Group. Lancet 1995, 345, 1529–1532. [Google Scholar] [CrossRef]
- Berges, R.R.; Kassen, A.; Senge, T. Treatment of symptomatic benign prostatic hyperplasia with beta-sitosterol: An 18-month follow-up. BJU Int. 2000, 85, 842–846. [Google Scholar] [CrossRef] [Green Version]
- Klippel, K.F.; Hiltl, D.M.; Schipp, B. A multicentric, placebo-controlled, double-blind clinical trial of beta-sitosterol (phytosterol) for the treatment of benign prostatic hyperplasia. German BPH-Phyto Study group. Br. J. Urol. 1997, 80, 427–432. [Google Scholar] [CrossRef]
- Piironen, V.; Toivo, J.; Puupponen-Pimiä, R.; Lampi, A.M. Plant sterols in vegetables, fruits and berries. J. Sci. Food Agric. 2003, 83, 330–337. [Google Scholar] [CrossRef]
- Minich, D.M.; Brown, B.I. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients 2019, 11, 2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dludla, P.V.; Ziqubu, K.; Mabhida, S.E.; Mazibuko-Mbeje, S.E.; Hanser, S.; Nkambule, B.B.; Basson, A.K.; Pheiffer, C.; Tiano, L.; Kengne, A.P. Dietary Supplements Potentially Target Plasma Glutathione Levels to Improve Cardiometabolic Health in Patients with Diabetes Mellitus: A Systematic Review of Randomized Clinical Trials. Nutrients 2023, 15, 944. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, S.; Noda, Y.; Tarumi, R.; Mimura, Y.; Yoshida, K.; Iwata, Y.; Elsalhy, M.; Kuromiya, M.; Kurose, S.; Masuda, F.; et al. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J. Psychopharmacol. 2019, 33, 1199–1214. [Google Scholar] [CrossRef] [PubMed]
- Sydnor, V.J.; Roalf, D.R. A meta-analysis of ultra-high field glutamate, glutamine, GABA and glutathione 1HMRS in psychosis: Implications for studies of psychosis risk. Schizophr. Res. 2020, 226, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Richie, J.P., Jr.; Nichenametla, S.; Neidig, W.; Calcagnotto, A.; Haley, J.S.; Schell, T.D.; Muscat, J.E. Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. Eur. J. Nutr. 2015, 54, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Beltramo, B.; Bast, A.; Diliën, H.; de Boer, A. Nutrient composition of fresh produce—Assessing variability between European countries to substantiate nutrition and health claims. J. Food Compost. Ana 2023, 118, 105201. [Google Scholar] [CrossRef]
- Ozdemir, F.; Topuz, A. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem. 2004, 86, 79–83. [Google Scholar] [CrossRef]
- Bower, J.P.; Cutting, J.G. Avocado fruit development and ripening physiology. Hortic. Rev. 1988, 10, 229–271. [Google Scholar]
- Gebauer, S.K.; Novotny, J.A.; Bornhorst, G.M.; Baer, D.J. Food processing and structure impact the metabolizable energy of almonds. Food Funct. 2016, 7, 4231–4238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenstein, A.H.; Kris-Etherton, P.M.; Petersen, K.S.; Matthan, N.R.; Barnes, S.; Vitolins, M.Z.; Li, Z.; Sabate, J.; Rajaram, S.; Chowdhury, S.; et al. Effect of Incorporating 1 Avocado Per Day Versus Habitual Diet on Visceral Adiposity: A Randomized Trial. J. Am. Heart Assoc. 2022, 11, e025657. [Google Scholar] [CrossRef]
- Wang, L.; Bordi, P.L.; Fleming, J.A.; Hill, A.M.; Kris-Etherton, P.M. Effect of a moderate fat diet with and without avocados on lipoprotein particle number, size and subclasses in overweight and obese adults: A randomized, controlled trial. J. Am. Heart Assoc. 2015, 4, e001355. [Google Scholar] [CrossRef] [Green Version]
- James-Martin, G.; Brooker, P.G.; Hendrie, G.A.; Stonehouse, W. Avocado Consumption and Cardiometabolic Health: A Systematic Review and Meta-Analysis. J. Acad. Nutr. Diet. 2022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ford, N.A.; Spagnuolo, P.; Kraft, J.; Bauer, E. Nutritional Composition of Hass Avocado Pulp. Foods 2023, 12, 2516. https://doi.org/10.3390/foods12132516
Ford NA, Spagnuolo P, Kraft J, Bauer E. Nutritional Composition of Hass Avocado Pulp. Foods. 2023; 12(13):2516. https://doi.org/10.3390/foods12132516
Chicago/Turabian StyleFord, Nikki A., Paul Spagnuolo, Jana Kraft, and Ella Bauer. 2023. "Nutritional Composition of Hass Avocado Pulp" Foods 12, no. 13: 2516. https://doi.org/10.3390/foods12132516
APA StyleFord, N. A., Spagnuolo, P., Kraft, J., & Bauer, E. (2023). Nutritional Composition of Hass Avocado Pulp. Foods, 12(13), 2516. https://doi.org/10.3390/foods12132516