High Protein Yangyu jiaotuan (洋芋搅团): In Vitro Oral-Gastro-Small Intestinal Starch Digestion and Some Physico-Chemical, Textural, Microstructural, and Rheological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Textural Characteristics: Texture Profile Analysis
2.3. Dynamic Rheological Properties
2.4. Starch Digestion In Vitro and Its Kinetics
2.5. Microstructural Characteristics
2.5.1. Light Microscopy (LM)
2.5.2. Scanning Electron Microscopy (SEM)
2.5.3. Confocal Laser Scanning Microscopy (CLSM)
2.6. Particle Size Distribution
2.7. Thermal Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Texture Profile Analysis and Textural Characteristics
3.2. Rheological Properties
3.3. Starch Hydrolysis (%) and Estimated Glycaemic Index
3.4. Microstructural Characteristics
3.5. Particle Size Distribution and DSC Thermograms of Yangyu jiaotuan Digesta
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Do, D.T.; Singh, J.; Oey, I.; Singh, H. Biomimetic Plant Foods: Structural design and functionality. Trends Food Sci. Technol. 2018, 82, 46–59. [Google Scholar] [CrossRef]
- Alfieri, M.L.; Moccia, F.; D’Errico, G.; Panzella, L.; d’Ischia, M.; Napolitano, A. Acid Treatment Enhances the Antioxidant Activity of Enzymatically Synthesized Phenolic Polymers. Polymers 2020, 12, 2544. [Google Scholar] [CrossRef] [PubMed]
- Dinu, V.; Yakubov, G.E.; Lim, M.; Hurst, K.; Fisk, I.D. Mucin immobilization in calcium alginate: A possible mucus mimetic tool for evaluating mucoadhesion and retention of flavour. Int. J. Biol. Macromol. 2019, 138, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Colussi, R.; Kaur, L.; Zavareze, E.d.R.; Dias, A.R.G.; Stewart, R.B.; Singh, J. High pressure processing and retrogradation of potato starch: Influence on functional properties and gastro-small intestinal digestion in vitro. Food Hydrocoll. 2018, 75, 131–137. [Google Scholar] [CrossRef]
- Schwanz Goebel, J.T.; Kaur, L.; Colussi, R.; Elias, M.C.; Singh, J. Microstructure of indica and japonica rice influences their starch digestibility: A study using a human digestion simulator. Food Hydrocoll. 2019, 94, 191–198. [Google Scholar] [CrossRef]
- Wahlqvist, M.L. Food structure is critical for optimal health. Food Funct. 2016, 7, 1245–1250. [Google Scholar] [CrossRef]
- Aguilera, J.M.; Stanley, D.W. Microstructural Principles of Food Processing and Engineering, 2nd ed.; Aspen Publishers Inc.: Frederick, MD, USA, 1999. [Google Scholar]
- Bornhorst, G.M.; Paul Singh, R. Gastric digestion in vivo and in vitro: How the structural aspects of food influence the digestion process. Annu. Rev. Food Sci. Technol. 2014, 5, 111. [Google Scholar] [CrossRef]
- Edwards, C.H.; Warren, F.J.; Campbell, G.M.; Gaisford, S.; Royall, P.G.; Butterworth, P.J.; Ellis, P.R. A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility. Food Funct. 2015, 6, 3634–3641. [Google Scholar] [CrossRef] [Green Version]
- Glatter, O.; Salentinig, S. Inverting Structures: From Micelles via Emulsions to Internally Self-assembled Water- and Oil-Continuous Nanocarriers. Curr. Opin. Colloid Interface Sci. 2020, 49, 82–93. [Google Scholar] [CrossRef]
- Do, D.T.; Singh, J.; Oey, I.; Singh, H.; Yada, R.Y.; Frostad, J.M. A novel apparatus for time-lapse optical microscopy of gelatinisation and digestion of starch inside plant cells. Food Hydrocoll. 2020, 104, 105551. [Google Scholar] [CrossRef]
- Alvarez, M.D.; Fernandez, C.; Olivares, M.D.; Canet, W. A rheological characterisation of mashed potatoes enriched with soy protein isolate. Food Chem. 2012, 133, 1274–1282. [Google Scholar] [CrossRef] [Green Version]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. The impact of resistant starch on characteristics of gluten-free dough and bread. Food Hydrocoll. 2009, 23, 988–995. [Google Scholar] [CrossRef]
- Chen, Y.F.; Singh, J.; Midgley, J.; Archer, R. Influence of time-temperature cycles on potato starch retrogradation in tuber and starch digestion in vitro. Food Hydrocoll. 2020, 98, 105210–105240. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Balance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Singh, J.; Kaur, L.; Ogawa, Y. Impact of the degree of cooking on starch digestibility of rice—An in vitro study. Food Chem. 2016, 191, 98–104. [Google Scholar] [CrossRef]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Singh, J.; Mccarthy, O.J.; Singh, H.; Moughan, P.J. Low temperature post-harvest storage of New Zealand Taewa (Maori potato): Effects on starch physico-chemical and functional characteristics. Food Chem. 2008, 106, 583–596. [Google Scholar] [CrossRef]
- Colussi, R.; Singh, J.; Kaur, L.; Zavareze ED, R.; Guerra Dias, A.R.; Stewart, R.B.; Singh, H. Microstructural characteristics and gastro-small intestinal digestion in vitro of potato starch: Effects of refrigerated storage and reheating in microwave. Food Chem. 2017, 226, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Noh, E.J.; Kang, C.; Hong, S.T.; Yun, S.E. Freezing of soybeans influences the hydrophobicity of soy protein. Food Chem. 2006, 97, 212–216. [Google Scholar] [CrossRef]
- Zeng, F.K.; Liu, H.; Yu, H.; Cheng, J.C.; Gao, G.Q.; Shang, Y.; Liu, G. Effect of Potato Flour on the Rheological Properties of Dough and the Volatile Aroma Components of Bread. Am. J. Potato Res. 2019, 96, 69–78. [Google Scholar] [CrossRef]
- Sivaramakrishnan, H.P.; Senge, B.; Chattopadhyay, P.K. Rheological properties of rice dough for making rice bread. J. Food Eng. 2004, 62, 37–45. [Google Scholar] [CrossRef]
- Singh, J.; Dartois, A.; Kaur, L. Starch digestibility in food matrix: A review. Trends Food Sci. Technol. 2010, 21, 168–180. [Google Scholar] [CrossRef]
- Turgeon, S.L.; Beaulieu, M. Improvement and modification of whey protein gel texture using polysaccharides. Food Hydrocoll. 2001, 15, 583–591. [Google Scholar] [CrossRef]
- Tseng, Y.-C.; Xiong, Y.L.; Yang, F. Influence of inulin/oligofructose on the acid-induced cold aggregation and gelation of preheated soy proteins. J. Sci. Food Agric. 2009, 89, 2650–2658. [Google Scholar] [CrossRef]
- Lakemond, C.M.M.; de Jongh, H.H.J.; Paques, M.; van Vliet, T.; Gruppen, H.; Voragen, G.J. Gelation of soy glycinin; influence of pH and ionic strength on network structure in relation to protein conformation. Food Hydrocoll. 2003, 17, 365–377. [Google Scholar] [CrossRef]
- Jarvis, M.C.; Mackenzie, E.; Duncan, H.J. The textural analysis of cooked potato swelling pressure of starch during gelatinisation. Potato Res. 1992, 35, 93–102. [Google Scholar] [CrossRef]
- Berg, T.; Singh, J.; Hardacre, A.; Boland, M.J. The role of cotyledon cell structure during in vitro digestion of starch in navy beans. Carbohydr. Polym. 2012, 87, 1678–1688. [Google Scholar] [CrossRef]
- Tydeman, E.A.; Parker, M.L.; Wickham, M.S.J.; Rich, G.T.; Faulks, R.M.; Gidley, M.J.; Fillery-Travis, A.; Waldron, K.W. Effect of carrot (Daucus carota) microstructure on carotene bioaccessibilty in the upper gastrointestinal tract in vitro simulations of carrot digestion. J. Agric. Food Chem. 2010, 58, 9847–9854. [Google Scholar] [CrossRef]
- Chen, Y.F.; Singh, J.; Archer, R. Potato starch retrogradation in tuber: Structural changes and gastro-small intestinal digestion in vitro. Food Hydrocoll. 2018, 84, 552–560. [Google Scholar] [CrossRef]
- Hoebler, C.; Devaux, M.F.; Karinthi, A.; Belleville, C.; Barry, J.L. Particle size of solid food after human mastication and in vitro simulation of oral breakdown. Int. J. Food Sci. Nutr. 2000, 51, 353–366. [Google Scholar] [CrossRef]
Sample | Time (Day) | Rheological Properties during Frequency Sweep a | |||||
---|---|---|---|---|---|---|---|
G′ (Pa) | G″ (Pa) | G* (Pa) | tan δ | η* (Pa s) | ή (Pa s) | ||
Control | 0 | 12,406.67 ± 601.86 a | 2451.33 ± 98.35 a | 12,646.67 ± 608.80 a | 0.20 ± 0.00 hi | 100.650 ± 4.84 a | 19.50 ± 0.78 a |
1 | 12,670.00 ± 357.63 a | 2263.33 ± 64.47 a | 12,870.00 ± 361.66 a | 0.18 ± 0.00 d | 102.423 ± 2.88 a | 18.04 ± 0.48 a | |
3 | 17,130.00 ± 742.23 cd | 2809.67 ± 75.58 b | 17,353.33 ± 744.47 c | 0.16 ± 0.008 b | 138.100 ± 5.93 c | 22.36 ± 0.60 b | |
5 | 21,993.33 ± 349.33 f | 3518.33 ± 57.93 de | 22,273.33 ± 349.33 e | 0.16 ± 0.00 a | 177.233 ± 2.80 e | 28.00 ± 0.47 de | |
5% PPI | 0 | 15,983.33 ± 1485.98 c | 3800.33 ± 305.35 e | 16,426.67 ± 1514.48 c | 0.24 ± 0.00 m | 130.733 ± 12.04 c | 30.24 ± 2.43 e |
1 | 18,786.67 ± 85.05 de | 3782.67 ± 4.73 e | 19,160.00 ± 80.00 d | 0.20 ± 0.00 i | 152.467 ± 0.65 d | 30.10 ± 0.04 e | |
3 | 19,720.00 ± 713.58 e | 3797.00 ± 139.93 e | 20,056.67 ± 685.30 d | 0.19 ± 0.00 g | 159.833 ± 5.75 d | 30.22 ± 1.12 e | |
5 | 23,183.33 ± 242.14 fg | 4339.33 ± 65.455 f | 23,583.33 ± 250.07 ef | 0.19 ± 0.00 ef | 187.667 ± 1.95 ef | 34.53 ± 0.52 f | |
10% PPI | 0 | 29,863.33 ± 814.51 hi | 6837.67 ± 172.93 j | 30,636.67 ± 829.84 gh | 0.23 ± 0.00 l | 243.800 ± 6.56 gh | 54.42 ± 1.38 j |
1 | 28,710.00 ± 814.13 h | 5971.00 ± 152.97 h | 29,326.67 ± 825.67 g | 0.21 ± 0.00 j | 233.367 ± 6.61 g | 47.52 ± 1.22 h | |
3 | 31,116.67 ± 1001.67 i | 6269.67 ± 190.08 i | 31,740.00 ± 1024.31 h | 0.20 ± 0.00 i | 252.567 ± 8.15 h | 49.90 ± 1.51 i | |
5 | 38,660.00 ± 606.05 j | 7502.67 ± 104.01 k | 39,383.33 ± 611.58 i | 0.19 ± 0.00 gh | 313.400 ± 4.8816 i | 59.70 ± 0.83 k | |
5% SPI | 0 | 14,190.00 ± 1212.97 b | 3191.67 ± 245.90 c | 14,543.33 ± 1241.02 b | 0.23 ± 0.00 k | 115.767 ± 9.86 b | 25.40 ± 1.96 c |
1 | 15,786.67 ± 440.72 c | 3148.67 ± 59.69 c | 16,100.00 ± 446.43 c | 0.20 ± 0.00 i | 128.100 ± 3.59 c | 25.06 ± 0.48 c | |
3 | 16,466.67 ± 775.13 c | 3106.33 ± 125.60 c | 16,756.67 ± 785.13 c | 0.19 ± 0.00 f | 133.367 ± 6.25 c | 24.72 ± 1.00 c | |
5 | 18,473.33 ± 1115.05 de | 3387.67 ± 148.08 cd | 18,783.33 ± 1124.47 d | 0.18 ± 0.00 e | 149.467 ± 8.92 d | 26.96 ± 1.18 cd | |
10% SPI | 0 | 24,560.00 ± 919.95 g | 5169.67 ± 202.44 g | 25,103.33 ± 944.79 f | 0.21 ± 0.00 j | 199.733 ± 7.4782 f | 41.14 ± 1.61 g |
1 | 24,710.00 ± 547.81 g | 4554.67 ± 69.21 f | 25,126.67 ± 553.38 f | 0.18 ± 0.00 ef | 199.967 ± 4.36 f | 36.24 ± 0.55 f | |
3 | 29,616.67 ± 368.56 hi | 5263.00 ± 48.54 g | 30,080.00 ± 370.41 gh | 0.18 ± 0.00 d | 239.367 ± 2.97 gh | 41.88 ± 0.39 g | |
5 | 37,663.33 ± 1652.58 j | 6416.67 ± 276.31 i | 38,210.00 ± 1677.71 i | 0.17 ± 0.00 c | 304.033 ± 13.32 i | 51.06 ± 2.20 i |
Sample | Time (Day) | G′ Change (%) | G″ Change (%) | η* Change (%) |
---|---|---|---|---|
Control | 1 | 2.12 | −7.67 | 1.76 |
3 | 38.07 | 14.62 | 37.21 | |
5 | 77.27 | 43.53 | 76.09 | |
5% PPI | 1 | 17.54 | −0.46 | 16.62 |
3 | 23.38 | −0.09 | 22.26 | |
5 | 45.05 | 14.18 | 43.55 | |
10% PPI | 1 | −3.86 | −12.67 | −4.28 |
3 | 4.20 | −8.31 | 3.60 | |
5 | 29.46 | 9.73 | 28.55 | |
5% SPI | 1 | 11.25 | −1.35 | 10.65 |
3 | 16.04 | −2.67 | 15.20 | |
5 | 30.19 | 6.14 | 29.11 | |
10% SPI | 1 | 0.61 | −11.90 | 0.12 |
3 | 20.59 | 1.81 | 19.84 | |
5 | 53.35 | 24.12 | 52.22 |
Hardness | Springiness | Cohesiveness | Gumminess | Chewiness | Resilience | G′ | G″ | G* | tan δ | η* | ή | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hardness | 1.000 | |||||||||||
Springiness | 0.203 | 1.000 | ||||||||||
Cohesiveness | 0.026 | 0.318 * | 1.000 | |||||||||
Gumminess | 0.888 ** | 0.217 | 0.429 ** | 1.000 | ||||||||
Chewiness | 0.876 ** | 0.447 ** | 0.448 ** | 0.964 ** | 1.000 | |||||||
Resilience | 0.795 ** | 0.146 | 0.431 ** | 0.938 ** | 0.871 ** | 1.000 | ||||||
G′ | 0.658 ** | 0.144 | 0.206 | 0.680 ** | 0.659 ** | 0.692 ** | 1.000 | |||||
G″ | 0.518 ** | 0.070 | 0.249 | 0.578 ** | 0.539 ** | 0.619 ** | 0.973 ** | 1.000 | ||||
G* | 0.654 ** | 0.141 | 0.208 | 0.677 ** | 0.655 ** | 0.690 ** | 1.000 ** | 0.975 ** | 1.000 | |||
tan δ | −0.393 ** | −0.214 | 0.368 * | −0.186 | −0.252 | −0.069 | 0.078 | 0.296 * | 0.085 | 1.000 | ||
η* | 0.654 ** | 0.141 | 0.208 | 0.677 ** | 0.655 ** | 0.690 ** | 1.000 ** | 0.975 ** | 1.000 ** | 0.085 | 1.000 | |
ή | 0.517 ** | 0.070 | 0.249 | 0.578 ** | 0.539 ** | 0.619 ** | 0.973 ** | 1.000 ** | 0.975 ** | 0.296 | 0.975 ** | 1.000 |
Sample | Time (Day) | C∞ experimental (%) | C∞ estimated (%) | AUC | HI | eGI |
---|---|---|---|---|---|---|
Control | 0 | 87.13 ± 4.39 c | 88.31 ± 3.83 de | 9728.93 ± 164.21 e | 129.84 ± 2.19 e | 110.99 ± 1.20 e |
1st | 88.33 ± 4.79 c | 87.06 ± 1.30 de | 9618.57 ± 288.71 e | 128.37 ± 3.85 e | 110.18 ± 2.12 e | |
3rd | 83.83 ± 3.89 c | 83.14 ± 6.40 cde | 9137.26 ± 411.84 de | 121.95 ± 5.50 de | 106.66 ± 3.02 de | |
5th | 78.11 ± 5.13 c | 75.46 ± 5.11 cd | 8418.05 ± 682.57 cde | 112.35 ± 9.11 cde | 101.39 ± 5.00 cde | |
5% PPI | 0 | 85.59 ± 3.97 c | 82.35 ± 3.68 cde | 9070.40 ± 394.32 de | 121.05 ± 5.26 de | 106.17 ± 2.89 de |
1st | 84.66 ± 2.45 c | 81.07 ± 2.06 cde | 8922.15 ± 222.79 de | 119.08 ± 2.97 de | 105.08 ± 1.63 de | |
3rd | 83.33 ± 0.74 c | 79.61 ± 3.19 cde | 8679.75 ± 741.24 cde | 115.84 ± 9.89 cde | 103.31 ± 5.43 cde | |
5th | 62.09 ± 2.97 b | 59.14 ± 3.44 b | 6478.45 ± 512.51 b | 86.46 ± 6.84 b | 87.18 ± 3.76 b | |
10% PPI | 0 | 82.86 ± 7.47 c | 79.01 ± 5.82 cde | 8534.99 ± 598.30 cde | 113.91 ± 7.98 cde | 102.25 ± 4.38 cde |
1st | 80.18 ± 5.92 c | 76.60 ± 4.70 cde | 8257.78 ± 602.94 cd | 110.21 ± 8.05 cd | 100.21 ± 4.42 cd | |
3rd | 75.41 ± 5.90 c | 70.70 ± 4.91 c | 7501.22 ± 507.75 c | 100.11 ± 3.72 c | 94.67 ± 3.72 c | |
5th | 45.06 ± 3.43 a | 43.06 ± 3.28 a | 4822.26 ± 405.86 a | 64.36 ± 5.41 a | 75.04 ± 2.97 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, F.; Abhilasha, A.; Chen, Y.; Zhao, Y.; Liu, G.; Kaur, L.; Singh, J. High Protein Yangyu jiaotuan (洋芋搅团): In Vitro Oral-Gastro-Small Intestinal Starch Digestion and Some Physico-Chemical, Textural, Microstructural, and Rheological Properties. Foods 2023, 12, 2460. https://doi.org/10.3390/foods12132460
Zeng F, Abhilasha A, Chen Y, Zhao Y, Liu G, Kaur L, Singh J. High Protein Yangyu jiaotuan (洋芋搅团): In Vitro Oral-Gastro-Small Intestinal Starch Digestion and Some Physico-Chemical, Textural, Microstructural, and Rheological Properties. Foods. 2023; 12(13):2460. https://doi.org/10.3390/foods12132460
Chicago/Turabian StyleZeng, Fankui, Abhilasha Abhilasha, Yufan Chen, Yuci Zhao, Gang Liu, Lovedeep Kaur, and Jaspreet Singh. 2023. "High Protein Yangyu jiaotuan (洋芋搅团): In Vitro Oral-Gastro-Small Intestinal Starch Digestion and Some Physico-Chemical, Textural, Microstructural, and Rheological Properties" Foods 12, no. 13: 2460. https://doi.org/10.3390/foods12132460
APA StyleZeng, F., Abhilasha, A., Chen, Y., Zhao, Y., Liu, G., Kaur, L., & Singh, J. (2023). High Protein Yangyu jiaotuan (洋芋搅团): In Vitro Oral-Gastro-Small Intestinal Starch Digestion and Some Physico-Chemical, Textural, Microstructural, and Rheological Properties. Foods, 12(13), 2460. https://doi.org/10.3390/foods12132460