Cultivation and Nutritional Evaluation of Agaricus bisporus with Tea Residue as Culture Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Materials
2.2. Chemicals
2.3. Compost Formulation
2.4. Cultivation of Button Mushroom
2.5. Color and Firmness Assay
2.6. Analysis of Crude Proteins and Polysaccharides
2.7. Analysis of Free Amino Acids
2.8. Analysis of Flavor Compounds
2.9. Statistical Analysis
3. Results and Discussion
3.1. Dynamic Changes of Substrate Components before and after Fermentation
3.2. The Growth Status
3.3. Assessment of Color and Firmness
3.4. Analysis of Crude Proteins and Polysaccharides
3.5. Analysis of Free Amino Acids
3.6. Analysis of Flavor Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramos, M.; Burgos, N.; Barnard, A.; Evans, G.; Preece, J.; Graz, M.; Ruthes, A.C.; Jiménez-Quero, A.; Martínez-Abad, A.; Vilaplana, F.; et al. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem. 2019, 292, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Kertesz, M.A.; Thai, M. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Appl. Microbiol. Biotechnol. 2018, 102, 1639–1650. [Google Scholar] [CrossRef] [PubMed]
- Hoa, H.T.; Wang, C.L.; Wang, C.H. The Effects of Different Substrates on the Growth, Yield, and Nutritional Composition of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, X.; Qin, Y.; Lu, Y.; Chen, G.; Wei, J.; Chen, W. Experiments of industrial cultivation of Agaricus bisporus with straw and chicken manure substrate of different ratios. Edible Fungi China 2022, 41, 87–90. [Google Scholar]
- Koutrotsios, G.; Tagkouli, D.; Bekiaris, G.; Kaliora, A.; Tsiaka, T.; Tsiantas, K.; Chatzipavlidis, I.; Zoumpoulakis, P.; Kalogeropoulos, N.; Zervakis, G.I. Enhancing the nutritional and functional properties of Pleurotus citrinopileatus mushrooms through the exploitation of winery and olive mill wastes. Food Chem. 2022, 370, 131022. [Google Scholar] [CrossRef]
- Chilanti, G.; da Rosa, L.O.; Poleto, L.; Branco, C.S.; Camassola, M.; Fontana, R.C.; Dillon, A.J. Effect of different substrates on Pleurotus spp. cultivation in Brazil-Ergothioneine and lovastatin. J. Food Compos. Anal. 2022, 107, 104367. [Google Scholar] [CrossRef]
- Li, Q.-R.; Wu, M.; Huang, R.-J.; Chen, Y.-F.; Chen, C.-J.; Li, H.; Ni, H.; Li, H.-H. Extraction and preparation of high-aroma and low-caffeine instant green teas by the novel column chromatographic extraction method with gradient elution. J. Food Sci. Technol. 2017, 54, 2186–2192. [Google Scholar] [CrossRef]
- Liu, Z. The Development Process and Trend of Chinese Tea Comprehensive Processing Industry. J. Tea Sci. 2019, 39, 115–122. [Google Scholar]
- Morikawa, C.K.; Saigusa, M. Recycling coffee grounds and tea leaf wastes to improve the yield and mineral content of grains of paddy rice. J. Sci. Food Agric. 2011, 91, 2108–2111. [Google Scholar] [CrossRef]
- Demir, I. An investigation on the production of construction brick with processed waste tea. Build. Environ. 2006, 41, 1274–1278. [Google Scholar] [CrossRef]
- Peksen, A.; Yakupoglu, G. Tea waste as a supplement for the cultivation of Ganoderma lucidum. World J. Microbiol. Biotechnol. 2009, 25, 611–618. [Google Scholar] [CrossRef]
- Gülser, C.; Pekşen, A. Using tea waste as a new casing material in mushroom (Agaricus bisporus (L.) Sing.) cultivation. Bioresour. Technol. 2003, 88, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Atİla, F. The use of phenolic-rich agricultural wastes for Hericium erinaceus and Lentinula edodes cultivation and its effect on yield performance. Ege Üniversitesi Ziraat Fakültesi Derg. 2019, 56, 417–425. [Google Scholar] [CrossRef]
- Niazi, A.R.; Ghafoor, A.; Laraib, R. Domestication of a wild edible and nutritious mushroom Lentinus tigrinus from Pakistan. Hortic. Bras. 2022, 40, 288–294. [Google Scholar] [CrossRef]
- Gómez, A. New Technology in Agaricus bisporus Cultivation. In Edible and Medicinal Mushrooms; Wiley: New York, NY, USA, 2017; pp. 211–220. [Google Scholar]
- Gao, W.; Baars, J.J.P.; Maliepaard, C.; Visser, R.G.F.; Zhang, J.; Sonnenberg, A.S.M. Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushrooms). AMB Express 2016, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Aday, M.S. Application of electrolyzed water for improving postharvest quality of mushroom. LWT-Food Sci. Technol. 2016, 68, 44–51. [Google Scholar] [CrossRef]
- Gao, M.; Feng, L.; Jiang, T. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment. Food Chem. 2014, 149, 107–113. [Google Scholar] [CrossRef]
- GB 5009.5-2016; National Health and Family Planning Commission of the PRC. State Food and Drug Administration: Silver Spring, MD, USA, 2016.
- Radzki, W.; Ziaja-Sołtys, M.; Nowak, J.; Rzymowska, J.; Topolska, J.; Sławińska, A.; Michalak-Majewska, M.; Zalewska-Korona, M.; Kuczumow, A. Effect of processing on the content and biological activity of polysaccharides from Pleurotus ostreatus mushroom. LWT Food Sci. Technol. 2016, 66, 27–33. [Google Scholar] [CrossRef]
- Lin, Q.; Lu, Y.; Zhang, J.; Liu, W.; Guan, W.; Wang, Z. Effects of high CO2 in-package treatment on flavor, quality and antioxidant activity of button mushroom (Agaricus bisporus) during postharvest storage. Postharvest Biol. Technol. 2017, 123, 112–118. [Google Scholar] [CrossRef]
- Jiang, T.; Schuchardt, F.; Li, G.; Guo, R.; Zhao, Y. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. J. Environ. Sci. 2011, 23, 1754–1760. [Google Scholar] [CrossRef]
- Yang, D.; Liang, Z.; Wang, Y.; Sun, F.; Tao, H.; Xu, Q.; Zhang, L.; Zhang, Z.; Ho, C.-T.; Wan, X. Tea waste: An effective and economic substrate for oyster mushroom cultivation. J. Sci. Food Agric. 2016, 96, 680–684. [Google Scholar] [CrossRef]
- Yuan, B.; Ke, L.; Lian, Y.; Cai, W.; Chen, G.; Chen, J.; Ji, P.; Wu, Z. Effect of different mixed substrates on yield and quality of Agaricus bisporus. Hunan Agric. Sci. 2022, 2, 36–39+49. [Google Scholar]
- Philippoussis, A.N. Production of Mushrooms Using Agro-Industrial Residues as Substrates. In Biotechnology for Agro-Industrial Residues Utilisation; Springer: Dordrecht, The Netherlands, 2009; pp. 163–196. [Google Scholar]
- Rawiningtyas, S.; Purnomo, A.S.; Fatmawati, S. Evaluation of Nutrient Content and Antioxidant Activity of Wood Ear Mushroom (Auricularia auricula-Judae) in the Addition of Reeds (Imperata cylindrica (L.) Beauv) as a Cultivation Medium. HAYATI J. Biosci. 2023, 30, 224–231. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, J.; Li, C.; Chen, J. Screening of the Three-stage Culture Medium for mulation of Letinous edodes Qingke 212. Seed 2019, 38, 138–140. [Google Scholar]
- Ranjbar, M.E.; Ghahremani, Z.; Carrasco, J. Effect of compost formulation and postharvest management on quality parameters of button mushroom. Int. J. Recycl. Org. Waste Agric. 2019, 8, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Shashirekha, M.; Rajarathnam, S.; Bano, Z. Effects of supplementing rice straw growth substrate with cotton seeds on the analytical characteristics of the mushroom, (Block & Tsao). Food Chem. 2005, 92, 255–259. [Google Scholar]
- Krishnamoorthi, R.; Srinivash, M.; Mahalingam, P.U.; Malaikozhundan, B. Dietary nutrients in edible mushroom, Agaricus bisporus and their radical scavenging, antibacterial, and antifungal effects. Process Biochem. 2022, 121, 10–17. [Google Scholar] [CrossRef]
- Li, S.; Liu, M.; Zhang, C.; Tian, C.; Wang, X.; Song, X.; Jing, H.; Gao, Z.; Ren, Z.; Liu, W.; et al. Purification, in vitro antioxidant and in vivo anti-aging activities of soluble polysaccharides by enzyme-assisted extraction from Agaricus bisporus. Int. J. Biol. Macromol. 2018, 109, 457–466. [Google Scholar] [CrossRef]
- Altieri, R.; Esposito, A.; Parati, F.; Lobianco, A.; Pepi, M. Performance of olive mill solid waste as a constituent of the substrate in commercial cultivation of Agaricus bisporus. Int. Biodeterior. Biodegrad. 2009, 63, 993–997. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, J.; Guo, J.; Hou, R.; Wan, X.; Liang, J. Analysis on nutritional components of fruit body of oyster mushroom cultivated by tea waste. Sci. Technol. Food Ind. 2014, 35, 353–355. [Google Scholar]
- Kosson, R.; Bakowski, J. The effect of cultivation methods on the amino acid and protein content of the mushroom (Agaricus bisporus Lange/Sing.). Food/Nahrung 1984, 28, 1045–1051. [Google Scholar] [CrossRef]
- Fujihara, S.; Kasuga, A.; Sugahara, T.; Hashimoto, K.; Kiyomizu, Y.; Nakazawa, T.; Aoyagi, Y. Nitrogen Content of Shiitake Mushroom [Lentinus edodes (Berk.) Sing.] Cultivated on Sawdust Medium and Dependence on that in the Medium. Nippon. Shokuhin Kagaku Kogaku Kaishi 2000, 47, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Cho, I.H.; Choi, H.-K.; Kim, Y.-S. Difference in the Volatile Composition of Pine-Mushrooms (Tricholoma matsutake Sing.) According to Their Grades. J. Agric. Food Chem. 2006, 54, 4820–4825. [Google Scholar] [CrossRef]
- Tian, R.; Liang, Z.Q.; Wang, Y.; Zeng, N.K. Analysis of aromatic components of two edible mushrooms, Phlebopus portentosus and Cantharellus yunnanensis using HS-SPME/GC-MS. Results Chem. 2022, 4, 100282. [Google Scholar] [CrossRef]
- Hiraide, M.; Nakashima, T.; Fujiwara, T. The smell and odorous components of dried shiitake mushroom, Lentinula edodes VI: Increase in odorous compounds of dried shiitake mushroom cultivated on bed logs. J. Wood Sci. 2010, 56, 483–487. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.-H.; Claver, I.P.; Zhu, K.-X.; Peng, W.; Zhou, H.-M. Effect of different cooking methods on the flavour constituents of mushroom (Agaricus bisporus (Lange) Sing) soup. Int. J. Food Sci. Technol. 2011, 46, 1100–1108. [Google Scholar] [CrossRef]
- Misharina, T.A.; Mukhutdinova, S.M.; Zharikova, G.G.; Terenina, M.B.; Krikunova, N.I.; Medvedeva, I.B. The composition of volatile components of dry cepe and oyster mushroom. Appl. Biochem. Microbiol. 2009, 45, 544–549. [Google Scholar] [CrossRef]
- Venkateshwarlu, G.; Chandravadana, M.V.; Tewari, R.P. Volatile flavour components of some edible mushrooms (Basidiomycetes). Flavour Fragr. J. 1999, 14, 191–194. [Google Scholar] [CrossRef]
- Tagkouli, D.; Bekiaris, G.; Pantazi, S.; Anastasopoulou, M.E.; Koutrotsios, G.; Mallouchos, A.; Zervakis, G.I.; Kalogeropoulos, N. Volatile profiling of Pleurotus eryngii and Pleurotus ostreatus mushrooms cultivated on agricultural and agro-industrial by-products. Foods 2021, 10, 1287. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, R.; Jia, Q.; Feng, T.; Huang, Q.; Ho, C.-T.; Song, S. Identification of dihydro-β-ionone as a key aroma compound in addition to C8 ketones and alcohols in Volvariella volvacea mushroom. Food Chem. 2019, 293, 333–339. [Google Scholar] [CrossRef]
- El Jaddaoui, I.; Rangel, D.E.; Bennett, J.W. Fungal volatiles have physiological properties. Fungal Biol. 2023, in press. [CrossRef]
- Tressl, R.; Bahri, D.; Engel, K.H. Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). J. Agric. Food Chem. 1982, 30, 89–93. [Google Scholar] [CrossRef]
- Assaf, S.; Hadar, Y.; Dosoretz, C.G. 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzym. Microb. Technol. 1997, 21, 484–490. [Google Scholar] [CrossRef]
- Ho, C.-T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Shi, Z.; Tong, J.; Ren, C. Analysis of free fatty acids in green tea and instant green tea by GC-MS. J. Tea Sci. 2001, 21, 137–139. [Google Scholar]
- Süfer, Ö.; Çelik, Z.D.; Bozok, F. Influences of Some Aromatic Plants on Volatile Compounds and Bioactivity of Cultivated Pleurotus citrinopileatus and Pleurotus djamor. Chem. Biodivers. 2022, 19, e202200462. [Google Scholar] [CrossRef]
Treatments | Growth Status | Fruiting Body Appearance | Nutritional Composition | ||||
---|---|---|---|---|---|---|---|
Mycelium Growth | First Harvest (Day) | Yield (Kg/m2) | Whiteness (WI) | Firmness (g) | Protein (g/100 g) | Polysaccharides (g/100 g) | |
CK | + + + | 59 | 21.64 | 51.06 ± 1.22 a | 453.04 ± 3.80 a | 2.82 ± 0.08 ab | 13.07 ± 0.07 a |
T1 | + + + | 57 | 23.56 | 53.20 ± 2.58 ab | 433.95 ± 3.69 ab | 2.85 ± 0.04 a | 12.49 ± 0.30 b |
T2 | + + + | 56 | 21.30 | 60.40 ± 1.81 c | 411.55 ± 3.72 bc | 2.70 ± 0.04 b | 13.06 ± 0.21 a |
T3 | + + | 52 | 16.08 | 55.69 ± 1.03 b | 406.63 ± 4.29 c | 2.72 ± 0.05 ab | 12.73 ± 0.14 ab |
Amino Acid | CK | T1 | T2 | T3 |
---|---|---|---|---|
Essential amino-acid (EAA) | 2.136 | 2.848 | 2.616 | 2.348 |
Val | 0.24 ± 0.01 c | 0.34 ± 0.01 b | 0.37 ± 0.01 a | 0.24 ± 0.01 c |
Lys | 0.42 ± 0.02 c | 0.63 ± 0.01 a | 0.49 ± 0.04 c | 0.53 ± 0.01 b |
Met | 0.04 ± 0.01 e | 0.15 ± 0.01 a | 0.15 ± 0.01 b | 0.15 ± 0.01 a |
Ile | 0.17 ± 0.01 c | 0.18 ± 0.01 c | 0.27 ± 0.03 a | 0.26 ± 0.01 b |
Leu | 0.36 ± 0.01 c | 0.42 ± 0.01 a | 0.34 ± 0.06 c | 0.30 ± 0.01 c |
Phe | 0.32 ± 0.01 c | 0.56 ± 0.01 a | 0.46 ± 0.01 b | 0.48 ± 0.01 b |
Thr | 0.59 ± 0.01 b | 0.58 ± 0.01 a | 0.55 ± 0.01 b | 0.40 ± 0.01 d |
Non-essential amino acid (NEAA) | 8.12 | 8.76 | 8.37 | 8.63 |
Asp | 1.15 ± 0.01 a | 0.74 ± 0.02 b | 0.64 ± 0.01 c | 0.54 ± 0.02 d |
Ser | 0.62 ± 0.01 d | 0.95 ± 0.03 a | 0.84 ± 0.02 b | 0.75 ± 0.03 c |
Glu | 1.50 ± 0.01 a | 1.29 ± 0.05 b | 0.95 ± 0.03 d | 1.19 ± 0.05 c |
Gly | 0.19 ± 0.01 c | 0.39 ± 0.03 a | 0.29 ± 0.05 b | 0.39 ± 0.03 a |
Ala | 0.91 ± 0.03 a | 0.80 ± 0.02 c | 0.89 ± 0.03 b | 0.80 ± 0.02 c |
Cys | 0.21 ± 0.02 a | 1.12 ± 0.06 c | 1.40 ± 0.02 b | 1.09 ± 0.06 c |
Tyr | 0.25 ± 0.01 c | 0.53 ± 0.01 a | 0.54 ± 0.01 a | 0.42 ± 0.01 b |
His | 1.38 ± 0.01 b | 1.18 ± 0.09 c | 1.65 ± 0.01 a | 1.07 ± 0.09 d |
Arg | 1.30 ± 0.01 a | 1.17 ± 0.04 b | 1.17 ± 0.09 b | 1.12 ± 0.09 b |
Pro | 0.22 ± 0.01 c | 0.26 ± 0.02 b | 0.31 ± 0.01 a | 0.24 ± 0.05 b |
TAA | 10.26 | 11.61 | 10.99 | 10.98 |
EAA/NEAA | 0.26 | 0.33 | 0.31 | 0.27 |
EAA/TAA | 0.21 | 0.25 | 0.24 | 0.21 |
No. | Compounds | b RI (Calculate) | RI (Reference) | a Content (μg/g, Mean ± SD, n = 3) | |||
---|---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | ||||
Alcohols | |||||||
1 | 1-Hexanol | 853 | 865 | 0.044 ± 0.009 | 0.062 ± 0.001 | 0.104 ± 0.001 | 0.055 ± 0.007 |
2 | 1-Octen-3-ol | 974 | 977 | 1.182 ± 0.133 | 4.846 ± 0.29 | 7.709 ± 0.069 | 1.616 ± 0.1 |
3 | 3-Octanol | 992 | 997 | 0.04 ± 0.006 | 0.56 ± 0.036 | 1.41 ± 0.013 | 0.576 ± 0.053 |
4 | Benzyl alcohol | 1028 | 1031 | 1.571 ± 0.162 | 2.133 ± 0.201 | 6.321 ± 0.096 | 2.027 ± 0.155 |
5 | 2-Octen-1-ol, (Z)- | 1062 | 1054 | 0.065 ± 0.01 | 0.095 ± 0.003 | 1.093 ± 0.102 | 0.158 ± 0.01 |
6 | 1-Octanol | 1067 | 1070 | 0.057 ± 0.008 | 0.116 ± 0.011 | 0.213 ± 0.003 | 0.096 ± 0.004 |
7 | Phenylethyl Alcohol | 1105 | 1109 | 0.017 ± 0.002 | 0.048 ± 0.001 | 0.025 ± 0 | 0.074 ± 0.005 |
8 | 1-Nonanol | 1169 | 1171 | 0.038 ± 0.004 | 0.039 ± 0.006 | 0.074 ± 0 | 0.122 ± 0.03 |
9 | 3-Chlorobenzyl alcohol | 1234 | 0.009 ± 0.001 | 0.016 ± 0.001 | 0.053 ± 0.003 | 0.012 ± 0.002 | |
10 | Geraniol | 1253 | 1254 | c ND | 0.018 ± 0.003 | ND | 0.023 ± 0.001 |
11 | Cedrol | 1615 | 1607 | 0.017 ± 0.002 | 0.058 ± 0.004 | 0.012 ± 0 | 0.033 ± 0.006 |
12 | Phenol, 5-(1,5-dimethyl-4-hexenyl)-2-methyl-, (R)- | 1749 | 0.02 ± 0.002 | 0.043 ± 0.004 | 0.005 ± 0 | 0.048 ± 0.005 | |
Aldehydes | |||||||
13 | Hexanal | 782 | 780 | 0.795 ± 0.116 | 0.673 ± 0.064 | 1.895 ± 0.054 | 0.815 ± 0.026 |
14 | 2-Hexenal, (E)- | 836 | 856 | 0.015 ± 0.002 | 0.025 ± 0 | 0.035 ± 0.001 | 0.023 ± 0.001 |
15 | Heptanal | 893 | 902 | 0.038 ± 0.007 | 0.04 ± 0.002 | 0.047 ± 0.003 | 0.032 ± 0.002 |
16 | Benzaldehyde | 953 | 960 | 3.932 ± 0.473 | 5.642 ± 0.194 | 6.616 ± 0.113 | 5.784 ± 0.433 |
17 | Octanal | 999 | 1005 | 0.085 ± 0.018 | 0.096 ± 0.021 | 0.104 ± 0.002 | 0.084 ± 0.006 |
18 | Benzeneacetaldehyde | 1036 | 1046 | 0.386 ± 0.037 | 0.577 ± 0.043 | 0.146 ± 0.001 | 0.463 ± 0.005 |
19 | 2-Octenal, (E)- | 1052 | 1055 | 0.267 ± 0.025 | 0.373 ± 0.017 | 0.524 ± 0.012 | 0.441 ± 0.015 |
20 | Nonanal | 1102 | 1108 | 0.474 ± 0.118 | 0.485 ± 0.208 | 0.327 ± 0.001 | 0.318 ± 0.027 |
21 | Benzaldehyde, 3-chloro- | 1122 | 0.025 ± 0.003 | 0.038 ± 0.003 | 0.012 ± 0 | 0.047 ± 0.002 | |
22 | 2-Phenylpropenal | 1147 | 0.022 ± 0.002 | 0.05 ± 0.005 | ND | 0.041 ± 0.003 | |
23 | 2-Nonenal, (E)- | 1155 | 1162 | 0.155 ± 0.01 | 0.143 ± 0.007 | 0.195 ± 0.005 | 0.204 ± 0.023 |
24 | Decanal | 1204 | 1208 | 0.091 ± 0.02 | 0.104 ± 0.011 | 0.107 ± 0.001 | 0.079 ± 0.003 |
25 | Benzaldehyde, 3,5-dimethyl- | 1207 | 0.389 ± 0.038 | 0.264 ± 0.059 | 0.891 ± 0.003 | 0.212 ± 0.012 | |
26 | 2,4-Nonadienal, (E,E)- | 1212 | 1218 | 0.121 ± 0.009 | 0.111 ± 0.008 | 0.402 ± 0 | 0.166 ± 0.007 |
27 | Benzeneacetaldehyde, .alpha.-ethylidene- | 1268 | 1276 | 0.054 ± 0.004 | 0.072 ± 0.004 | 0.058 ± 0.001 | 0.092 ± 0.006 |
28 | Cinnamaldehyde, (E)- | 1272 | 1272 | 0.014 ± 0.001 | 0.021 ± 0.001 | 0.015 ± 0 | 0.025 ± 0.001 |
29 | Undecanal | 1307 | 1306 | 0.018 ± 0.002 | 0.019 ± 0.002 | 0.024 ± 0.001 | 0.018 ± 0.001 |
30 | 2,4-Decadienal, (E,E)- | 1317 | 1313 | 0.041 ± 0.004 | 0.045 ± 0.001 | 0.183 ± 0.002 | 0.059 ± 0.002 |
31 | Dodecanal | 1408 | 1408 | 0.015 ± 0.002 | 0.014 ± 0.001 | 0.032 ± 0.001 | 0.015 ± 0 |
32 | 2-Octenal, 2-butyl- | 1373 | ND | ND | 0.076 ± 0.001 | 0.017 ± 0.001 | |
Acids | |||||||
33 | Benzoic acid | 1164 | 1163 | ND | 0.096 ± 0.015 | 0.098 ± 0 | 0.087 ± 0.007 |
34 | Tetradecanoic acid | 1756 | 1760 | 0.009 ± 0 | 0.033 ± 0.002 | 0.012 ± 0 | ND |
Esters | |||||||
35 | Benzoic acid, methyl ester | 1088 | 1095 | 0.016 ± 0.001 | 0.026 ± 0.002 | 0.029 ± 0.002 | 0.022 ± 0 |
36 | Acetic acid, 2-ethylhexyl ester | 1145 | ND | ND | 0.045 ± 0 | ND | |
37 | Methyl salicylate | 1184 | 1187 | ND | 0.011 ± 0.001 | 0.015 ± 0 | 0.011 ± 0.001 |
38 | Octanoic acid, ethyl ester | 1194 | 1197 | 0.014 ± 0.002 | 0.014 ± 0.001 | 0.037 ± 0.001 | 0.018 ± 0.001 |
39 | Decanoic acid, methyl ester | 1327 | 1326 | 0.006 ± 0 | 0.005 ± 0 | 0.008 ± 0 | 0.005 ± 0 |
40 | Dodecanoic acid, methyl ester | 1523 | 1526 | 0.02 ± 0.002 | ND | 0.033 ± 0 | 0.02 ± 0.001 |
41 | Methyl tetradecanoate | 1723 | 1723 | 0.036 ± 0.005 | 0.051 ± 0.003 | 0.047 ± 0.002 | 0.041 ± 0.004 |
42 | Tetradecanoic acid, ethyl ester | 1791 | 1794 | ND | ND | 0.016 ± 0 | ND |
43 | 2(3H)-Furanone, dihydro-5-(2-octenyl)-, (Z)- | 1656 | ND | ND | 0.057 ± 0 | ND | |
44 | Pentadecanoic acid, methyl ester | 1823 | 0.02 ± 0.003 | 0.044 ± 0.004 | 0.019 ± 0 | 0.049 ± 0.011 | |
45 | Hexadecanoic acid, methyl ester | 1924 | 1922 | 0.114 ± 0.017 | 0.133 ± 0.031 | 0.104 ± 0.01 | 0.096 ± 0.024 |
46 | Dibutyl phthalate | 1956 | 1954 | 0.031 ± 0.006 | 0.063 ± 0.005 | 0.055 ± 0.001 | 0.049 ± 0.005 |
47 | Hexadecanoic acid, ethyl ester | 1992 | 1990 | 0.005 ± 0.001 | 0.011 ± 0 | 0.015 ± 0.001 | 0.013 ± 0.002 |
48 | 9,12-Octadecadienoic acid (Z,Z)-, methyl ester | 2093 | 2097 | 0.26 ± 0.029 | 0.111 ± 0.032 | 0.278 ± 0.031 | 0.091 ± 0.026 |
Ketones | |||||||
49 | 1-Octen-3-one | 969 | 981 | 0.072 ± 0.014 | 0.079 ± 0.013 | 0.147 ± 0.005 | 0.096 ± 0.013 |
50 | 3-Octen-2-one | 1032 | 0.11 ± 0.013 | 0.08 ± 0.007 | 0.218 ± 0.011 | 0.1 ± 0.006 | |
51 | Acetophenone | 1056 | 1064 | 0.025 ± 0.004 | 0.035 ± 0.002 | 0.023 ± 0.002 | 0.052 ± 0.002 |
52 | 3-Nonen-2-one | 1134 | 1136 | ND | 0.02 ± 0.002 | 0.041 ± 0.001 | 0.026 ± 0.001 |
53 | 1,2-Propanedione, 1-phenyl- | 1159 | 0.041 ± 0.01 | 0.077 ± 0.007 | 0.07 ± 0.001 | 0.157 ± 0.003 | |
54 | 2-Undecanone | 1293 | 1292 | 0.172 ± 0.008 | 0.159 ± 0.008 | 0.583 ± 0.004 | 0.196 ± 0.009 |
55 | 2-Butanone, 1-(1,3-benzodioxol-5-yl)- | 1391 | ND | 0.018 ± 0.001 | 0.032 ± 0.002 | 0.016 ± 0.001 | |
56 | 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- | 1448 | 1444 | 0.046 ± 0.005 | 0.065 ± 0.006 | 0.1 ± 0.001 | 0.068 ± 0.003 |
57 | 5,9,13-Pentadecatrien-2-one, 6,10,14-trimethyl- | 1912 | 0.011 ± 0.001 | 0.033 ± 0.006 | 0.024 ± 0.001 | 0.031 ± 0.005 | |
Hydrocarbons | |||||||
58 | Styrene | 880 | 886 | 0.014 ± 0.001 | 0.014 ± 0.004 | 0.017 ± 0 | 0.011 ± 0 |
59 | Benzene, 2-ethyl-1,4-dimethyl- | 1077 | 1072 | 0.034 ± 0.005 | 0.023 ± 0.001 | 0.043 ± 0.004 | 0.021 ± 0.001 |
60 | Benzene, 1,2,4,5-tetramethyl- | 1112 | 1130 | 0.106 ± 0.01 | 0.047 ± 0.004 | 0.115 ± 0.011 | 0.048 ± 0.004 |
61 | Benzene, 1-ethenyl-4-ethyl- | 1130 | 0.04 ± 0.005 | 0.017 ± 0.002 | 0.04 ± 0.004 | 0.017 ± 0.001 | |
62 | Naphthalene, 1,2,3,4-tetrahydro- | 1151 | 1158 | 0.009 ± 0.001 | ND | 0.016 ± 0.001 | ND |
63 | Naphthalene | 1174 | 1179 | 0.236 ± 0.026 | 0.148 ± 0.013 | 0.386 ± 0.01 | 0.148 ± 0.013 |
64 | Benzene, 1-ethyl-3-(1-methylethyl)- | 1189 | 0.033 ± 0.004 | 0.019 ± 0.002 | 0.047 ± 0.002 | 0.017 ± 0.001 | |
65 | Dodecane | 1199 | 1200 | 0.033 ± 0.003 | 0.024 ± 0.002 | 0.057 ± 0.003 | 0.029 ± 0.003 |
66 | Benzene, pentamethyl- | 1276 | 0.015 ± 0.001 | 0.008 ± 0.001 | 0.056 ± 0.001 | 0.024 ± 0 | |
67 | Naphthalene, 2-methyl- | 1289 | 1291 | 0.027 ± 0.003 | 0.026 ± 0.001 | 0.056 ± 0.001 | 0.024 ± 0.001 |
68 | Naphthalene, 1-methyl- | 1299 | 1308 | 0.015 ± 0.002 | 0.02 ± 0.002 | 0.031 ± 0.001 | 0.021 ± 0.001 |
69 | .alpha.-Cubebene | 1349 | 1352 | ND | ND | 0.016 ± 0 | ND |
70 | Tetradecane | 1400 | 1400 | 0.02 ± 0.001 | 0.028 ± 0.005 | 0.039 ± 0.001 | 0.024 ± 0.001 |
71 | 1H-3a,7-Methanoazulene, 2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-, [3R-(3.alpha.,3a.beta.,7.beta.,8a.alpha.)]- | 1412 | 1409 | 0.016 ± 0.001 | 0.025 ± 0.001 | 0.032 ± 0.001 | 0.018 ± 0.001 |
72 | Pentadecane | 1500 | 1500 | 0.045 ± 0.003 | 0.062 ± 0.008 | 0.081 ± 0.006 | 0.056 ± 0.006 |
73 | Hexadecane | 1600 | 1600 | 0.018 ± 0.001 | 0.033 ± 0.001 | 0.023 ± 0.001 | 0.027 ± 0.003 |
74 | Heptadecane | 1700 | 1700 | 0.021 ± 0.001 | 0.079 ± 0.018 | 0.032 ± 0.002 | 0.047 ± 0.003 |
75 | Octadecane | 1800 | 1800 | 0.009 ± 0.003 | 0.052 ± 0.002 | 0.009 ± 0 | 0.051 ± 0.007 |
76 | Hexadecane, 2,6,10,14-tetramethyl- | 1807 | 1806 | 0.007 ± 0 | 0.052 ± 0.003 | 0.008 ± 0.001 | 0.058 ± 0.005 |
Others | |||||||
77 | Pyrazine, 2,6-dimethyl- | 904 | 912 | ND | ND | 0.019 ± 0.001 | 0.009 ± 0.001 |
78 | Furan, 2-pentyl- | 984 | 994 | 0.173 ± 0.024 | 0.188 ± 0.019 | 0.385 ± 0.004 | 0.188 ± 0.01 |
79 | Pyrazine, 3-ethyl-2,5-dimethyl- | 1069 | 1074 | ND | ND | ND | 0.027 ± 0.002 |
80 | Estragole | 1286 | 1193 | 0.002 ± 0 | 0.017 ± 0 | 0.037 ± 0.001 | 0.016 ± 0.001 |
81 | Benzene, 2,4-diisocyanato-1-methyl- | 1352 | 0.008 ± 0.001 | 0.009 ± 0.001 | 0.018 ± 0.001 | 0.011 ± 0.001 | |
82 | 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl)- | 1461 | 0.03 ± 0.004 | 0.037 ± 0.001 | 0.015 ± 0 | 0.031 ± 0.001 | |
83 | 2,4-Di-tert-butylphenol | 1504 | 1519 | 0.021 ± 0.001 | 0.024 ± 0.003 | 0.043 ± 0.001 | 0.022 ± 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, M.; Fan, J.; Bao, Y.; Chen, Q. Cultivation and Nutritional Evaluation of Agaricus bisporus with Tea Residue as Culture Medium. Foods 2023, 12, 2440. https://doi.org/10.3390/foods12132440
Wang Z, Li M, Fan J, Bao Y, Chen Q. Cultivation and Nutritional Evaluation of Agaricus bisporus with Tea Residue as Culture Medium. Foods. 2023; 12(13):2440. https://doi.org/10.3390/foods12132440
Chicago/Turabian StyleWang, Zhuochen, Mengru Li, Jundi Fan, Yuting Bao, and Qi Chen. 2023. "Cultivation and Nutritional Evaluation of Agaricus bisporus with Tea Residue as Culture Medium" Foods 12, no. 13: 2440. https://doi.org/10.3390/foods12132440
APA StyleWang, Z., Li, M., Fan, J., Bao, Y., & Chen, Q. (2023). Cultivation and Nutritional Evaluation of Agaricus bisporus with Tea Residue as Culture Medium. Foods, 12(13), 2440. https://doi.org/10.3390/foods12132440