Stability of Purple Corn Anthocyanin Encapsulated by Maltodextrin, and Its Combinations with Gum Arabic and Whey Protein Isolate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of PCA Extract Solution
2.2. Preparation of PCA Encapsulate
2.3. Encapsulation Efficiency
2.4. Colour
2.5. Physical Characteristics of PCA Microcapsules
2.5.1. Moisture Content
2.5.2. Solubility
2.5.3. Hygroscopicity
2.5.4. Fluidity
2.6. Morphology of PCA Microcapsules
2.7. Storage of PCA Microcapsules
2.8. DPPH Free Radical Scavenging Ability
2.9. Degradation Kinetics of PCA Microcapsules during Storage
2.10. Preparation and Storage of Chewing Tablets
2.11. In Vitro Digestion
2.12. Statistical Analysis
3. Results and Discussion
3.1. Influence of the Amount of Wall Material on the EE and Colour of PCA
3.2. Physical Properties of the Three Kinds of Encapsulated PCA
3.3. SEM Analysis
3.4. Storage Stability Analysis of the Three Kinds of Encapsulated PCA under Different Temperatures
3.5. Storage Stability of the Three Kinds of Encapsulated PCA under 5000 Lux Light Intensity
3.6. Storage Stability of the Three Kinds of Encapsulated PCA under 75% Relative Humidity
3.7. Stabilities of Encapsulated PCA in Chewing Tablets with Ca2+, VC, and Fe2+
3.8. Digestion Stabilities of PCA from Microcapsules and Chewing Tablets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, D.; Li, X.; Chen, J.; Jiang, X.; Ma, X.; Sun, J.; Tian, L.; Vidyarthi, S.K.; Xu, J.; Pan, Z.; et al. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem. 2022, 366, 130611. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Han, Y.; Tao, Y.; Li, D.; Xie, G.; Show, P.L.; Lee, S.Y. In vitro gastrointestinal digestion and fecal fermentation reveal the effect of different encapsulation materials on the release, degradation and modulation of gut microbiota of blueberry anthocyanin extract. Food Res. Int. 2020, 132, 109098. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y. Synthesis of porous starch microgels for the encapsulation, delivery and stabilization of anthocyanins. J. Food Eng. 2021, 302, 110552. [Google Scholar] [CrossRef]
- Kanha, N.; Regenstein, J.M.; Surawang, S.; Pitchakarn, P.; Laokuldilok, T. Properties and kinetics of the in vitro release of anthocyanin-rich microcapsules produced through spray and freeze-drying complex coacervated double emulsions. Food Chem. 2021, 340, 127950. [Google Scholar] [CrossRef] [PubMed]
- Samborska, K.; Boostani, S.; Geranpour, M.; Hosseini, H.; Dima, C.; Khoshnoudi-Nia, S.; Rostamabadi, H.; Falsafi, S.R.; Shaddel, R.; Akbari-Alavijeh, S.; et al. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci. Technol. 2021, 108, 297–325. [Google Scholar] [CrossRef]
- da Rosa, J.R.; Weis, G.C.; Moro, K.I.; Robalo, S.S.; Assmann, C.E.; da Silva, L.P.; Muller, E.I.; da Silva, C.D.; de Menezes, C.R.; da Rosa, C.S. Effect of wall materials and storage temperature on anthocyanin stability of microencapsulated blueberry extract. LWT 2021, 142, 111027. [Google Scholar] [CrossRef]
- Pieczykolan, E.; Kurek, M.A. Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. Int. J. Biol. Macromol. 2019, 129, 665–671. [Google Scholar] [CrossRef]
- Wang, S.; Ye, X.; Sun, Y.; Liang, J.; Yue, P.; Gao, X. Nanocomplexes derived from chitosan and whey protein isolate enhance the thermal stability and slow the release of anthocyanins in simulated digestion and prepared instant coffee. Food Chem. 2021, 336, 127707. [Google Scholar] [CrossRef] [PubMed]
- Oancea, A.; Hason, M.; Mihaela Vasile, A.; Barbu, V.; Enachi, E.; Bahrim, G.; Râpeanu, G.; Silvi, S.; Stănciuc, N. Functional evaluation of microencapsulation anthocyanins from sour cherries skins extract in whey protein isolate. LWT Food Sci. Technol. 2018, 95, 129–134. [Google Scholar] [CrossRef]
- Norkaew, O.; Thitisut, P.; Mahatheeranont, S.; Pawin, B.; Sookwong, P.; Yodpitak, S.; Lungkaphin, A. Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chem. 2019, 294, 493–502. [Google Scholar] [CrossRef]
- Boateng, I.D.; Mustapha, A.; Kuehnel, L.; Daubert, C.R.; Kumar, R.; Agliata, J.; Flint-Garcia, S.; Wan, C.; Somavat, P. From purple corn waste (pericarp) to polyphenol-rich extract with higher bioactive contents and superior product qualities using two-step optimization techniques. Ind. Crops Prod. 2023, 200, 116871. [Google Scholar] [CrossRef]
- Lao, F.; Sigurdson, G.T.; Giusti, M.M. Health benefits of purple corn (Zea mays L.) phenolic compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Giusti, M.M.; Kaletunç, G. Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency. Food Res. Int. 2018, 107, 414–422. [Google Scholar] [CrossRef]
- Lao, F.; Giusti, M.M. The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders. Food Chem. 2017, 227, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Giusti, M.M. The effect of whey protein concentration and preheating temperature on the color and stability of purple corn, grape and black carrot anthocyanins in the presence of ascorbic acid. Food Res. Int. 2021, 144, 110350. [Google Scholar] [CrossRef] [PubMed]
- Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Bhagya Raj, G.V.S.; Dash, K.K. Microencapsulation of betacyanin from dragon fruit peel by complex coacervation: Physicochemical characteristics, thermal stability, and release profile of microcapsules. Food Biosci. 2022, 49, 101882. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Shittu, T.A.; Lawal, M.O. Factors affecting instant properties of powdered cocoa beverages. Food Chem. 2007, 100, 91–98. [Google Scholar] [CrossRef]
- Kurek, M.A.; Majek, M.; Onopiuk, A.; Szpicer, A.; Napiórkowska, A.; Samborska, K. Encapsulation of anthocyanins from chokeberry (Aronia melanocarpa) with plazmolyzed yeast cells of different species. Food Bioprod. Process. 2023, 137, 84–92. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Q.; Sun, R.; Li, T.; Xia, N.; Xia, Q. A novel solid self-emulsifying delivery system (SEDS) for the encapsulation of linseed oil and quercetin: Preparation and evaluation. J. Food Eng. 2018, 226, 22–30. [Google Scholar] [CrossRef]
- Chen, C.; You, L.J.; Abbasi, A.M.; Fu, X.; Liu, R.H. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohydr. Polym. 2015, 130, 122–132. [Google Scholar] [CrossRef]
- Akhavan Mahdavi, S.; Jafari, S.M.; Assadpour, E.; Ghorbani, M. Storage stability of encapsulated barberry’s anthocyanin and its application in jelly formulation. J. Food Eng. 2016, 181, 59–66. [Google Scholar] [CrossRef]
- Nazareth, M.S.; Shreelakshmi, S.V.; Rao, P.J.; Shetty, N.P. Micro and nanoemulsions of Carissa spinarum fruit polyphenols, enhances anthocyanin stability and anti-quorum sensing activity: Comparison of degradation kinetics. Food Chem. 2021, 359, 129876. [Google Scholar] [CrossRef]
- Wu, J.; Yang, C.; Rong, Y.; Wang, Z. Preparation and nutritional characterization of perilla chewable tablet. Procedia Eng. 2012, 37, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, C.; Ji, R.; Li, F.; Zhang, W. Effects of different protective agents on the physicochemical properties of and sustained anthocyanin release from freeze-dried powder of Lonicera edulis. Food Sci. 2022, 43, 122–129. [Google Scholar]
- Machado, M.H.; Almeida, A.; Maciel, M.V.; Vitorino, V.B.; Bazzo, G.C.; da Rosa, C.G.; Sganzerla, W.G.; Mendes, C.; Barreto, P.L.M. Microencapsulation by spray drying of red cabbage anthocyanin-rich extract for the production of a natural food colorant. Biocatal. Agric. Biotechnol. 2022, 39, 102287. [Google Scholar] [CrossRef]
- Karrar, E.; Mahdi, A.A.; Sheth, S.; Mohamed Ahmed, I.A.; Manzoor, M.F.; Wei, W.; Wang, X. Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. Int. J. Biol. Macromol. 2021, 171, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Shaddel, R.; Hesari, J.; Azadmard-Damirchi, S.; Hamishehkar, H.; Fathi-Achachlouei, B.; Huang, Q. Use of gelatin and gum arabic for encapsulation of black raspberry anthocyanins by complex coacervation. Int. J. Biol. Macromol. 2018, 107, 1800–1810. [Google Scholar] [CrossRef] [PubMed]
- Sarabandi, K.; Jafari, S.M.; Mahoonak, A.S.; Mohammadi, A. Application of gum arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int. J. Biol. Macromol. 2019, 140, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.L.; Sulaiman, R. Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT Food Sci. Technol. 2018, 88, 80–86. [Google Scholar] [CrossRef]
- Rajabi, H.; Ghorbani, M.; Jafari, S.M.; Sadeghi Mahoonak, A.S.; Rajabzadeh, G. Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum arabic and gelatin as wall materials. Food Hydrocoll. 2015, 51, 327–337. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Liu, L.; Li, Y.; Qi, B.; Jiang, L. Preparation of spray-dried soybean oil body microcapsules using maltodextrin: Effects of dextrose equivalence. LWT Food Sci. Technol. 2022, 154, 112874. [Google Scholar] [CrossRef]
- Dadi, D.W.; Emire, S.A.; Hagos, A.D.; Eun, J.-B. Physical and functional properties, Digestibility, and stability of spray- and freeze-dried microencapsulated bioactive products from Moringa stenopetala leaves extract. Ind. Crops Prod. 2020, 156, 112891. [Google Scholar] [CrossRef]
- Moreira, G.E.; Costa, M.G.; de Souza, A.C.; de Brito, E.S.; de Medeiros, M.D.; de Azeredo, H.M. Physical properties of spray dried acerola pomace extract as affected by temperature and drying aids. LWT Food Sci. Technol. 2009, 42, 641–645. [Google Scholar] [CrossRef] [Green Version]
- Sendri, N.; Singh, S.; Bhatt, V.; Bhatt, P.; Bhandari, P. Valorization of red cabbage pomace for stabilization of anthocyanins in Rhododendron arboreum. Ind. Crops Prod. 2022, 187, 115371. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, J.; Wang, Q.; Jiang, N.; Tao, Y.; Han, Y.-B. Effect of storage time and temperature on quality of blueberry anthocyanin microcapsules. Trans. Chin. Soc. Agric. Eng. 2017, 33, 301–308. [Google Scholar]
- Mehran, M.; Masoum, S.; Memarzadeh, M. Improvement of thermal stability and antioxidant activity of anthocyanins of Echium amoenum petal using maltodextrin/modified starch combination as wall material. Int. J. Biol. Macromol. 2020, 148, 768–776. [Google Scholar] [CrossRef]
- Kang, Y.R.; Lee, Y.K.; Kim, Y.J.; Chang, Y.H. Characterization and storage stability of chlorophylls microencapsulated in different combination of gum arabic and maltodextrin. Food Chem. 2019, 272, 337–346. [Google Scholar] [CrossRef]
- Nie, M.; Wang, L.; Lu, S.; Wang, Y.; Zheng, M.; Fang, Z. Protective effect of amino acids on the stability of bayberry anthocyanins and the interaction mechanism between L-methionine and cyanidin-3-O-glycoside. Food Chem. 2022, 396, 133689. [Google Scholar] [CrossRef]
- Shi, H.-Y.; Lv, X.-L. Study on the stability of the purple corn pigment. Mod. Food Sci. Technol. 2007, 23, 7–10. [Google Scholar]
PCA Microcapsules | Core Wall Ratio | Encapsulation Efficiency/% | Anthocyanin Content | Colour | ||
---|---|---|---|---|---|---|
L* | a* | b* | ||||
MD–PCA | 3:5 | 91.64 ± 0.03 e | 76.01 ± 0.08 g | 65.42 ± 0.04 b | 27.47 ± 0.36 d | 7.01 ± 0.01 b |
1:1 | 94.61 ± 0.02 a | 117.22 ± 0.11 c | 60.87 ± 0.02 e | 30.53 ± 0.13 a | 4.71 ± 0.03 d | |
5:3 | 81.50 ± 0.05 h | 143.39 ± 0.05 a | 60.21 ± 0.12 f | 30.15 ± 0.19 b | 4.66 ± 0.04 d | |
MD–GA–PCA | 1:2 | 90.67 ± 0.07 f | 69.61 ± 0.02 h | 64.07 ± 0.08 c | 24.48 ± 0.23 g | 8.09 ± 0.21 a |
2:3 | 93.40 ± 0.01 c | 84.08 ± 0.06 e | 54.52 ± 0.09 h | 25.33 ± 0.24 f | 5.33 ± 0.06 c | |
1:1 | 64.34 ± 0.02 i | 83.25 ± 0.03 f | 53.95 ± 0.23 i | 28.09 ± 0.08 c | 4.59 ± 0.08 d | |
MD–WPI–PCA | 1:2 | 92.01 ± 0.05 d | 59.58 ± 0.05 i | 69.84 ± 0.13 a | 20.38 ± 0.16 i | 5.18 ± 0.09 c |
1:1 | 94.41 ± 0.01 b | 110.81 ± 0.01 d | 61.31 ± 0.02 d | 23.31 ± 0.03 h | 2.03 ± 0.02 e | |
2:1 | 81.90 ± 0.02 g | 136.99 ± 0.04 b | 58.57 ± 0.23 g | 25.74 ± 0.02 e | 1.89 ± 0.05 e |
PCA Microcapsules | Water Content/% | Solubility/% | Hygroscopicity/ (g/100 g) | Angle of Repose/° |
---|---|---|---|---|
MD–PCA | 3.34 ± 0.22 c | 81.23 ± 0.15 a | 9.56 ± 0.15 a | 35.62 ± 0.14 c |
MD–GA–PCA | 3.56 ± 0.18 b | 76.16 ± 0.09 c | 7.12 ± 0.03 b | 38.85 ± 0.21 b |
MD–WPI–PCA | 3.82 ± 0.09 a | 79.92 ± 0.16 b | 6.08 ± 0.24 c | 40.09 ± 0.18 a |
Storage Condition | PCA Microcapsules | k/d−1 | R2 | t1/2/d |
---|---|---|---|---|
25 °C, in dark | MD–PCA | 0.004 | 0.955 | 173.29 |
MD–GA–PCA | 0.005 | 0.928 | 138.63 | |
MD–WPI–PCA | 0.005 | 0.966 | 138.63 | |
Unencapsulated PCA | 0.006 | 0.994 | 115.52 | |
40 °C, in dark | MD–PCA | 0.012 | 0.979 | 57.76 |
MD–GA–PCA | 0.010 | 0.992 | 69.31 | |
MD–WPI–PCA | 0.013 | 0.969 | 53.32 | |
Unencapsulated PCA | 0.014 | 0.983 | 49.51 | |
25 °C, 5000 Lux illumination | MD–PCA | 0.007 | 0.983 | 99.01 |
MD–GA–PCA | 0.006 | 0.940 | 115.52 | |
MD–WPI–PCA | 0.009 | 0.981 | 77.02 | |
Unencapsulated PCA | 0.010 | 0.973 | 69.31 | |
25 °C, relative humidity 75% | MD–PCA | 0.008 | 0.987 | 86.64 |
MD–GA–PCA | 0.009 | 0.994 | 77.02 | |
MD–WPI–PCA | 0.007 | 0.959 | 99.02 | |
Unencapsulated PCA | 0.010 | 0.996 | 69.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, W.; Li, X.; Ren, G.; Bu, Q.; Ruan, Y.; Feng, Y.; Li, B. Stability of Purple Corn Anthocyanin Encapsulated by Maltodextrin, and Its Combinations with Gum Arabic and Whey Protein Isolate. Foods 2023, 12, 2393. https://doi.org/10.3390/foods12122393
Deng W, Li X, Ren G, Bu Q, Ruan Y, Feng Y, Li B. Stability of Purple Corn Anthocyanin Encapsulated by Maltodextrin, and Its Combinations with Gum Arabic and Whey Protein Isolate. Foods. 2023; 12(12):2393. https://doi.org/10.3390/foods12122393
Chicago/Turabian StyleDeng, Wei, Xiaoyi Li, Guoqiu Ren, Qingmei Bu, Yanye Ruan, Ying Feng, and Bin Li. 2023. "Stability of Purple Corn Anthocyanin Encapsulated by Maltodextrin, and Its Combinations with Gum Arabic and Whey Protein Isolate" Foods 12, no. 12: 2393. https://doi.org/10.3390/foods12122393
APA StyleDeng, W., Li, X., Ren, G., Bu, Q., Ruan, Y., Feng, Y., & Li, B. (2023). Stability of Purple Corn Anthocyanin Encapsulated by Maltodextrin, and Its Combinations with Gum Arabic and Whey Protein Isolate. Foods, 12(12), 2393. https://doi.org/10.3390/foods12122393