Influence of Different Drying Methods on Anthocyanins Composition and Antioxidant Activities of Mangosteen (Garcinia mangostana L.) Pericarps and LC-MS Analysis of the Active Extract
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Determination of Moisture Content and Water Activity
2.4. Preparation of Dried Mangosteen Pericarps (MP) Extracts
2.5. Determination of Total Monomeric Anthocyanins Content (TMAC)
2.6. Identification of Phenolic Compounds by Liquid Chromatography-Mass Spectrometry (LC-MS)
2.7. Quantification of Anthocyanins by High-Performance Liquid Chromatography (HPLC)
2.8. Determination of Total Phenolic Content (TPC)
2.9. Determination of Total Flavonoid Content (TFC)
2.10. Determination of Trolox Equivalent Antioxidant Capacity (TEAC)
2.11. Determination of Ferric Reducing Antioxidant Power (FRAP)
2.12. Color Characteristics
2.13. Statistical Analysis
3. Results
3.1. Preliminary Study
3.2. LC-MS Analysis
3.3. Anthocyanins
3.4. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.5. Antioxidant Activities
3.6. Color Analysis
3.7. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aizat, W.M.; Jamil, I.N.; Ahmad-Hashim, F.H.; Noor, N.M. Recent updates on metabolite composition and medicinal benefits of mangosteen plant. PeerJ 2019, 7, e6324. [Google Scholar] [CrossRef] [Green Version]
- Marzaimi, I.N.; Aizat, W.M. Current Review on Mangosteen Usages in Antiinflammation and Other Related Disorders. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 273–289. [Google Scholar] [CrossRef]
- Primiani, C.N.; Lestari, U. Potency of mangosteen (Garcinia mangostana L.) pericarp on seminiferous tubules testes streptozotocin-induced diabetic rats. J. Phys. Conf. Ser. IOP Publ. 2019, 1217, 012165. [Google Scholar] [CrossRef]
- Cassileth, B. Mangosteen (Garcinia mangostana). Oncology 2011, 25, 844. [Google Scholar] [CrossRef]
- Xie, Z.; Sintara, M.; Chang, T.; Ou, B. Daily consumption of a mangosteen-based drink improves in vivo antioxidant and anti-inflammatory biomarkers in healthy adults: A randomized, double-blind, placebo-controlled clinical trial. Food Sci. Nutr. 2015, 3, 342–348. [Google Scholar] [CrossRef]
- Ravanachandar, A.; Sudhakaran, M. The Queen. Res. Today 2020, 2, 513–514. [Google Scholar] [CrossRef]
- Rizaldy, D.; Hartati, R.; Nadhifa, T.; Fidrianny, I. Chemical compounds and pharmacological activities of mangosteen (Garcinia mangostana l.)-updated review. Biointerface Res. Appl. Chem. 2022, 12, 2503–2516. [Google Scholar] [CrossRef]
- Fu, C.; Loo, A.E.K.; Chia, F.P.P.; Huang, D. Oligomeric proanthocyanidins from mangosteen pericarps. J. Agric. Food Chem. 2007, 55, 7689–7694. [Google Scholar] [CrossRef]
- Obolskiy, D.; Pischel, I.; Siriwatanametanon, N.H.M. Garcinia mangostana L.: A Phytochemical and Pharmacological Review. Phytother. Res. 2009, 23, 1047–1065. [Google Scholar] [CrossRef]
- Zainal Arifin, M.A.; Mohd Adzahan, N.; Zainal Abedin, N.H.; Lasik-Kurdyś, M. Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products. Foods 2023, 12, 456. [Google Scholar] [CrossRef]
- Azman, E.M.; Yusof, N.; Chatzifragkou, A.; Charalampopoulos, D. Stability Enhancement of Anthocyanins from Blackcurrant (Ribes Nigrum L.) Pomace through Intermolecular Copigmentation. Molecules 2022, 27, 5489. [Google Scholar] [CrossRef] [PubMed]
- Benucci, I.; Lombardelli, C.; Mazzocchi, C.; Esti, M. Natural colorants from vegetable food waste: Recovery, regulatory aspects, and stability—A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2715–2737. [Google Scholar] [CrossRef] [PubMed]
- Ayman, E.L.; Hassan, S.M.; Osman, H.E.H. Mangosteen (Garcinia mangostana L.), Nonvitamin Nonmineral Nutritional Supplements; Academic Press: Cambridge, MA, USA, 2019; pp. 313–319. [Google Scholar]
- Palapol, Y.; Ketsa, S.; Stevenson, D.; Cooney, J.M.; Allan, A.C.; Ferguson, I.B. Colour development and quality of mangosteen (Garcinia mangostana L.) fruit during ripening and after harvest. Postharvest Bio. Technol. 2009, 51, 349–353. [Google Scholar] [CrossRef]
- Zarena, A.S.; Udaya Sankar, K. Isolation and identification of pelargonidin 3-glucoside in mangosteen pericarp. Food Chem. 2012, 13, 665–670. [Google Scholar] [CrossRef]
- Nugroho, D.; Daratika, D.; Agustin, E.; Kamila, M.; Rifada, M.; Togatorop, L.; Widayatno, W.; Maulana, S.; Setyawati, D.; Mardliyati, E.; et al. Characteristic of Garcinia Mangostana’s Pericarp Prepared by Mechanical Milling. In Proceedings of the 16th ASEAN Food Conference, Bali, Indonesia, 15–18 October 2019; pp. 322–329. [Google Scholar] [CrossRef]
- Satong-Aun, W.; Assawarachan, R.; Noomhorm, A. The Influence of Drying Temperature and Extraction Methods on α -Mangostin The Influence of Drying Temperature and Extraction Methods on α -Mangostin in Mangosteen Pericarp. J. Food Sci. Eng. 2011, 1, 85–92. [Google Scholar]
- Yang, J.; He, X.; Zhao, D. Factors Affecting Phytochemical Stability. In Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction; John Wiley & Sons Ltd.: Oxford, UK, 2013; pp. 332–374. [Google Scholar] [CrossRef]
- Azman, E.M.; House, A.; Charalampopoulos, D.; Chatzifragkou, A. Effect of dehydration on phenolic compounds and antioxidant activity of blackcurrant (Ribes nigrum L.) pomace. Int. J. Food Sci. Technol. 2021, 56, 600–607. [Google Scholar] [CrossRef]
- Karam, M.C.; Petit, J.; Zimmer, D.; Baudelaire Djantou, E.; Scher, J. Effects of drying and grinding in production of fruit and vegetable powders: A review. J. Food Eng. 2016, 188, 32–49. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chong, C.H.; Chua, B.L.; Figiel, A. Influence of Drying Methods on the Antibacterial, Antioxidant and Essential Oil Volatile Composition of Herbs: A Review. Food Bioprocess Technol. 2019, 12, 450–476. [Google Scholar] [CrossRef]
- Essalhi, H.; Benchrifa, M.; Tadili, R.; Bargach, M.N. Experimental and theoretical analysis of drying grapes under an indirect solar dryer and in open sun. Innov. Food Sci. Emerg. Technol. 2018, 49, 58–64. [Google Scholar] [CrossRef]
- Babu, A.K.; Kumaresan, G.; Raj, V.A.A.; Velraj, R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sust. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- de Ancos, B.; Sánchez-Moreno, C.; Zacarías, L.; Rodrigo, M.J.; Sáyago Ayerdí, S.; Blancas Benítez, F.J.; Domínguez Avila, J.A.; González-Aguilar, G.A. Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products. J. Food Meas. Charact. 2018, 12, 2145–2157. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs Ángel. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Bennett, L.E.; Jegasothy, H.; Konczak, I.; Frank, D.; Sudharmarajan, S.; Clingeleffer, P.R. Total polyphenolics and anti-oxidant properties of selected dried fruits and relationships to drying conditions. J. Funct. Foods 2011, 3, 115–124. [Google Scholar] [CrossRef]
- Arancibia-Avila, P.; Namiesnik, J.; Toledo, F.; Werner, E.; Martinez-Ayala, A.L.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Gorinstein, S. The influence of different time durations of thermal processing on berries quality. Food Control 2012, 26, 587–593. [Google Scholar] [CrossRef]
- Azman, E.M.; Charalampopoulos, D.; Chatzifragkou, A. Acetic acid buffer as extraction medium for free and bound phenolics from dried blackcurrant (Ribes nigrum L.) skins. J. Food Sci. 2020, 85, 3745–3755. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azman, E.M.; Nor, N.D.M.; Charalampopoulos, D.; Chatzifragkou, A. Effect of acidified water on phenolic profile and antioxidant activity of dried blackcurrant (Ribes nigrum L.) pomace extracts. LWT 2022, 154, 112733. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Yea, C.S.; Nevara, G.A.; Muhammad, K.; Ghazali, H.M.; Karim, R. Physical properties, resistant starch content and antioxidant profile of purple sweet potato powder after 12 months of storage. Int. J. Food Prop. 2019, 22, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Senevirathna, S.S.J.; Ramli, N.S.; Azman, E.M.; Juhari, N.H.; Karim, R. Optimization of the drum drying parameters and citric acid level to produce purple sweet potato (Ipomoea batatas L.) powder using response surface methodology. Foods 2021, 10, 1378. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Smith, D.E. Color analysis. In Food Analysis; Nielsen, S.S., Ed.; Food Science Text Series; Springer: Cham, Switzerland, 2017; pp. 545–555. [Google Scholar] [CrossRef]
- Mohapatra, D.; Bira, Z.M.; Kerry, J.P.; Frías, J.M.; Rodrigues, F.A. Postharvest hardness and color evolution of white button mushrooms (Agaricus bisporus). J. Food Sci. 2010, 75, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Tze, N.L.; Han, C.P.; Yusof, Y.A.; Ling, C.N.; Talib, R.A.; Taip, F.S.; Aziz, M.G. Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Sci. Biotechnol. 2012, 21, 675–682. [Google Scholar] [CrossRef]
- Ezzat, M.A.; Abetra, K.; Noranizan, M.A.; Yusof, N.L. Production and properties of spray dried Clinacanthus nutans using modified corn starch as drying agent. Food Res. 2020, 4, 1700–1709. [Google Scholar] [CrossRef]
- García, M.L.; Carrión, M.H.; Escobar, S.; Rodríguez, A.; Cortina, J.R. Optimization of the antioxidant capacity of mangosteen peels (Garcinia mangostana L.) extracts: Management of the drying extraction processes. Food Sci. Technol. Int. 2021, 27, 404–412. [Google Scholar] [CrossRef]
- Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Reseachgate 2018, 262, 242–250. [Google Scholar] [CrossRef]
- McSweeney, M.; Seetharaman, K. State of Polyphenols in the Drying Process of Fruits and Vegetables. Critical Rev. Food Sci. Nutri. 2015, 55, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, H.; Jia, Y.; Peng, J.; Li, C. Inhibitory Effects against Alpha-Amylase of an Enriched Polyphenol Extract from Pericarp of Mangosteen (Garcinia mangostana). Foods 2022, 11, 1001. [Google Scholar] [CrossRef]
- Gavrilova, V.; Kajdžanoska, M.; Gjamovski, V.; Stefova, M. Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2012, 59, 4009–4018. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Gu, L. Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of vitis rotundifolia (Muscadine Grapes) as determined by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2010, 58, 4681–4692. [Google Scholar] [CrossRef]
- Kumar, V.; Chatterjee, S.; Variyar, P.; Hussain, P.R.; Shekhar Variyar, P. Evaluation of In Vitro Antioxidant Activity and Characterization of Phenolic Compounds of Bottle Gourd towards the Green Synthesis of Gold Nanoparticles and Its Bio-efficacy Rapid detection techniques for microbial quality of minimally processed fruits Vi. Int. J. Food Nutr. Saf. 2015, 6, 125–149. [Google Scholar]
- Sánchez-Rabaneda, F.; Jáuregui, O.; Casals, I.; Andrés-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventós, R.M. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J. Mass Spec. 2003, 38, 35–42. [Google Scholar] [CrossRef]
- Maity, S.; Chatterjee, S.; Variyar, P.S.; Sharma, A.; Adhikari, S.; Mazumder, S. Evaluation of antioxidant activity and characterization of phenolic constituents of Phyllanthus amarus root. J. Agric. Food Chem. 2013, 61, 3443–3450. [Google Scholar] [CrossRef]
- Zarena, A.S.; Udaya Sankar, K. Supercritical carbon dioxide extraction of xanthones with antioxidant activity from Garcinia mangostana: Characterization by HPLC/LC-ESI-MS. J. Supercrit. Fluids 2009, 49, 330–337. [Google Scholar] [CrossRef]
- Liang, X.; Hu, Y.; Li, J.; Chang, A.K.; Tao, X.; Li, Y.; Liu, W.; Pi, K.; Yuan, J.; Jiang, Z. Identification and pharmacokinetics of quinone reductase 2 inhibitors after oral administration of garcinia mangostana L. extract in rat by LC-MS/MS. J. Agric. Food Chem. 2020, 68, 11975–11986. [Google Scholar] [CrossRef] [PubMed]
- Yenrina, R.; Sayuti, K.; Nakano, K.; Thammawong, M.; Anggraini, T.; Fahmy, K.; Syukri, D. Cyanidin, malvidin and pelargonidin content of “kolang-kaling” jams made with juices from asian melastome (Melastoma malabathricum) fruit, java plum (Syzygium cumini) fruit rind or mangosteen (Garcinia mangostana) fruit rind. Pak. J. Nutr. 2017, 16, 850–856. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, B.R.; Dias, M.I.; Pereira, C.; Petrović, J.; Soković, M.; Calhelha, R.C.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R.; Barros, L. Valorization of Sicana Odorifera (Vell.) naudin epicarp as a source of bioactive compounds: Chemical characterization and evaluation of its bioactive properties. Foods 2021, 10, 700. [Google Scholar] [CrossRef]
- Çoklar, H.; Akbulut, M. Effect of Sun, Oven and Freeze-Drying on Anthocyanins, Phenolic Compounds and Antioxidant Activity of Black Grape (Ekşikara) (Vitis vinifera L.). S. Afr. J. Enol. Vitic. 2017, 38, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Ijod, G.; Musa, F.N.; Anwar, F.; Suleiman, N.; Adzahan, N.M.; Azman, E.M. Thermal and nonthermal pretreatment methods for the extraction of anthocyanins: A review. J. Food Proc. Preserv. 2022, 7, e17255. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V.; Gariepy, Y. Effect of Different Drying Methods on the Microwave Extraction of Phenolic Components and Antioxidant Activity of Highbush Blueberry Leaves. Dry. Technol. 2014, 32, 1888–1904. [Google Scholar] [CrossRef]
- Si, X.; Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Li, Z. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders. J. Sci. Food Agric. 2016, 96, 2055–2062. [Google Scholar] [CrossRef]
- Ling, A.L.M.; Yasir, S.; Matanjun, P.; Abu Bakar, M.F. Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. J. Appl. Phycol. 2015, 27, 1717–1723. [Google Scholar] [CrossRef]
- Laokuldilok, T.; Kanha, N. Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT 2015, 64, 405–411. [Google Scholar] [CrossRef]
- Gupta, S.; Cox, S.; Abu-Ghannam, N. Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT 2011, 44, 1266–1272. [Google Scholar] [CrossRef] [Green Version]
- Chisté, R.C.; Lopes, A.S.; de Faria, L.J.G. Thermal and light degradation kinetics of anthocyanin extracts from mangosteen peel (Garcinia mangostana L.). Int. J. Food Sci. Technol. 2010, 45, 1902–1908. [Google Scholar] [CrossRef]
- Zadernowski, R.; Czaplicki, S.; Naczk, M. Phenolic acid profiles of mangosteen fruits (Garcinia mangostana). Food Chem. 2009, 112, 685–689. [Google Scholar] [CrossRef]
- Duan, X.; Yang, X.; Ren, G.; Pang, Y.; Liu, L.; Liu, Y. Technical aspects in freeze-drying of foods. Dry. Technol. 2016, 34, 1271–1285. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Dolan, K.D. Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT 2015, 62, 564–568. [Google Scholar] [CrossRef]
- Kayacan, S.; Karasu, S.; Akman, P.K.; Goktas, H.; Doymaz, I.; Sagdic, O. Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT 2020, 118, 108830. [Google Scholar] [CrossRef]
- Mediani, A.; Abas, F.; Tan, C.P.; Khatib, A. Effects of different drying methods and storage time on free radical scavenging activity and total phenolic content of Cosmos caudatus. Antioxidants 2014, 3, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Rizaldy, D.; Ramadhita, N.K.; Nadhifa, T.; Fidrianny, I. Mangosteen (Garcinia mangostana L.): Evaluation of In Vitro Antioxidant Activities. Pharma. J. 2022, 14, 633–640. [Google Scholar] [CrossRef]
- Gao, Q.; Wu, C.; Wang, M.; Xu, B.; Du, L. Effect of Drying of Jujubes (Ziziphus jujuba Mill.) on the Contents of. Agric. Food Chem. 2012, 60, 9642–9648. [Google Scholar] [CrossRef]
- Miletić, N.; Mitrović, O.; Popović, B.; Nedović, V.; Zlatković, B.; Kandić, M. Polyphenolic Content and Antioxidant Activity in Fruits of Plum (Prunud domestica L.) Cultivars “Valjevka” and “Mildora” As Influenced by Air Drying. J. Food Qual. 2013, 36, 229–237. [Google Scholar] [CrossRef]
- Annegowda, H.V.; Bhat, R.; Yeong, K.J.; Liong, M.T.; Karim, A.A.; Mansor, S.M. Influence of drying treatments on polyphenolic contents and antioxidant properties of raw and ripe papaya (Carica papaya L.). Int. J. Food Prop. 2014, 17, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Capanoglu, E. Investigating the antioxidant potential of Turkish dried fruits. Int. J. Food Prop. 2014, 17, 690–702. [Google Scholar] [CrossRef]
- Hiranrangsee, L.; Kumaree, K.K.; Sadiq, M.B.; Anal, A.K. Extraction of anthocyanins from pericarp and lipids from seeds of mangosteen (Garcinia mangostana L.) by Ultrasound-assisted extraction (UAE) and evaluation of pericarp extract enriched functional ice-cream. J. Food Sci. Technol. 2016, 53, 3806–3813. [Google Scholar] [CrossRef] [Green Version]
- Ibrahima, R.M.; El-Halawany, A.M.; Saleh, D.O.; El Naggar, E.M.B.; EL-Shabrawy, A.E.R.O.; El-Hawary, S.S. HPLC-DAD-MS/MS profiling of phenolics from securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev. Bras. Farmacogn. 2015, 25, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Sze Lim, Y.; Sze Hui Lee, S.; Chin Tan, B. Antioxidant capacity and antibacterial activity of different parts of mangosteen (Garcinia mangostana Linn.) extracts. Fruits 2013, 68, 483–489. [Google Scholar] [CrossRef] [Green Version]
- Managa, M.G.; Sultanbawa, Y.; Sivakumar, D. Effects of different drying methods on untargeted phenolic metabolites, and antioxidant activity in Chinese cabbage (Brassica rapa L. subsp. chinensis) and Nightshade (Solanum retroflexum Dun.). Molecules 2020, 25, 1326. [Google Scholar] [CrossRef] [Green Version]
- De Santiago, E.; Domínguez-Fernández, M.; Cid, C.; De Peña, M.P. Impact of cooking process on nutritional composition and antioxidants of cactus cladodes (Opuntia ficus-indica). Food Chem. 2017, 240, 1055–1062. [Google Scholar] [CrossRef]
- Feng, L.; Xu, Y.; Xiao, Y.; Song, J.; Li, D.; Zhang, Z.; Liu, C.; Liu, C.; Jiang, N.; Zhang, M.; et al. Effects of pre-drying treatments combined with explosion puffing drying on the physicochemical properties, antioxidant activities and flavor characteristics of apples. Food Chem. 2021, 338, 12805. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Z.; Bi, J.; Zhou, L.; Yi, J.; Wu, X. Effect of hybrid drying methods on physicochemical, nutritional and antioxidant properties of dried black mulberry. LWT 2017, 80, 178–184. [Google Scholar] [CrossRef]
- Hu, L.; Wang, C.; Guo, X.; Chen, D.; Zhou, W.; Chen, X.; Zhang, Q. Flavonoid Levels and Antioxidant Capacity of Mulberry Leaves: Effects of Growth Period and Drying Methods. Front. Plant Sci. 2021, 12, 684974. [Google Scholar] [CrossRef] [PubMed]
- Parveez Zia, M.; Alibas, I. The effect of different drying techniques on color parameters, ascorbic acid content, anthocyanin and antioxidant capacities of cornelian cherry. Food Chem. 2021, 364, 130358. [Google Scholar] [CrossRef] [PubMed]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT 2017, 78, 114–121. [Google Scholar] [CrossRef]
- West, M.E.; Mauer, L.J. Color and chemical stability of a variety of anthocyanins and ascorbic acid in solution and powder forms. J. Agric. Food Chem. 2013, 61, 4169–4179. [Google Scholar] [CrossRef] [PubMed]
Anthocyanins | R2 | LOD (mg/mL) | LOQ (mg/mL) |
---|---|---|---|
C3S | 0.9985 | 0.01 | 0.03 |
C3G | 0.9993 | 0.01 | 0.02 |
P3G | 0.9997 | 0.01 | 0.02 |
Drying Process and Time (h) | Moisture Content (%) | Water Activity (Aw) | Total Monomeric Anthocyanins Content (mg/g) |
---|---|---|---|
Fresh (Control) | 60.39 ± 0.38 a | 0.97 ± 0.00 a | 0.51 ± 0.01 d |
FD36 | 7.48 ± 0.73 b | 0.59 ± 0.01 b | 2.28 ± 0.01 a |
FD48 | 3.08 ± 0.11 d | 0.35 ± 0.01 f | 1.89 ± 0.02 b |
OD36 | 8.86 ± 0.08 b | 0.55 ± 0.00 c | 0.97 ± 0.06 c |
OD48 | 5.17 ± 0.81 c | 0.41 ± 0.01 e | 0.44 ± 0.04 d |
SD30 | 8.79 ± 0.26 b | 0.52 ± 0.00 d | 0.23 ± 0.05 e |
SD40 | 7.59 ± 0.28 b | 0.56 ± 0.00 c | 0.14 ± 0.01 e |
No. | Rt (min) | Compound Name | Chemical Structure | MS+ (m/z) | MS− (m/z) | MS2 (m/z) | References |
---|---|---|---|---|---|---|---|
1. | 9.34 | β-mangostin | C25H26O6 | 423.18 | 109.0283, 151.0026, 261.0404, 423.0945 | [41] | |
2. | 15.86 | Procyanidin dimer | C30H26O12 | 577.14 | 125.0228, 161.0231, 245.0820, 289.0707, 407.0749, 425.0887 | [41,42,43] | |
3. | 16.43 | Cyanidin-3-O-sophoroside | C27H31O16 | 611.16 | 287.0558 | [41] | |
4. | 18.10 | Procyanidin trimer | C45H36O18 | 865.20 | 125.0230, 161.0233, 289.0714, 407.0761 | [41] | |
5. | 18.20 | Cyanidin-3-O-glucoside | C21H21O11 | 449.11 | 287.0537 | [41,42] | |
6. | 20.65 | Catechin | C15H14O6 | 289.07 | 109.0283, 125.0233, 151.0386, 203.0711, 245.0815, 289.0724 | [42,43,44,45] | |
7. | 33.34 | Quercetin-3-O-glycoside | C21H20O12 | 463.21 | 151.0021, 178.9979, 271.0231, 300.0262 | [42,43,44,46] | |
8. | 50.95 | 3-isomangostin | C24H24O6 | 427.18 | 351.0872, 369.0969, 409.1279, 427.1374 | [47] | |
9. | 52.82 | Garcimangosxanthone C | C19H22O6 | 345.13 | 244.0367, 275.0919, 299.0910, 344.0858 | [41] | |
10. | 52.96 | Gartanin | C23H24O6 | 395.15 | 271.0252, 283.0235, 297.0396, 339.0872, 395.1487 | [47,48] | |
11. | 53.55 | Garcimangosone C | C23H24O7 | 411.18 | 271.0592, 299.0550, 337.1065, 355.1176, 411.1775 | [48] | |
12. | 53.71 | 9-hydroxycalabaxanthone | C24H24O6 | 407.15 | 339.0883, 351.0880, 377.1392, 394.1425, 409.1641, | [47,48] |
Drying Process and Time (h) | Anthocyanins (mg/g) | |||
---|---|---|---|---|
C3S | C3G | P3G | Total | |
Fresh (Control) | 0.21 ± 0.03 cd | <LOD | ND | 0.22 ± 0.04 d |
FD36 | 2.02 ± 0.02 a | 0.09 ± 0.01 a | ND | 2.11 ± 0.02 a |
FD48 | 2.09 ± 0.12 a | 0.10 ± 0.00 a | ND | 2.20 ± 0.12 a |
OD36 | 0.68 ± 0.01 b | <LOD | ND | 0.70 ± 0.01 b |
OD48 | 0.39 ± 0.00 c | <LOD | ND | 0.41 ± 0.00 c |
SD30 | 0.14 ± 0.00 d | <LOD | ND | 0.14 ± 0.00 d |
SD40 | 0.15 ± 0.01 d | <LOD | ND | 0.15 ± 0.01 d |
Drying Process and Time (h) | Total Phenolic Content (mg GAE/g) | Total Flavonoid Content (mg CE/g) | Trolox Equivalent Antioxidant Capacity (µmol TE/g) | Reducing Power (µmol TE/g) |
---|---|---|---|---|
Fresh (Control) | 31.32 ± 0.52 g | 176.00 ± 0.88 f | 234.40 ± 1.41 e | 495.00 ± 8.49 d |
FD36 | 94.05 ± 0.45 a | 621.00 ± 2.65 a | 785.90 ± 7.78 a | 1154.50 ± 4.95 a |
FD48 | 86.39 ± 0.52 b | 568.50 ± 0.88 b | 802.40 ± 4.24 a | 1017.50 ± 10.61 b |
OD36 | 73.76 ± 1.35 c | 386.63 ± 7.07 c | 607.90 ± 24.75 b | 687.50 ± 34.65 c |
OD48 | 43.16 ± 1.12 f | 196.63 ± 1.77 e | 365.90 ± 2.12 c | 521.00 ± 8.49 d |
SD30 | 48.86 ± 1.12 e | 159.13 ± 1.77 g | 201.40 ± 1.41 e | 411.00 ± 7.78 e |
SD40 | 55.98 ± 0.45 d | 271.00 ± 4.42 d | 306.40 ± 0.00 d | 528.00 ± 50.21 d |
Drying Process and Time (h) | Color | Browning Index | |||||
---|---|---|---|---|---|---|---|
L* | a* | b* | C | h° | ΔE | ||
Fresh (Control) | 44.47 ± 0.00 a | 22.48 ± 0.04 b | 29.21 ± 0.01 a | 36.85 ± 0.03 a | 0.91 ± 0.00 a | - | 40.27 ± 0.05 d |
FD36 | 26.36 ± 0.29 e | 19.65 ± 0.71 c | 5.04 ± 0.24 f | 20.28 ± 0.75 d | 0.25 ± 0.00 f | 465.83 ± 13.17 a | 49.43 ± 1.14 c |
FD48 | 26.46 ± 0.44 e | 22.88 ± 0.78 b | 6.12 ± 0.29 e | 23.68 ± 0.81 c | 0.26 ± 0.00 f | 434.62 ± 14.41 a | 56.46 ± 0.90 a |
OD36 | 28.29 ± 0.25 d | 21.92 ± 0.47 b | 6.59 ± 0.03 e | 22.88 ± 0.45 c | 0.29 ± 0.01 e | 391.94 ± 4.45 b | 51.55 ± 1.32 bc |
OD48 | 35.43 ± 0.38 c | 27.05 ± 0.54 a | 18.68 ± 0.42 d | 32.87 ± 0.68 b | 0.60 ± 0.00 d | 109.71 ± 5.51 c | 54.22 ± 0.46 ab |
SD30 | 35.61 ± 0.01 c | 27.40 ± 0.16 a | 20.93 ± 0.09 c | 34.48 ± 0.18 b | 0.65 ± 0.00 c | 88.43 ± 0.06 c | 55.26 ± 0.27 a |
SD40 | 37.38 ± 0.20 b | 25.88 ± 0.26 a | 23.21 ± 0.18 b | 34.76 ± 0.31 ab | 0.73 ± 0.00 b | 51.13 ± 1.64 d | 51.23 ± 0.21 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawawi, N.I.M.; Ijod, G.; Abas, F.; Ramli, N.S.; Mohd Adzahan, N.; Mohamad Azman, E. Influence of Different Drying Methods on Anthocyanins Composition and Antioxidant Activities of Mangosteen (Garcinia mangostana L.) Pericarps and LC-MS Analysis of the Active Extract. Foods 2023, 12, 2351. https://doi.org/10.3390/foods12122351
Nawawi NIM, Ijod G, Abas F, Ramli NS, Mohd Adzahan N, Mohamad Azman E. Influence of Different Drying Methods on Anthocyanins Composition and Antioxidant Activities of Mangosteen (Garcinia mangostana L.) Pericarps and LC-MS Analysis of the Active Extract. Foods. 2023; 12(12):2351. https://doi.org/10.3390/foods12122351
Chicago/Turabian StyleNawawi, Nur Izzati Mohamed, Giroon Ijod, Faridah Abas, Nurul Shazini Ramli, Noranizan Mohd Adzahan, and Ezzat Mohamad Azman. 2023. "Influence of Different Drying Methods on Anthocyanins Composition and Antioxidant Activities of Mangosteen (Garcinia mangostana L.) Pericarps and LC-MS Analysis of the Active Extract" Foods 12, no. 12: 2351. https://doi.org/10.3390/foods12122351
APA StyleNawawi, N. I. M., Ijod, G., Abas, F., Ramli, N. S., Mohd Adzahan, N., & Mohamad Azman, E. (2023). Influence of Different Drying Methods on Anthocyanins Composition and Antioxidant Activities of Mangosteen (Garcinia mangostana L.) Pericarps and LC-MS Analysis of the Active Extract. Foods, 12(12), 2351. https://doi.org/10.3390/foods12122351