Effect of Microwave Treatments Combined with Hot-Air Drying on Phytochemical Profiles and Antioxidant Activities in Lily Bulbs (Lilium lancifolium)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lily Bulbs Preparation and Microwave Treatment
2.2. Determination of Color Difference Values
2.3. Extraction and Determination of Phytochemicals
2.4. Antioxidant Activities in Lily Bulbs
2.5. Determination of Antiproliferation and Cytotoxicity
2.6. Statistical Analysis
3. Results
3.1. Effect of Microwave Pretreatment for Color Changes in Lily Bulbs
3.2. Effect of Microwave Pretreatment for Phenolic Content of Lily Bulbs
3.3. Effect of Microwave Pretreatment for Antioxidant Activity in Lily Bulbs
3.4. Effect of Microwave Pretreatment for Cell Antiproliferation and Cytotoxicity in Lily Bulbs
3.5. Correlation Analysis
4. Discussion
4.1. Effect of Microwave Pretreatment for Browning of Lily Bulbs
4.2. Effect of Microwave Pretreatment for Phenolic Content of Lily Bulbs
4.3. Effect of Microwave Pretreatment for Bioactivity in Lily Bulbs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Yang, Y.-Y.; Zhou, R.-R.; Fang, L.-Z.; Zhao, D.; Cai, P.; Yu, R.; Zhang, S.-H.; Huang, J.-H. The extraction of phenolic acids and polysaccharides from Lilium lancifolium Thunb. Using a deep eutectic solvent. Anal. Methods 2021, 13, 1226–1231. [Google Scholar] [CrossRef]
- Liang, Z.-X.; Zhang, J.-Z.; Xin, C.; Li, D.; Sun, M.-Y.; Shi, L. Analysis of edible characteristics, antioxidant capacities, and phenolic pigment monomers in lilium bulbs native to china. Food Res. Int. 2022, 151, 110854. [Google Scholar] [CrossRef]
- Jiang, F.; Zhou, L.; Zhou, W.; Zhong, Z.; Yu, K.; Xu, J.; Zou, L.; Liu, W. Effect of modified atmosphere packaging combined with plant essential oils on preservation of fresh-cut lily bulbs. LWT 2022, 162, 113513. [Google Scholar] [CrossRef]
- Liu, J.; Wang, R.; Wang, X.; Yang, L.; Zhang, Q.; Shan, Y.; Ding, S. Effect of blanching and drying temperatures on the browning-related enzymes and physicochemical properties of lily bulb flours. J. Food Process. Preserv. 2019, 43, e14248. [Google Scholar] [CrossRef]
- Kan, J.; Xie, W.; Wan, B.; Huo, T.B.; Lin, X.P.; Liu, J.; Jin, C.H. Heat-induced tolerance to browning of fresh-cut lily bulbs (Lilium lancifolium Thunb.) under cold storage. J. Food Biochem. 2019, 43, e12816. [Google Scholar] [CrossRef]
- Huang, H.; Ge, Z.; Limwachiranon, J.; Li, L.; Li, W.; Luo, Z. UV-C treatment affects browning and starch metabolism of minimally processed lily bulb. Postharvest Biol. Technol. 2017, 128, 105–111. [Google Scholar] [CrossRef]
- Huang, D.; Li, W.; Dawuda, M.M.; Huo, J.; Li, C.; Wang, C.; Liao, W. Hydrogen sulfide reduced colour change in Lanzhou lily-bulb scales. Postharvest Biol. Technol. 2021, 176, 111520. [Google Scholar] [CrossRef]
- Yang, W.; Wang, P.; Zhang, W.; Xu, M.; Yan, L.; Yan, Z.; Du, W.; Ouyang, L.; Liu, B.; Wu, Z.; et al. Review on preservation techniques of edible lily bulbs in china. CyTA J. Food 2022, 20, 172–182. [Google Scholar] [CrossRef]
- Yuan, Z.-Y.; Li, Z.-Y.; Zhao, H.-Q.; Gao, C.; Xiao, M.-W.; Jiang, X.-M.; Zhu, J.-P.; Huang, H.-Y.; Xu, G.-M.; Xie, M.-Z. Effects of different drying methods on the chemical constituents of Lilium lancifolium Thunb. Based on UHPLC-MS analysis and antidepressant activity of the main chemical component regaloside A. J. Sep. Sci. 2021, 44, 992–1004. [Google Scholar] [CrossRef]
- Wang, J.; Law, C.-L.; Nema, P.K.; Zhao, J.-H.; Liu, Z.-L.; Deng, L.-Z.; Gao, Z.-J.; Xiao, H.-W. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. J. Food Eng. 2018, 224, 129–138. [Google Scholar] [CrossRef]
- Huang, D.; Yang, P.; Qin, Y.; Gong, G.; Tang, X.; Luo, W.; Luo, L.; Sunden, B. Infrared drying characteristics and quality variations of lily bulbs under blanching pretreatment. J. Therm. Sci. Eng. Appl. 2022, 14, 091005. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ediriweera, M.K.; Boo, K.-H.; Kim, C.S.; Cho, S.K. Effects of cooking and processing methods on phenolic contents and antioxidant and anti-proliferative activities of broccoli florets. Antioxidants 2021, 10, 641. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, R.; Lei, D.; Huang, Y.; Cheng, S.; Zhu, Z.; Wu, Z.; Cravotto, G. Impact of ultrasound, microwaves and high-pressure processing on food components and their interactions. Trends Food Sci. Technol. 2021, 109, 1–15. [Google Scholar] [CrossRef]
- Feumba Dibanda, R.; Panyoo Akdowa, E.; Rani, P.A.; Metsatedem Tongwa, Q.; Mbofung, F.C.M. Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behaviour of some fruit peelings. Food Chem. 2020, 302, 125308. [Google Scholar] [CrossRef]
- Hu, X.; Yang, T.; Qi, X.; Guo, X.; Hu, J. Effects of different drying methods on phenolic composition and antioxidant activity in corn silk (Stigma maydis). J. Food Process. Preserv. 2022, 46, e17101. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiang, N.; Cheng, X.; Chen, H.; Guo, X. Effect of photoperiod on polyphenol biosynthesis and cellular antioxidant capacity in mung bean (Vigna radiata) sprouts. Food Res. Int. 2022, 159, 111626. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Xiao, G.; Chen, L.; Guo, X. Impact of kernel development on phenolic profiles and antioxidant activity in Castanea henryi. Int. J. Food Sci. Technol. 2022, 57, 5801–5810. [Google Scholar] [CrossRef]
- Dadalı, G.; Kılıç Apar, D.; Özbek, B. Color change kinetics of okra undergoing microwave drying. Dry. Technol. 2007, 25, 925–936. [Google Scholar] [CrossRef]
- Li, X.; Gao, K.; Jinfeng, B.; Wu, X.; Li, X.; Guo, C. Investigation of the effects of apple polyphenols on the chromatic values of weakly acidic lysine-fructose maillard system solutions. LWT 2020, 125, 109237. [Google Scholar] [CrossRef]
- Liu, F.; Chang, X.; Hu, X.; Brennan, C.S.; Guo, X. Effect of thermal processing on phenolic profiles and antioxidant activities in Castanea mollissima. Int. J. Food Sci. Technol. 2017, 52, 439–447. [Google Scholar] [CrossRef]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety-chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Craft, B.D.; Kerrihard, A.L.; Amarowicz, R.; Pegg, R.B. Phenol-based antioxidants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. Food Saf. 2012, 11, 148–173. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Y.; Luo, K.; Xu, L.; Yang, P.; Ming, J. Potential applications of lilium plants in cosmetics: A comprehensive review based on research papers and patents. Antioxidants 2022, 11, 1458. [Google Scholar] [CrossRef] [PubMed]
- Hui, H.; Li, X.; Jin, H.; Yang, X.; Xin, A.; Zhao, R.; Qin, B. Structural characterization, antioxidant and antibacterial activities of two heteropolysaccharides purified from the bulbs of Lilium davidii var. unicolor Cotton. Int. J. Biol. Macromol. 2019, 133, 306–315. [Google Scholar] [CrossRef]
- Tang, Y.C.; Liu, Y.J.; He, G.R.; Cao, Y.W.; Bi, M.M.; Song, M.; Yang, P.P.; Xu, L.F.; Ming, J. Comprehensive analysis of secondary metabolites in the extracts from different lily bulbs and their antioxidant ability. Antioxidants 2021, 10, 1634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Luo, L.M.; Wang, Y.X.; Zhu, N.; Zhao, T.J.; Qin, L. Total saponins from Lilium lancifolium: A promising alternative to inhibit the growth of gastric carcinoma cells. J. Cancer 2020, 11, 4261–4273. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Y.; Wei, H.; Zhang, Y.; Guo, Z.; Qiu, Y.; Wen, L.; Xie, Z. Structural characterization of Lanzhou lily (Lilium davidii var. unicolor) polysaccharides and determination of their associated antioxidant activity. J. Sci. Food Agric. 2020, 100, 5603–5616. [Google Scholar]
- Capistrano, I.R.; Naessens, T.; Pieters, L.; Apers, S. An HPLC method for the quantification of colchicine and colchicine derivatives in Gloriosa superba seeds. Nat. Prod. Commun. 2017, 12, 1215–1221. [Google Scholar]
- Uhlig, S.; Hussain, F.; Wisloff, H. Bioassay-guided fractionation of extracts from easter lily (Lilium longiflorum) flowers reveals unprecedented structural variability of steroidal glycoalkaloids. Toxicon 2014, 92, 42–49. [Google Scholar] [CrossRef]
Treatments | L* Value | a* Value | b* Value | ΔE Value |
---|---|---|---|---|
CK | 35.56 ± 2.12 cd | 4.67 ± 0.70 b | 12.35 ± 1.14 ab | 0.00 ± 0.00 |
100 W/2 min | 38.13 ± 2.03 c | 4.43 ± 0.30 bc | 8.94 ± 0.96 de | 5.04 ± 0.96 e |
300 W/2 min | 36.76 ± 7.01 cd | 3.19 ± 0.40 d | 8.90 ± 2.69 de | 5.73 ± 1.32 e |
500 W/2 min | 48.44 ± 2.79 b | 5.08 ± 0.83 b | 12.84 ± 1.06 a | 12.90 ± 1.84 d |
700 W/2 min | 53.42 ± 2.45 b | 3.69 ± 0.29 cd | 12.62 ± 0.58 ab | 17.92 ± 0.93 c |
900 W/2 min | 64.14 ± 1.94 a | 0.65 ± 0.29 f | 10.13 ± 0.99 cd | 28.97 ± 4.05 a |
500 W/1 min | 32.24 ± 2.86 d | 6.02 ± 0.15 a | 6.60 ± 2.13 e | 7.04 ± 2.41 e |
500 W/3 min | 50.26 ± 2.74 b | 6.02 ± 0.40 a | 12.77 ± 1.30 a | 14.91 ± 2.12 cd |
500 W/4 min | 58.91 ± 1.19 a | 3.10 ± 0.29 d | 12.89 ± 0.68 a | 23.41 ± 0.99 b |
500 W/5 min | 64.00 ± 1.37 a | 2.08 ± 0.31 e | 12.60 ± 0.94 ab | 28.58 ± 3.31 a |
Treatments | Regaloside A | Regaloside B | Regaloside C | Regaloside E | Chlorogenic Acid | p-Coumaric Acid |
---|---|---|---|---|---|---|
CK | 228.6 ± 14.7 h | 519.1 ± 11.8 f | 432.8 ± 13.5 b | 256.4 ± 26.9 h | 305.2 ± 11.3 h | 36.49 ± 4.55 c |
100 W/2 min | 259.2 ± 4.2 g | 471.8 ± 7.5 g | 288.7 ± 3.1 f | 111.4 ± 1.2 i | 128.5 ± 7.5 i | 14.03 ± 3.08 e |
300 W/2 min | 359.3 ± 3.2 f | 646.9 ± 7.7 e | 311.7 ± 6.5 e | 546.4 ± 11.0 g | 324.3 ± 6.8 g | 24.05 ± 7.06 d |
500 W/2 min | 922.9 ± 19.1 de | 1138 ± 19 d | 400.4 ± 10.1 c | 1281 ± 20 d | 767.6 ± 2.0 e | 38.12 ± 1.99 bc |
700 W/2 min | 956.0 ± 20.5 c | 1231 ± 8 c | 382.7 ± 8.8 d | 1232 ± 20 e | 1034 ± 12 b | 44.94 ± 2.43 b |
900 W/2 min | 1023 ± 20 b | 1312 ± 29 b | 385.2 ± 8.2 d | 2006 ± 41 a | 1313 ± 4 a | 61.44 ± 2.42 a |
500 W/1 min | 350.5 ± 7.6 f | 666.7 ± 13.7 e | 303.2 ± 4.5 e | 640.9 ± 23.1 f | 348.8 ± 8.8 f | 20.55 ± 2.32 d |
500 W/3 min | 944.2 ± 17.1 cd | 1219 ± 1 c | 414.2 ± 9.1 c | 1617 ± 39 c | 756.2 ± 11.1 e | 42.64 ± 4.76 bc |
500 W/4 min | 907.5 ± 32.3 e | 1158 ± 16 d | 378.5 ± 9.0 d | 1289 ± 45 d | 834.8 ± 5.8 d | 44.49 ± 1.79 b |
500 W/5 min | 1140 ± 16 a | 1504 ± 15 a | 488.7 ± 6.0 a | 1838 ± 22 b | 988.0 ± 12.3 c | 58.08 ± 4.36 a |
Treatments | DPPH Value (μmol ASA/g DW) | ABTS Value (μmol TE/g DW) | ORAC Value (μmol TE/g DW) |
---|---|---|---|
CK | 4.85 ± 0.26 a | 6.03 ± 0.72 ab | 57.16 ± 1.07 de |
100 W/2 min | 3.58 ± 0.19 c | 6.01 ± 1.47 abc | 26.17 ± 1.01 g |
300 W/2 min | 4.10 ± 0.14 b | 5.78 ± 0.15 abc | 34.67 ± 1.34 f |
500 W/2 min | 2.66 ± 0.43 c | 6.68 ± 0.53 a | 60.89 ± 1.37 d |
700 W/2 min | 2.86 ± 0.16 c | 6.99 ± 0.33 a | 55.10 ± 1.34 e |
900 W/2 min | 2.77 ± 0.43 c | 4.78 ± 0.06 c | 76.39 ± 2.11 b |
500 W/1 min | 1.76 ± 0.03 e | 5.06 ± 1.26 bc | 32.04 ± 0.99 f |
500 W/3 min | 1.50 ± 0.02 e | 6.34 ± 0.62 a | 91.38 ± 1.48 a |
500 W/4 min | 1.76 ± 0.35 e | 5.93 ± 1.59 abc | 71.21 ± 3.20 c |
500 W/5 min | 1.91 ± 0.52 e | 6.03 ± 0.72 ab | 93.75 ± 5.12 a |
Treatments | Antiproliferation IC50 (mg/mL) | Cytotoxicity (mg/mL) | ||
---|---|---|---|---|
CC10 | CC20 | CC50 | ||
CK | 37.26 ± 0.28 c | 54.84 ± 0.62 cd | 63.26 ± 0.08 f | 80.75 ± 0.62 f |
100 W/2 min | 21.17 ± 0.36 f | 34.37 ± 0.15 e | 39.90 ± 0.38 g | 51.47 ± 0.15 g |
300 W/2 min | 55.55 ± 5.78 a | 73.88 ± 0.56 a | 88.16 ± 0.69 b | 119.2 ± 0.6 b |
500 W/2 min | 36.47 ± 0.93 cd | 57.14 ± 0.53 bcd | 72.64 ± 0.27 d | 109.5 ± 0.5 c |
700 W/2 min | 33.07 ± 1.56 de | 71.18 ± 0.41 a | 83.49 ± 0.65 c | 109.7 ± 0.4 c |
900 W/2 min | 30.16 ± 1.28 e | 59.02 ± 1.09 b | 81.62 ± 2.81 c | 142.1 ± 1.1 a |
500 W/1 min | 45.92 ± 1.41 b | 57.06 ± 1.18 bcd | 69.99 ± 0.31 e | 99.25 ± 1.18 e |
500 W/3 min | 56.23 ± 2.30 a | 54.23 ± 0.80 d | 69.68 ± 0.82 e | 106.9 ± 0.8 d |
500 W/4 min | 44.06 ± 0.30 b | 71.68 ± 2.10 a | 92.65 ± 3.67 a | 143.7 ± 2.1 a |
500 W/5 min | 36.93 ± 0.26 c | 57.69 ± 0.47 bc | 73.50 ± 0.44 d | 111.2 ± 0.5 c |
L | a | b | △E | TPC | Reg A | Reg B | Reg C | Reg E | Chl | ρ-cou | DPPH | ABTS | ORAC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | 1 | −0.683 * | 0.583 | 0.968 ** | 0.922 ** | 0.923 ** | 0.922 ** | 0.608 | 0.898 ** | 0.920 ** | 0.904 ** | −0.500 | 0.146 | 0.802 ** |
a | 1 | −0.112 | −0.684 * | −0.576 | −0.427 | −0.450 | −0.247 | −0.479 | −0.594 | −0.633 * | −0.090 | 0.248 | −0.316 | |
b | 1 | 0.393 | 0.526 | 0.603 | 0.579 | 0.797 ** | 0.446 | 0.456 | 0.628 | −0.123 | 0.705 * | 0.727 * | ||
ΔE | 1 | 0.899 ** | 0.909 ** | 0.920 ** | 0.493 | 0.920 ** | 0.927 ** | 0.854 ** | −0.618 | −0.005 | 0.731 * | |||
TPC | 1 | 0.928 ** | 0.916 ** | 0.488 | 0.884 ** | 0.977 ** | 0.850 ** | −0.48 | 0.210 | 0.669 * | ||||
Reg A | 1 | 0.993 ** | 0.600 | 0.955 ** | 0.936 ** | 0.838 ** | −0.663 * | 0.301 | 0.807** | |||||
Reg B | 1 | 0.640 * | 0.966 ** | 0.937 ** | 0.866 ** | −0.665 * | 0.271 | 0.831 ** | ||||||
Reg C | 1 | 0.568 | 0.498 | 0.792 ** | −0.177 | 0.428 | 0.865 ** | |||||||
Reg E | 1 | 0.944 ** | 0.869 ** | −0.672 * | 0.049 | 0.829 ** | ||||||||
Chl | 1 | 0.886 ** | −0.535 | 0.072 | 0.711 * | |||||||||
ρ-cou | 1 | −0.341 | 0.093 | 0.878 ** | ||||||||||
DPPH | 1 | −0.009 | −0.499 | |||||||||||
ABTS | 1 | 0.233 | ||||||||||||
ORAC | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, H.; Cai, Y.; Lu, Y.; Shi, C.; Han, X.; Liu, L.; Yin, X.; Lan, X.; Guo, X. Effect of Microwave Treatments Combined with Hot-Air Drying on Phytochemical Profiles and Antioxidant Activities in Lily Bulbs (Lilium lancifolium). Foods 2023, 12, 2344. https://doi.org/10.3390/foods12122344
Quan H, Cai Y, Lu Y, Shi C, Han X, Liu L, Yin X, Lan X, Guo X. Effect of Microwave Treatments Combined with Hot-Air Drying on Phytochemical Profiles and Antioxidant Activities in Lily Bulbs (Lilium lancifolium). Foods. 2023; 12(12):2344. https://doi.org/10.3390/foods12122344
Chicago/Turabian StyleQuan, Hong, Yixi Cai, Yazhou Lu, Caifeng Shi, Xinghao Han, Linlin Liu, Xiu Yin, Xiaozhong Lan, and Xinbo Guo. 2023. "Effect of Microwave Treatments Combined with Hot-Air Drying on Phytochemical Profiles and Antioxidant Activities in Lily Bulbs (Lilium lancifolium)" Foods 12, no. 12: 2344. https://doi.org/10.3390/foods12122344
APA StyleQuan, H., Cai, Y., Lu, Y., Shi, C., Han, X., Liu, L., Yin, X., Lan, X., & Guo, X. (2023). Effect of Microwave Treatments Combined with Hot-Air Drying on Phytochemical Profiles and Antioxidant Activities in Lily Bulbs (Lilium lancifolium). Foods, 12(12), 2344. https://doi.org/10.3390/foods12122344