Steamed Multigrain Bread Prepared from Dough Fermented with Lactic Acid Bacteria and Its Effect on Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Steamed Bread
2.2. Determination of Specific Volume
2.3. Texture Analysis
2.4. Determination of Chemical Composition
2.5. In Vitro Protein Digestion
2.6. In Vitro Expected Glycemic Response
2.7. Animals and Experimental Design
2.8. Post-Prandial Blood Glucose
2.9. Oral Glucose Tolerance Test (OGTT)
2.10. Biochemical Analyses
2.11. Statistical Analysis
3. Results
3.1. Specific Volume and Texture of the Steamed Bread
3.2. Chemical Composition and Protein Digestibility of Steamed Bread
3.3. Predicted Glycemic Response and Post-Prandial Glucose Levels
3.4. Body Weight and Feed Intake
3.5. Fasting Blood Glucose
3.6. Oral Glucose Tolerance
3.7. Serum Insulin Levels
3.8. Blood Lipid Levels
3.9. Liver Glycogen and TG Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalyani, R.R. Glucose-lowering drugs to reduce cardiovascular risk in type 2 diabetes. N. Engl. J. Med. 2021, 384, 1248–1260. [Google Scholar] [CrossRef]
- Naemi, R.; Shahmoradi, L. Global experience of diabetes registries: A systematic review. In Diabetes: From Research to Clinical Practice; Springer Nature: Cham, Switzerland, 2020; pp. 441–455. [Google Scholar]
- Magkos, F.; Hjorth, M.F.; Astrup, A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2020, 16, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Wang, Q.; Hong, Y.; Ojo, O.; Jiang, Q.; Hou, Y.Y.; Huang, Y.H.; Wang, X.H. The effect of low-carbohydrate diet on glycemic control in patients with type 2 diabetes mellitus. Nutrients 2018, 10, 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, F.; Chan, C. Effect of chia seed on glycemic response, texture, and sensory properties of Chinese steamed bread. LWT-Food Sci. Technol. 2018, 98, 77–84. [Google Scholar] [CrossRef]
- Anitha, S.; Kane-Potaka, J.; Tsusaka, T.W.; Botha, R.; Rajendran, A.; Givens, D.I.; Parasannanavar, D.J.; Subramaniam, K.; Prasad, K.D.V.; Vetriventhan, M. A systematic review and meta-analysis of the potential of millets for managing and reducing the risk of developing diabetes mellitus. Front. Nutr. 2021, 8, 386. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.M.; Pena, R.J.; Korczak, R.; Braun, H.J. Carbohydrates, grains, and wheat in nutrition and health: An overview part I. role of carbohydrates in health. Cereal Food World 2015, 60, 224–233. [Google Scholar] [CrossRef]
- Liu, R.; Li, J.; Wu, T.; Li, Q.; Meng, Y.; Zhang, M. Effects of ultrafine grinding and cellulase hydrolysis treatment on physicochemical and rheological properties of oat (Avena nuda L.) β-glucans. J. Cereal Sci. 2015, 65, 125–131. [Google Scholar] [CrossRef]
- Ma, X.; Gu, J.; Zhang, Z.; Jing, L.; Xu, M.; Dai, X.; Jiang, Y.; Li, Y.; Bao, L.; Cai, X. Effects of Avena nuda L. on metabolic control and cardiovascular disease risk among Chinese patients with diabetes and meeting metabolic syndrome criteria: Secondary analysis of a randomized clinical trial. Eur. J. Clin. Nutr. 2013, 67, 1291–1297. [Google Scholar] [CrossRef]
- Islam, S.U.; Ahmed, M.B.; Ahsan, H.; Lee, Y.S. Recent molecular mechanisms and beneficial effects of phytochemicals and plant-based whole foods in reducing LDL-C and preventing cardiovascular disease. Antioxidants 2021, 10, 784. [Google Scholar] [CrossRef]
- Mäkeläinen, H.; Anttila, H.; Sihvonen, J.; Hietanen, R.; Tahvonen, R.; Salminen, E.; Mikola, M.; Sontag-Strohm, T. The effect of β-glucan on the glycemic and insulin index. Eur. J. Clin. Nutr. 2007, 61, 779–785. [Google Scholar] [CrossRef]
- Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int. 2005, 88, 967–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.K.; Rehal, J.; Kaur, A.; Jyot, G. Enhancement of attributes of cereals by germination and fermentation: A review. Crit. Rev. Food Sci. 2015, 55, 1575–1589. [Google Scholar] [CrossRef] [PubMed]
- Câmara, S.P.; Dapkevicius, A.; Riquelme, C.; Elias, R.B.; Silva, C.; Malcata, F.X.; Dapkevicius, M. Potential of lactic acid bacteria from Pico cheese for starter culture development. Food Sci. Technol. Int. 2019, 25, 303–317. [Google Scholar] [CrossRef] [PubMed]
- De Pasquale, I.; Verni, M.; Verardo, V.; Gómez-Caravaca, A.M.; Rizzello, C.G. Nutritional and functional advantages of the use of fermented black chickpea flour for semolina-pasta fortification. Foods 2021, 10, 182. [Google Scholar] [CrossRef]
- Ferreira, L.M.; Mendes-Ferreira, A.; Benevides, C.M.; Melo, D.; Costa, A.S.; Mendes-Faia, A.; Oliveira, M.B.P. Effect of controlled microbial fermentation on nutritional and functional characteristics of cowpea bean flours. Foods 2019, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- Rizzello, C.G.; Verni, M.; Koivula, H.; Montemurro, M.; Seppa, L.; Kemell, M.; Katina, K.; Coda, R.; Gobbetti, M. Influence of fermented faba bean flour on the nutritional, technological and sensory quality of fortified pasta. Food Funct. 2017, 8, 860–871. [Google Scholar] [CrossRef]
- De Pasquale, I.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. Int. J. Food Microbiol. 2020, 316, 108426. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; Li, L.M.; Zheng, X.L.; Ma, S.; Wang, X.X. Effects of fermented wheat bran on flour, dough, and steamed bread characteristics. J. Chem. 2018, 2018, 1597308. [Google Scholar] [CrossRef] [Green Version]
- Xing, X.; Suo, B.; Yang, Y.; Li, Z.; Nie, W.; Ai, Z. Application of Lactobacillus as adjunct cultures in wheat dough fermentation. J. Food Sci. 2019, 84, 842–847. [Google Scholar] [CrossRef]
- Qin, W.; Lin, Z.; Wang, A.; Xiao, T.; Tong, L.T. Influence of damaged starch on the properties of rice flour and quality attributes of gluten-free rice bread. J. Cereal Sci. 2021, 101, 103296. [Google Scholar] [CrossRef]
- Kou, X.; Luo, D.; Zhang, K.; Xu, W.; Li, X.; Xu, B.; Li, P.; Han, S.; Liu, J. Textural and staling characteristics of steamed bread prepared from soft flour added with inulin. Food Chem. 2019, 301, 125272. [Google Scholar] [CrossRef] [PubMed]
- Mccleary, B.; Solah, V.; Gibson, T. Quantitative measurement of total starch in cereal flours and products. J. Cereal Sci. 1994, 20, 51–58. [Google Scholar] [CrossRef]
- Li, M.; Cao, R.; Tong, L.; Fan, B.; Sun, R.; Liu, L.; Wang, F.; Wang, L. Effect of freezing treatment of soybean on soymilk nutritional components, protein digestibility, and functional components. Food Sci. Nutr. 2021, 9, 5997–6005. [Google Scholar] [CrossRef]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Akerberg, A.; Liljeberg, H.; Bjorck, I. Effects of amylose/amylopectin ratio and baking conditions on resistant starch formation and glycaemic indices. J. Cereal Sci. 1998, 28, 71–80. [Google Scholar] [CrossRef]
- Weng, Y.J.; Zhang, M.; Wang, J.; Zhang, Y.Q. Significantly hypoglycemic effect of a novel functional bread rich in mulberry bark and improving the related functions of liver, pancreas, and kidney, on T2D mice. Food Sci. Nutr. 2021, 9, 2468–2482. [Google Scholar] [CrossRef]
- Kawai, K.; Matsusaki, K.; Hando, K.; Hagura, Y. Temperature-dependent quality characteristics of pre-dehydrated cookies: Structure, browning, texture, in vitro starch digestibility, and the effect on blood glucose levels in mice. Food Chem. 2013, 141, 223–228. [Google Scholar] [CrossRef]
- Reed, M.; Meszaros, K.; Entes, L.; Claypool, M.; Pinkett, J.; Gadbois, T.; Reaven, G. A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism 2000, 49, 1390–1394. [Google Scholar] [CrossRef]
- Antognoni, F.; Mandrioli, R.; Potente, G.; Saa, D.L.T.; Gianotti, A. Changes in carotenoids, phenolic acids and antioxidant capacity in bread wheat doughs fermented with different lactic acid bacteria strains. Food Chem. 2019, 292, 211–216. [Google Scholar] [CrossRef]
- Capriles, V.D.; Arêas, J.A. Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food Funct. 2013, 4, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, X.; Zhang, Y.; Yang, W.; Ma, G.; Ma, N.; Hu, Q.; Pei, F. A novel lactic acid bacterium for improving the quality and shelf life of whole wheat bread. Food Control 2020, 109, 106914. [Google Scholar] [CrossRef]
- Ceballos-González, C.; Bolívar-Monsalve, J.; Ramírez-Toro, C.; Bolívar, G.A. Effect of lactic acid fermentation on quinoa dough to prepare gluten-free breads with high nutritional and sensory quality. J. Food Process. Preserv. 2018, 42, e13551. [Google Scholar] [CrossRef]
- Wang, X.; Lao, X.; Bao, Y.; Guan, X.; Li, C. Effect of whole quinoa flour substitution on the texture and in vitro starch digestibility of wheat bread. Food Hydrocoll. 2021, 119, 106840. [Google Scholar] [CrossRef]
- Parada, J.; Santos, J.L. Interactions between starch, lipids, and proteins in foods: Microstructure control for glycemic response modulation. Crit. Rev. Food Sci. 2016, 56, 2362–2369. [Google Scholar] [CrossRef]
- Kim, H.J.; White, P.J. Impact of the molecular weight, viscosity, and solubility of β-glucan on in vitro oat starch digestibility. J. Agric. Food Chem. 2013, 61, 3270–3277. [Google Scholar] [CrossRef] [Green Version]
- Ashwath Kumar, K.; Sudha, M. Effect of fat and sugar replacement on rheological, textural and nutritional characteristics of multigrain cookies. J. Food Sci. Technol. 2021, 58, 2630–2640. [Google Scholar] [CrossRef]
- Hou, D.; Zhao, Q.; Yousaf, L.; Xue, Y.; Shen, Q. In vitro starch digestibility and estimated glycemic index of mung bean (Vigna radiata L.) as affected by endogenous proteins and lipids, and exogenous heat-processing methods. Plant Food. Hum. Nutr. 2020, 75, 547–552. [Google Scholar] [CrossRef]
- Lan, S.Q.; Meng, Y.N.; Li, X.P.; Zhang, Y.L.; Song, G.Y.; Ma, H.J. Effect of consumption of micronutrient enriched wheat steamed bread on postprandial plasma glucose in healthy and type 2 diabetic subjects. Nutr. J. 2013, 12, 64. [Google Scholar]
- Liu, Y.; Xu, J.; Guo, Y.; Xue, Y.; Wang, J.; Xue, C. Ameliorative effect of vanadyl (IV)–ascorbate complex on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, and oxidative stress in mice. J. Trace Elem. Med. Biol. 2015, 32, 155–161. [Google Scholar] [CrossRef]
- Sharma, A.K.; Srinivasan, B. Triple verses glimepiride plus metformin therapy on cardiovascular risk biomarkers and diabetic cardiomyopathy in insulin resistance type 2 diabetes mellitus rats. Eur. J. Pharm. Sci. 2009, 38, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Bechmann, L.P.; Hannivoort, R.A.; Gerken, G.; Hotamisligil, G.S.; Trauner, M.; Canbay, A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J. Hepatol. 2012, 56, 952–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.; Al-Mrabeh, A.; Zhyzhneuskaya, S.; Peters, C.; Barnes, A.C.; Aribisala, B.S.; Hollingsworth, K.G.; Mathers, J.C.; Sattar, N.; Lean, M.E. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for β cell recovery. Cell Metab. 2018, 28, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Deng, N.; Guo, R.; Zheng, B.; Li, T.; Liu, R.H. IRS-1/PI3K/Akt pathway and miRNAs are involved in whole grain highland barley (Hordeum vulgare L.) ameliorating hyperglycemia of db/db mice. Food Funct. 2020, 11, 9535–9546. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, M.; Zhang, R.; You, L.; Li, T.; Liu, R.H. Whole grain brown rice extrudate ameliorates the symptoms of diabetes by activating the IRS1/PI3K/AKT insulin pathway in db/db mice. J. Agric. Food Chem. 2019, 67, 11657–11664. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Q.; Dang, H.; Liu, X.; Tian, F.; Zhao, J.; Chen, Y.; Zhang, H.; Chen, W. Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Nutrition 2014, 30, 1061–1068. [Google Scholar] [CrossRef]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456. [Google Scholar] [CrossRef]
- Wolever, T.M.; Tosh, S.M.; Gibbs, A.L.; Brand-Miller, J.; Duncan, A.M.; Hart, V.; Lamarche, B.; Thomson, B.A.; Duss, R.; Wood, P.J. Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: A randomized clinical trial. Am. J. Clin. Nutr. 2010, 92, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Wu, S.J.; Fang, J.Y.; Wang, Y.P.; Shyu, Y.T. Cardiovascular and intestinal protection of cereal pastes fermented with lactic acid bacteria in hyperlipidemic hamsters. Food Res. Int. 2012, 48, 428–434. [Google Scholar] [CrossRef]
Groups | 7 Weeks (mmol/L) | 8 Weeks (mmol/L) | 9 Weeks (mmol/L) | 10 Weeks (mmol/L) | 11 Weeks (mmol/L) |
---|---|---|---|---|---|
NC | 4.54 ± 0.37 b | 4.56 ± 0.20 b | 4.54 ± 0.15 c | 4.48 ± 0.17 c | 4.40 ± 0.06 c |
MC | 20.88 ± 1.83 a | 20.98 ± 0.58 a | 20.64 ± 0.49 a | 20.56 ± 0.39 a | 20.32 ± 0.24 a |
PC | 21.87 ± 1.10 a | 22.31 ± 0.45 a | 21.93 ± 0.60 a | 21.63 ± 0.53 a | 21.20 ± 0.32 a |
MS | 22.44 ± 0.65 a | 22.31 ± 0.57 a | 18.77 ± 0.40 b | 16.98 ± 0.60 b | 16.34 ± 0.73 b |
FM | 22.12 ± 0.81 a | 22.14 ± 0.32 a | 18.56 ± 0.80 b | 17.44 ± 0.34 b | 16.90 ± 0.38 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, J.; Xie, S.; Yang, S.; Duan, B.; Liu, L.; Meng, X. Steamed Multigrain Bread Prepared from Dough Fermented with Lactic Acid Bacteria and Its Effect on Type 2 Diabetes. Foods 2023, 12, 2319. https://doi.org/10.3390/foods12122319
Shang J, Xie S, Yang S, Duan B, Liu L, Meng X. Steamed Multigrain Bread Prepared from Dough Fermented with Lactic Acid Bacteria and Its Effect on Type 2 Diabetes. Foods. 2023; 12(12):2319. https://doi.org/10.3390/foods12122319
Chicago/Turabian StyleShang, Jiacui, Shuiqi Xie, Shuo Yang, Bofan Duan, Lijun Liu, and Xiangchen Meng. 2023. "Steamed Multigrain Bread Prepared from Dough Fermented with Lactic Acid Bacteria and Its Effect on Type 2 Diabetes" Foods 12, no. 12: 2319. https://doi.org/10.3390/foods12122319
APA StyleShang, J., Xie, S., Yang, S., Duan, B., Liu, L., & Meng, X. (2023). Steamed Multigrain Bread Prepared from Dough Fermented with Lactic Acid Bacteria and Its Effect on Type 2 Diabetes. Foods, 12(12), 2319. https://doi.org/10.3390/foods12122319