Effects of Different Nitrogen Forms on Blackberry Fruit Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Measurement of Fruit Shape Index, Soluble Solids and Acid Content
2.3. Measurement of Sugar Content
2.4. Determination of Antioxidant Capacity
2.5. Determination of Vitamin C Content
2.6. Determination of Anthocyanin Content
2.7. Determination of Ellagic Acid Content
2.8. Determination of Total Phenol Content
2.9. Determination of Flavonoid Content
2.10. Statistical Analysis
3. Results
3.1. Fruit Size, Weight and Firmness
3.2. Fruit Soluble Solids, Acid, and Color
3.3. The Content of Sugars
3.4. Active Antioxidant Substance Content Analysis
3.5. Antioxidant Ability Analysis
3.6. Correlation and PCA of Physiological and Quality Indexes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thole, V.; Bassard, J.-E.; Ramírez-González, R.; Trick, M.; Ghasemi Afshar, B.; Breitel, D.; Hill, L.; Foito, A.; Shepherd, L.; Freitag, S. RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genom. 2019, 20, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, Z.; Wu, Y.; Wu, W.; Lyu, L.; Li, W. Effects of nitrogen application level on the physiological characteristics, yield and fruit quality of blackberry. Sci. Hortic. 2023, 313, 111915. [Google Scholar] [CrossRef]
- de Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food chem. 2014, 156, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esselen, M.; Boettler, U.; Teller, N.; Bachler, S.; Hutter, M.; Rufer, C.E.; Skrbek, S.; Marko, D. Anthocyanin-rich blackberry extract suppresses the DNA-damaging properties of topoisomerase I and II poisons in colon carcinoma cells. J. Agric. Food Chem. 2011, 59, 6966–6973. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Veberic, R.; Hudina, M.; Zorenc, Z.; Koron, D.; Senica, M. Fruit quality characteristics and biochemical composition of fully ripe blackberries harvested at different times. Foods 2021, 10, 1581. [Google Scholar] [CrossRef]
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Zhou, Y.; Shen, Q.; Zhang, F. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biol. 2007, 9, 21–29. [Google Scholar] [CrossRef]
- Witte, C.-P. Urea metabolism in plants. Plant Sci. 2011, 180, 431–438. [Google Scholar] [CrossRef]
- Hachiya, T.; Sakakibara, H. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J. Exp. Bot. 2017, 68, 2501–2512. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Coskun, D.; Britto, D.T.; Li, M.; Becker, A.; Kronzucker, H.J. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. Plant Physiol. 2013, 163, 1859–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britto, D.T.; Siddiqi, M.Y.; Glass, A.D.; Kronzucker, H.J. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc. Natl. Acad. Sci. USA 2001, 98, 4255–4258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, A.J.; Randall, L.; Taylor, A.R.; Silk, W.K. Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts. J. Exp. Bot. 2012, 63, 1997–2006. [Google Scholar] [PubMed] [Green Version]
- Liu, S.; Chi, Q.; Cheng, Y.; Zhu, B.; Li, W.; Zhang, X.; Huang, Y.; Müller, C.; Cai, Z.; Zhang, J. Importance of matching soil N transformations, crop N form preference, and climate to enhance crop yield and reducing N loss. Sci. Total Environ. 2019, 657, 1265–1273. [Google Scholar] [CrossRef]
- Huang, H.; Yao, Q.; Xia, E.; Gao, L. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor. J. Agric. Food Chem. 2018, 66, 9828–9838. [Google Scholar] [CrossRef]
- Alt, D.S.; Doyle, J.W.; Malladi, A. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate. J. Plant Physiol. 2017, 216, 79–87. [Google Scholar] [CrossRef]
- Ali, L.; Alsanius, B.W.; Rosberg, A.K.; Svensson, B.; Nielsen, T.; Olsson, M.E. Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. Eur. Food Res. Technol. 2012, 234, 33–44. [Google Scholar] [CrossRef]
- Edgley, M.; Close, D.; Measham, P. Nitrogen application rate and harvest date affect red drupelet reversion and postharvest quality in ‘Ouachita’blackberries. Sci. Hortic. 2019, 256, 108543. [Google Scholar] [CrossRef]
- Mohammad Sokri, S.; Babalar, M.; Barker, A.V.; Lesani, H.; Asgari, M.A. Fruit quality and nitrogen, potassium, and calcium content of apple as influenced by nitrate: Ammonium ratios in tree nutrition. J. Plant Nutr. 2015, 38, 1619–1627. [Google Scholar] [CrossRef]
- Sandoval-Villa, M.; Wood, C.; Guertal, E. Effects of nitrogen form, nighttime nutrient solution strength, and cultivar on greenhouse tomato production. J. Plant Nutr. 1999, 22, 1931–1945. [Google Scholar] [CrossRef]
- Shi, X.; Hernández, R.; Hoffmann, M. Impact of Nitrate and Ammonium Ratios on Flowering and Asexual Reproduction in the Everbearing Strawberry Cultivar Fragaria× ananassa Albion. Horticulturae 2021, 7, 571. [Google Scholar] [CrossRef]
- Jeppsson, N. The effects of fertilizer rate on vegetative growth, yield and fruit quality, with special respect to pigments, in black chokeberry (Aronia melanocarpa) cv.’Viking’. Sci. Hortic. 2000, 83, 127–137. [Google Scholar] [CrossRef]
- Tabatabaei, S.; Yusefi, M.; Hajiloo, J. Effects of shading and NO3: NH4 ratio on the yield, quality and N metabolism in strawberry. Sci. Hortic. 2008, 116, 264–272. [Google Scholar] [CrossRef]
- Boonterm, V.; Silapapun, A.; Boonkerd, N. Effects of nitrogen, potassium fertilizers and clusters per vine on yield and anthocyanin content in Cabernet Sauvignon grape. Acta Hortic. 2013, 984, 435–442. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, X.; Yan, Z.G.; Zhai, H. Effects of nitrogen forms on nitrate accumulation and quality of” Kyoho” grape fruit. J. Plant Nutr. Fert. 2010, 16, 1037–1040. [Google Scholar]
- Duan, Y.; Yang, H.; Yang, H.; Wei, Z.; Che, J.; Wu, W.; Lyu, L.; Li, W. Physiological and Morphological Responses of Blackberry Seedlings to Different Nitrogen Forms. Plants 2023, 12, 1480. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, H.; Yang, H.; Wu, Y.; Fan, S.; Wu, W.; Lyu, L.; Li, W. Integrative physiological, metabolomic and transcriptomic analysis reveals nitrogen preference and carbon and nitrogen metabolism in blackberry plants. J. Plant Physiol. 2023, 280, 153888. [Google Scholar] [CrossRef]
- Domis, M.; Papadopoulos, A.; Gosselin, A. Greenhouse tomato fruit quality. Horticult. Rev. 2002, 26, 239–349. [Google Scholar]
- Birch, G. Spectrophotometric determination of glucose content in glucose derivatives. Proc. Assoc. Clin. Biochem. 1963, 2, 216–217. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.-R.; Cui, H.-X.; Fang, J.-L.; Yuan, K.; Jin, S.-H.; Zhu, X.-T.; Xu, Y. Content determination of functional composition and antioxidant activity from six purple plants. Pharmacogn. Mag. 2021, 17, 74. [Google Scholar]
- Maas, J.L.; Wang, S.Y.; Galletta, G.J. Evaluation of strawberry cultivars for ellagic acid content. HortScience 1991, 26, 66–68. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A.; Handley, L.L.; Andrews, M. Global aspects of C/N interactions determining plant–environment interactions. J. Exp. Bot. 2004, 55, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Alan, R. The effect of nitrogen nutrition on growth, chemical composition and response of cucumbers (Cucumis sativus L.) to nitrogen forms in solution culture. J. Hortic. Sci. 1989, 64, 467–474. [Google Scholar] [CrossRef]
- Heeb, A.; Lundegårdh, B.; Ericsson, T.; Savage, G.P. Nitrogen form affects yield and taste of tomatoes. J. Sci. Food Agric. 2005, 85, 1405–1414. [Google Scholar] [CrossRef]
- Fernandez-Salvador, J.; Strik, B.C.; Bryla, D.R. Response of blackberry cultivars to fertilizer source during establishment in an organic fresh market production system. HortTechnology 2015, 25, 277–292. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.G.; Coombe, B.G. Is weight loss in ripening grape berries cv. Shiraz caused by impeded phloem transport? Aust. J. Grape Wine Res. 1999, 5, 17–21. [Google Scholar] [CrossRef]
- Strik, B.C. A review of nitrogen nutrition of Rubus. In Proceedings of the IX International Rubus and Ribes Symposium 777, Asheville, NC, USA, 21–24 June 2005; pp. 403–410. [Google Scholar]
- Tkacz, K.; Chmielewska, J.; Turkiewicz, I.P.; Nowicka, P.; Wojdyło, A. Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem. 2020, 332, 127382. [Google Scholar] [CrossRef]
- Tosun, I.; Ustun, N.S.; Tekguler, B. Physical and chemical changes during ripening of blackberry fruits. Sci. Agric. 2008, 65, 87–90. [Google Scholar] [CrossRef]
- Croge, C.P.; Cuquel, F.L.; Pintro, P.T.; Biasi, L.A.; De Bona, C.M. Antioxidant capacity and polyphenolic compounds of blackberries produced in different climates. HortScience 2019, 54, 2209–2213. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, F.; Yang, M.; Li, X.; Lian, X. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.). Sci. China Life Sci. 2011, 54, 651–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Lv, J.; Xie, J.; Gan, Y.; Coulter, J.A.; Yu, J.; Li, J.; Wang, J.; Zhang, X. Nitrogen Source Affects the Composition of Metabolites in Pepper (Capsicum annuum L.) and Regulates the Synthesis of Capsaicinoids through the GOGAT–GS Pathway. Foods 2020, 9, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kafkas, E.; Kosar, M.; Tueremis, N.; Ba Ser, K. Analysis of sugars, organic acids and vitamin C contents of blackberry genotypes from Turkey. Food Chem. 2006, 97, 732–736. [Google Scholar] [CrossRef]
- Xin-Juan, X.; Qing-Yu, L.; Xiao-Hui, S.; Qi-Rong, S.; Cai-Xia, D. Dynamic regulation of nitrogen and organic acid metabolism of cherry tomato fruit as affected by different nitrogen forms. Pedosphere 2012, 22, 67–78. [Google Scholar]
- Wang, S. Effect of pre-harvest conditions on antioxidant capacity in fruits. In Proceedings of the IV International Conference on Managing Quality in Chains-The Integrated View on Fruits and Vegetables Quality 712, Bangkok, Thailand, 30 June 2006; pp. 299–306. [Google Scholar]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Biotechnol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Chatzigianni, M.; Alkhaled, B.a.; Livieratos, I.; Stamatakis, A.; Ntatsi, G.; Savvas, D. Impact of nitrogen source and supply level on growth, yield and nutritional value of two contrasting ecotypes of Cichorium spinosum L. grown hydroponically. J. Sci. Food Agric. 2018, 98, 1615–1624. [Google Scholar] [CrossRef]
- Agati, G.; Brunetti, C.; Fini, A.; Gori, A.; Guidi, L.; Landi, M.; Sebastiani, F.; Tattini, M. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants 2020, 9, 1098. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, X.; Chen, S.; Sun, Y.; Shen, Y.; Ye, X. Chemical composition and antioxidant activity of Chinese wild raspberry (Rubus hirsutus Thunb.). LWT Food Sci.Technol. 2015, 60, 1262–1268. [Google Scholar] [CrossRef]
- Lugaresi, A.; Uberti, A.; Giacobbo, C.L.; Lovatto, M.; Girardi, G.C.; Wagner Junior, A. Management of pruning and evaluation in blackberry cultivars in relation to productive characteristics and bioactive compounds. An. Acad. Bras. Cienc. 2018, 90, 3879–3885. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Jiao, H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J. Agric. Food Chem. 2000, 48, 5677–5684. [Google Scholar] [CrossRef] [PubMed]
Components | CK Concentration (mg/L) | NH4+–N Concentration (mg/L) | NO3––N Concentration (mg/L) | Urea Concentration (mg/L) |
---|---|---|---|---|
(NH4)2SO4 | 0 | 991 | 0 | 0 |
CaCl2 ·2H2O | 588 | 588 | 0 | 588 |
Ca(NO3)2 ·4H2O | 0 | 0 | 945 | 0 |
NaNO3 | 0 | 0 | 595 | 0 |
CO(NH2)2 | 0 | 0 | 0 | 450.45 |
KCl | 373 | 373 | 373 | 373 |
KH2PO4 | 136 | 136 | 136 | 136 |
MgSO4 ·7H2O | 493 | 493 | 493 | 493 |
FeNaEDTA | 36.7 | 36.7 | 36.7 | 36.7 |
KI | 0.83 | 0.83 | 0.83 | 0.83 |
H3BO3 | 6.2 | 6.2 | 6.2 | 6.2 |
MnSO4 ·H2O | 16.9 | 16.9 | 16.9 | 16.9 |
ZnSO4 ·7H2O | 8.6 | 8.6 | 8.6 | 8.6 |
Na2 MoO4 ·2H2O | 0.25 | 0.25 | 0.25 | 0.25 |
CuSO4 ·5H2O | 0.025 | 0.025 | 0.025 | 0.025 |
CoCl2 ·6H2O | 0.025 | 0.025 | 0.025 | 0.025 |
Term | Treatment | Horizontal Diameter (mm) | Longitudinal Diameter (mm) | Weight (g) | Firmness (kg·cm−2) |
---|---|---|---|---|---|
CK | 23.40 ± 1.36 b | 28.30 ± 1.24 b | 7.57 ± 0.76 b | 0.36 ± 0.03 c | |
NH4+–N | 25.59 ± 1.12 a | 31.41 ± 1.06 a | 9.31 ± 1.02 a | 0.54 ± 0.05 a | |
S1 | NO3−–N | 23.31 ± 1.25 b | 29.81 ± 1.15 ab | 8.36 ± 0.86 ab | 0.47 ± 0.04 b |
Urea | 24.76 ± 1.06 ab | 30.20 ± 0.60 a | 8.70 ± 0.76 ab | 0.52 ± 0.04 ab | |
CK | 20.88 ± 1.10 b | 26.58 ± 2.21 c | 6.72 ± 0.98 c | 0.41 ± 0.05 b | |
NH4+–N | 24.76 ± 1.70 a | 30.30 ± 1.29 a | 10.17 ± 1.15 a | 0.48 ± 0.04 a | |
S2 | NO3−–N | 23.46 ± 0.84 ab | 27.81 ± 1.16 b | 8.18 ± 0.64 b | 0.44 ± 0.04 ab |
Urea | 24.78 ± 1.45 a | 28.54 ± 1.72 ab | 9.60 ± 0.70 a | 0.43 ± 0.05 ab | |
CK | 21.89 ± 1.56 c | 25.60 ± 1.71 c | 7.98 ± 1.46 b | 0.34 ± 0.08 b | |
NH4+–N | 24.07 ± 1.61 a | 30.68 ± 1.74 a | 10.36 ± 0.64 a | 0.41 ± 0.03 a | |
S3 | NO3−–N | 22.19 ± 1.51 bc | 27.11 ± 2.03 c | 7.94 ± 0.70 b | 0.41 ± 0.05 a |
Urea | 23.62 ± 1.53 ab | 29.65 ± 2.16 b | 9.58 ± 1.54 a | 0.36 ± 0.04 ab | |
CK | 19.53 ± 1.79 c | 24.30 ± 0.93 b | 7.17 ± 1.33 ab | 0.42 ± 0.04 b | |
NH4+–N | 22.35 ± 1.60 a | 29.02 ± 2.03 a | 8.07 ± 0.62 a | 0.53 ± 0.07 a | |
S4 | NO3−–N | 20.86 ± 1.96 b | 26.56 ± 2.25 b | 6.69 ± 0.90 b | 0.46 ± 0.08 b |
Urea | 22.33 ± 1.74 a | 27.19 ± 2.33 ab | 7.71 ± 1.20 ab | 0.42 ± 0.05 b | |
S1 | 24.26 ± 1.48 A | 29.93 ± 1.51 A | 8.51 ± 1.04 A | 0.47 ± 0.08 A | |
S2 | 23.47 ± 1.69 B | 28.31 ± 2.67 B | 8.67 ± 1.60 A | 0.44 ± 0.05 B | |
Term | S3 | 22.94 ± 1.83 B | 28.26 ± 3.00 B | 8.97 ± 1.62 A | 0.38 ± 0.06 C |
S4 | 21.26 ± 1.83 C | 27.27 ± 2.18 C | 7.41 ± 1.14 B | 0.37 ± 0.08 C | |
Term | 0.0003 *** | 0.0073 ** | 0.0244 * | 0.0192 * | |
p | Treatment | 0.0027 ** | 0.0003 *** | 0.0031 ** | 0.0112 * |
Interaction | 0.2818 | 0.0034 ** | 0.0003 *** | 0.000 *** |
Term | Treatment | Soluble Solid Content | Acid Content (%) | L * | a * | b * |
---|---|---|---|---|---|---|
CK | 10.07 ± 0.06 b | 1.54 ± 0.01 c | 14.49 ± 2.53 c | 0.14 ± 0.17 b | −3.19 ± 0.45 a | |
NH4+–N | 10.43 ± 0.06 a | 1.54 ± 0.01 c | 15.96 ± 2.01 b | 0.27 ± 0.13 b | −3.13 ± 0.58 a | |
S1 | NO3−–N | 9.43 ± 0.21 c | 1.91 ± 0.02 a | 17.72 ± 2.11 a | 0.15 ± 0.23 b | −3.26 ± 0.47 a |
Urea | 10.37 ± 0.06 a | 1.79 ± 0.01 b | 17.44 ± 1.53 ab | 0.34 ± 0.31 a | −3.28 ± 0.38 a | |
CK | 10.67 ± 0.06 d | 1.69 ± 0.03 a | 14.59 ± 1.18 b | 0.28 ± 0.05 a | −3.25 ± 0.38 a | |
NH4+–N | 12.83 ± 0.21 a | 1.26 ± 0.01 d | 16.08 ± 1.66 a | 0.26 ± 0.12 a | −2.95 ± 0.41 a | |
S2 | NO3−–N | 11.50 ± 0.10 c | 1.46 ± 0.02 c | 16.58 ± 1.58 a | 0.36 ± 0.22 a | −2.29 ± 0.35 a |
Urea | 11.80 ± 0.20 b | 1.50 ± 0.01 b | 17.29 ± 1.16 a | 0.42 ± 0.12 a | −2.13 ± 0.23 a | |
CK | 11.13 ± 0.06 d | 1.56 ± 0.02 b | 11.66 ± 1.16 c | 0.28 ± 0.06 a | −2.76 ± 0.41 a | |
NH4+–N | 13.13 ± 0.21 a | 1.33 ± 0.01 c | 15.37 ± 1.25 b | 0.10 ± 0.12 a | −3.23 ± 0.41 a | |
S3 | NO3−–N | 11.93 ± 0.15 c | 1.59 ± 0.03 b | 15.97 ± 3.11 ab | 0.19 ± 0.15 a | −3.22 ± 0.41 a |
Urea | 12.47 ± 0.15 b | 1.69 ± 0.01 a | 17.24 ± 0.99 a | 0.14 ± 0.21 a | −3.46 ± 0.32 a | |
CK | 10.17 ± 0.06 ab | 1.66 ± 0.02 b | 11.48 ± 1.56 b | 0.10 ± 0.08 a | −2.80 ± 0.39 a | |
NH4+–N | 10.30 ± 0.10 a | 1.48 ± 0.01 d | 17.01 ± 1.25 a | 0.28 ± 0.14 a | −3.13 ± 0.48 a | |
S4 | NO3−–N | 9.63 ± 0.06 c | 1.71 ± 0.02 a | 16.55 ± 1.74 a | 0.21 ± 0.23 a | −3.20 ± 0.48 a |
Urea | 9.97 ± 0.06 b | 1.57 ± 0.01 c | 17.02 ± 1.45 a | 0.25 ± 0.12 a | −3.36 ± 0.31 a | |
S1 | 10.08 ± 0.42 C | 1.70 ± 0.02 A | 16.40 ± 2.40 A | 0.32 ± 0.38 A | −3.22 ± 0.46 B | |
S2 | 11.70 ± 0.82 B | 1.48 ± 0.01 D | 16.63 ± 1.44 A | 0.33 ± 0.36 A | −2.65 ± 0.83 B | |
Term | S3 | 12.17 ± 0.78 A | 1.54 ± 0.01 C | 15.06 ± 2.76 B | 0.18 ± 0.20 A | −3.17 ± 0.47 B |
S4 | 10.02 ± 0.27 C | 1.61 ± 0.03 B | 15.52 ± 2.78 B | 0.22 ± 0.21 A | −3.12 ± 0.46 B | |
Term | 0.0002 *** | 0.0000 *** | 0.3178 | 0.4403 | 0.1244 | |
p | Treatment | 0.0235 * | 0.0399 * | 0.0117 * | 0.3592 | 0.7443 |
Interaction | 0.0000 *** | 0.0000 *** | 0.0000 *** | 0.0043 ** | 0.0000 *** |
Component | Eigenvalues | Percent of Variance Explained/% | Cumulative Variance Contribution Rate/% |
---|---|---|---|
1 | 7.671 | 54.791 | 54.791 |
2 | 2.043 | 14.592 | 69.384 |
3 | 1.397 | 9.979 | 79.363 |
4 | 1.044 | 7.459 | 86.822 |
5 | 0.505 | 3.605 | 90.427 |
6 | 0.422 | 3.013 | 93.440 |
7 | 0.297 | 2.122 | 95.563 |
8 | 0.256 | 1.828 | 97.391 |
9 | 0.194 | 1.385 | 98.776 |
10 | 0.094 | 0.673 | 99.448 |
11 | 0.036 | 0.260 | 99.708 |
12 | 0.032 | 0.230 | 99.938 |
13 | 0.008 | 0.058 | 99.996 |
14 | 0.001 | 0.004 | 100.000 |
Trait | PC1 | PC2 | PC3 |
---|---|---|---|
FW | 0.9 ** | −0.058 | −0.082 |
HD | 0.118 | −0.884 ** | 0.178 |
TSS | 0.852 ** | 0.448 | −0.022 |
Acid | −0.722 ** | −0.174 | −0.045 |
Fructose | 0.897 ** | 0.19 | −0.083 |
Glucose | 0.862 ** | 0.399 | −0.049 |
Sucrose | 0.903 ** | 0.273 | −0.168 |
Anthocyanin | 0.881 ** | −0.259 | 0.092 |
EA | 0.88 ** | −0.332 | −0.013 |
Polyphenol | 0.854 ** | −0.103 | 0.22 |
Flavonoid | −0.298 | 0.367 | −0.416 |
VC | 0.553 | −0.223 | 0.544 |
T-AOC | −0.057 | 0.53 | 0.775 ** |
DPPH-RSC | −0.749 ** | 0.322 | 0.439 |
Variance % Cumulative % | 54.791 54.791 | 14.592 69.394 | 9.979 79.363 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Yang, H.; Wei, Z.; Yang, H.; Fan, S.; Wu, W.; Lyu, L.; Li, W. Effects of Different Nitrogen Forms on Blackberry Fruit Quality. Foods 2023, 12, 2318. https://doi.org/10.3390/foods12122318
Duan Y, Yang H, Wei Z, Yang H, Fan S, Wu W, Lyu L, Li W. Effects of Different Nitrogen Forms on Blackberry Fruit Quality. Foods. 2023; 12(12):2318. https://doi.org/10.3390/foods12122318
Chicago/Turabian StyleDuan, Yongkang, Haiyan Yang, Zhiwen Wei, Hao Yang, Sufan Fan, Wenlong Wu, Lianfei Lyu, and Weilin Li. 2023. "Effects of Different Nitrogen Forms on Blackberry Fruit Quality" Foods 12, no. 12: 2318. https://doi.org/10.3390/foods12122318
APA StyleDuan, Y., Yang, H., Wei, Z., Yang, H., Fan, S., Wu, W., Lyu, L., & Li, W. (2023). Effects of Different Nitrogen Forms on Blackberry Fruit Quality. Foods, 12(12), 2318. https://doi.org/10.3390/foods12122318