In Situ Inactivation of Selected Bacillus Strains in Brewer’s Spent Grain during Fermentation by Lactococcus lactis ATCC 11454—The Possibility of Post-Production Residues Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Bacterial Strains
2.3. Moisture and β-Glucans Content Determination
2.4. Arabinoxylans (AX) Content Determination
2.5. Total Polyphenols Content (TPC) Determination
2.6. Antimicrobial Properties and Survival of Bacteria
2.6.1. Inhibition Zone
2.6.2. LIVE/DEAD Fluorescence Assay of Bacterial Viability
2.7. Statistical Analysis
3. Results
3.1. Oligosaccharide Profile
3.2. Total Polyphenol Content
3.3. Viability of Lactococcus Lactis ATCC 11454
3.4. Antimicrobial Activity
3.4.1. Susceptibility of Strains and Impact of Barley Products
3.4.2. The Influence of the Environment and the Period of Storage
3.4.3. Magnitude of Inhibition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, R.; Mokhtari, S.; Jafari, S.M.; Sharma, S. Barley-Based Probiotic Food Mixture: Health Effects and Future Prospects. Crit. Rev. Food Sci. Nutr. 2021, 62, 7961–7975. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, Z.; Gill, M.; van Wijk, M.; Herrero, M.; Ramankutty, N. Livestock Policy for Sustainable Development. Nat. Food 2020, 1, 160–165. [Google Scholar] [CrossRef]
- Demaio, A.R.; Rockström, J. Human and Planetary Health: Towards a Common Language. Lancet 2015, 386, e36–e37. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organisation. Food and Agriculture-Key to Achieving the 2030 Agenda for Sustainable Development; Food and Agriculture: Rome, Italy, 2016. [Google Scholar]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-Processed Foods and the Nutrition Transition: Global, Regional and National Trends, Food Systems Transformations and Political Economy Drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Z.; Wang, Y.; Fu, L. Dietary Protein-Phenolic Interactions: Characterization, Biochemical-Physiological Consequences, and Potential Food Applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 3589–3615. [Google Scholar] [CrossRef]
- Aktas, E.; Sahin, H.; Topaloglu, Z.; Oledinma, A.; Huda, A.K.S.; Irani, Z.; Sharif, A.M.; van’t Wout, T.; Kamrava, M. A Consumer Behavioural Approach to Food Waste. J. Enterp. Inf. Manag. 2018, 31, 658–673. [Google Scholar] [CrossRef] [Green Version]
- Horoszewicz, J.; Kruk, M.; Król, K.; Jaworska, D.; Hallmann, E.; Trząskowska, M. The Use of Hazelnut Seed Skins for the Fortification of Food with Polyphenols and to Increase Food Safety. Zntj 2022, 29, 102–111. [Google Scholar] [CrossRef]
- Siol, M.; Sadowska, A. Chemical Composition, Physicochemical and Bioactive Properties of Avocado (Persea Americana) Seed and Its Potential Use in Functional Food Design. Agriculture 2023, 13, 316. [Google Scholar] [CrossRef]
- Siol, M.; Sadowska, A.; Król, K.; Najman, K. Bioactive and Physicochemical Properties of Exotic Fruit Seed Powders: Mango (Mangefiera indica L.) and Rambutan (Nephelium lappaceum L.) Obtained by Various Drying Methods. Appl. Sci. 2022, 12, 4995. [Google Scholar] [CrossRef]
- Pokorski, P.; Hoffmann, M. Valorization of Bio-Waste Eggshell as a Viable Source of Dietary Calcium for Confectionery Products. J. Sci. Food Agric. 2022, 102, 3193–3203. [Google Scholar] [CrossRef]
- Arnold, M.; Rajagukguk, Y.V.; Gramza-Michałowska, A. Functional Food for Elderly High in Antioxidant and Chicken Eggshell Calcium to Reduce the Risk of Osteoporosis—A Narrative Review. Foods 2021, 10, 656. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Food Loss and Food Waste. Available online: http://www.fao.org/food-loss-and-food-waste/en/ (accessed on 16 June 2021).
- Bachmann, S.A.L.; Calvete, T.; Féris, L.A. Potential Applications of Brewery Spent Grain: Critical an Overview. J. Environ. Chem. Eng. 2022, 10, 106951. [Google Scholar] [CrossRef]
- Jaeger, A.; Zannini, E.; Sahin, A.W.; Arendt, E.K. Barley Protein Properties, Extraction and Applications, with a Focus on Brewers’ Spent Grain Protein. Foods 2021, 10, 1389. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for Brewing: Characteristic Changes during Malting, Brewing and Applications of Its By-Products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naibaho, J.; Butula, N.; Jonuzi, E.; Korzeniowska, M.; Laaksonen, O.; Föste, M.; Kütt, M.-L.; Yang, B. Potential of Brewers’ Spent Grain in Yogurt Fermentation and Evaluation of Its Impact in Rheological Behaviour, Consistency, Microstructural Properties and Acidity Profile during the Refrigerated Storage. Food Hydrocoll. 2022, 125, 107412. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Märtlbauer, E.; Granum, P.E. The Food Poisoning Toxins of Bacillus Cereus. Toxins 2021, 13, 98. [Google Scholar] [CrossRef]
- Messelhäusser, U.; Frenzel, E.; Blöchinger, C.; Zucker, R.; Kämpf, P.; Ehling-Schulz, M. Emetic Bacillus cereus Are More Volatile Than Thought: Recent Foodborne Outbreaks and Prevalence Studies in Bavaria (2007–2013). BioMed Res. Int. 2014, 2014, 465603. [Google Scholar] [CrossRef] [Green Version]
- Fernández-No, I.C.; Guarddon, M.; Böhme, K.; Cepeda, A.; Calo-Mata, P.; Barros-Velázquez, J. Detection and Quantification of Spoilage and Pathogenic Bacillus Cereus, Bacillus Subtilis and Bacillus Licheniformis by Real-Time PCR. Food Microbiol. 2011, 28, 605–610. [Google Scholar] [CrossRef]
- Evelyn; Silva, F.V.M. Heat Assisted HPP for the Inactivation of Bacteria, Moulds and Yeasts Spores in Foods: Log Reductions and Mathematical Models. Trends Food Sci. Technol. 2019, 88, 143–156. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Bourke, P. Current and Future Technologies for Microbiological Decontamination of Cereal Grains. J. Food Sci. 2018, 83, 1484–1493. [Google Scholar] [CrossRef] [Green Version]
- Mir, S.A.; Farooq, S.; Shah, M.A.; Sofi, S.A.; Dar, B.N.; Hamdani, A.M.; Mousavi Khaneghah, A. An Overview of Sprouts Nutritional Properties, Pathogens and Decontamination Technologies. LWT 2021, 141, 110900. [Google Scholar] [CrossRef]
- Fidan, H.; Esatbeyoglu, T.; Simat, V.; Trif, M.; Tabanelli, G.; Kostka, T.; Montanari, C.; Ibrahim, S.A.; Özogul, F. Recent Developments of Lactic Acid Bacteria and Their Metabolites on Foodborne Pathogens and Spoilage Bacteria: Facts and Gaps. Food Biosci. 2022, 47, 101741. [Google Scholar] [CrossRef]
- Verma, D.K.; Thakur, M.; Singh, S.; Tripathy, S.; Gupta, A.K.; Baranwal, D.; Patel, A.R.; Shah, N.; Utama, G.L.; Niamah, A.K.; et al. Bacteriocins as Antimicrobial and Preservative Agents in Food: Biosynthesis, Separation and Application. Food Biosci. 2022, 46, 101594. [Google Scholar] [CrossRef]
- Jawan, R.; Abbasiliasi, S.; Tan, J.S.; Mustafa, S.; Halim, M.; Ariff, A.B. Influence of Culture Conditions and Medium Compositions on the Production of Bacteriocin-Like Inhibitory Substances by Lactococcus lactis Gh1. Microorganisms 2020, 8, 1454. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Barrientos, L.M.; González-Córdova, A.F.; Hernández-Mendoza, A.; Torres-Inguanzo, E.H.; Astiazarán-García, H.; Esparza-Romero, J.; Vallejo-Cordoba, B. Randomized Double-Blind Controlled Clinical Trial of the Blood Pressure–Lowering Effect of Fermented Milk with Lactococcus lactis: A Pilot Study12. J. Dairy Sci. 2018, 101, 2819–2825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiciński, M.; Gębalski, J.; Gołębiewski, J.; Malinowski, B. Probiotics for the Treatment of Overweight and Obesity in Humans—A Review of Clinical Trials. Microorganisms 2020, 8, 1148. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Jang, W.J.; Lee, E.-W.; Kong, I.-S. β-Glucooligosaccharides Derived from Barley β-Glucan Promote Growth of Lactic Acid Bacteria and Enhance Nisin Z Secretion by Lactococcus lactis. LWT 2020, 122, 109014. [Google Scholar] [CrossRef]
- Authority (EFSA), E.F.S. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) Related to The Use of Nisin (E 234) as a Food Additive. EFSA J. 2006, 4, 314. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Panda, L.; Duarte-Sierra, A. Recent Advancements in Enhancing Antimicrobial Activity of Plant-Derived Polyphenols by Biochemical Means. Horticulturae 2022, 8, 401. [Google Scholar] [CrossRef]
- Dai, J.; Sameen, D.E.; Zeng, Y.; Li, S.; Qin, W.; Liu, Y. An Overview of Tea Polyphenols as Bioactive Agents for Food Packaging Applications. LWT 2022, 167, 113845. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Cheng, W.; Yang, K.; Cai, L.; He, L.; Du, L.; Liu, Y.; Liu, A.; Zeng, Z.; et al. Impact of Arabinoxylan on Characteristics, Stability and Lipid Oxidation of Oil-in-Water Emulsions: Arabinoxylan from Wheat Bran, Corn Bran, Rice Bran, and Rye Bran. Food Chem. 2021, 358, 129813. [Google Scholar] [CrossRef] [PubMed]
- Neffe-Skocińska, K.; Kruk, M.; Ścibisz, I.; Zielińska, D. The Novel Strain of Gluconobacter Oxydans H32 Isolated from Kombucha as a Proposition of a Starter Culture for Sour Ale Craft Beer Production. Appl. Sci. 2022, 12, 3047. [Google Scholar] [CrossRef]
- PN-R-74110:1998 Barley—Testing Methods; Polish Committee for Standardization: Warszawa, Poland, 1998.
- Analytica EBC|Co-Products|12.2-Moisture Content of Spent Grains. Available online: https://brewup.eu/ebc-analytica/co-products/moisture-content-of-spent-grains/12.2 (accessed on 27 January 2023).
- PN-A-79083-5:1998-Brewing Malt—Testing Methods—Determination of Moisture Content; Polish Committee for Standardization: Warszawa, Poland, 1998.
- Beta-Glucan Mixed Linkage Assay Procedure (Megazyme 2021). Available online: https://www.megazyme.com/documents/Assay_Protocol/K-BGLU_DATA.pdf (accessed on 27 March 2023).
- Englyst, H.N.; Cummings, J.H. Simplified Method for the Measurement of Total Non-Starch Polysaccharides by Gas-Liquid Chromatography of Constituent Sugars as Alditol Acetates. Analyst 1984, 109, 937–942. [Google Scholar] [CrossRef]
- Niroula, A.; Amgain, N.; Kc, R.; Adhikari, S.; Acharya, J. Pigments, Ascorbic Acid, Total Polyphenols and Antioxidant Capacities in Deetiolated Barley (Hordeum vulgare) and Wheat (Triticum aestivum) Microgreens. Food Chem. 2021, 354, 129491. [Google Scholar] [CrossRef]
- Lalpuria, M.; Karwa, V.; Anantheswaran, R.C.; Floros, J.D. Modified Agar Diffusion Bioassay for Better Quantification of Nisaplin®. J. Appl. Microbiol. 2013, 114, 663–671. [Google Scholar] [CrossRef]
- Thanjavur, N.; Sangubotla, R.; Lakshmi, B.A.; Rayi, R.; Mekala, C.D.; Reddy, A.S.; Viswanath, B. Evaluating the Antimicrobial and Apoptogenic Properties of Bacteriocin (Nisin) Produced by Lactococcus lactis. Process. Biochem. 2022, 122, 76–86. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Dexter, J.E. Barley β-Glucans and Arabinoxylans: Molecular Structure, Physicochemical Properties, and Uses in Food Products—A Review. Food Res. Int. 2008, 41, 850–868. [Google Scholar] [CrossRef]
- Zannini, E.; Bravo Núñez, Á.; Sahin, A.W.; Arendt, E.K. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022, 11, 1026. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Srionnual, S.; Onda, T.; Yanagida, F. Effects of Prebiotic Oligosaccharides and Trehalose on Growth and Production of Bacteriocins by Lactic Acid Bacteria. Lett. Appl. Microbiol. 2007, 45, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Nakamura, S.; Konishi, K.; Nakagawa, J.; Tochio, T. Variations in Prebiotic Oligosaccharide Fermentation by Intestinal Lactic Acid Bacteria. Int. J. Food Sci. Nutr. 2016, 67, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Khelissa, S.; Chihib, N.-E.; Gharsallaoui, A. Conditions of Nisin Production by Lactococcus lactis subsp. Lactis and Its Main Uses as a Food Preservative. Arch. Microbiol. 2021, 203, 465–480. [Google Scholar] [CrossRef]
- Hole, A.S.; Rud, I.; Grimmer, S.; Sigl, S.; Narvhus, J.; Sahlstrøm, S. Improved Bioavailability of Dietary Phenolic Acids in Whole Grain Barley and Oat Groat Following Fermentation with Probiotic Lactobacillus Acidophilus, Lactobacillus Johnsonii, and Lactobacillus Reuteri; ACS Publications: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Gangopadhyay, N.; Rai, D.K.; Brunton, N.P.; Gallagher, E.; Hossain, M.B. Antioxidant-Guided Isolation and Mass Spectrometric Identification of the Major Polyphenols in Barley (Hordeum vulgare) Grain. Food Chem. 2016, 210, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Cheng, S.; Dai, J.; Wang, L.; Xu, Y.; Peng, X.; Xie, X.; Peng, C. Molecular Mechanisms and Applications of Tea Polyphenols: A Narrative Review. J. Food Biochem. 2021, 45, e13910. [Google Scholar] [CrossRef]
- Liu, Z.; Vincken, J.-P.; de Bruijn, W.J.C. Tea Phenolics as Prebiotics. Trends Food Sci. Technol. 2022, 127, 156–168. [Google Scholar] [CrossRef]
- Mitri, S.; Salameh, S.-J.; Khelfa, A.; Leonard, E.; Maroun, R.G.; Louka, N.; Koubaa, M. Valorization of Brewers’ Spent Grains: Pretreatments and Fermentation, a Review. Fermentation 2022, 8, 50. [Google Scholar] [CrossRef]
- Demirbaş, F.; Dertli, E.; Arıcı, M. Prevalence of Clostridium spp., in Kashar Cheese and Efficiency of Lactiplantibacillus plantarum and Lactococcus lactis subsp. Lactis Mix as a Biocontrol Agents for Clostridium spp. Food Biosci. 2022, 46, 101581. [Google Scholar] [CrossRef]
- Trząskowska, M.; Gasentzer, P. Effects of Probiotic Lactobacillus Rhamnosus LOCK900 on the Staphylococcus aureus Survival in Carrot Juice: Effects of Probiotic Lactobacillus Rhamnosus LOCK900. J. Food Saf. 2016, 36, 571–576. [Google Scholar] [CrossRef]
- Rozporzadzenie 1333-2008.Pdf. Available online: https://pg.edu.pl/documents/1109389/68726963/Rozporzadzenie%201333-2008.pdf (accessed on 28 March 2023).
- Furuta, Y.; Maruoka, N.; Nakamura, A.; Omori, T.; Sonomoto, K. Utilization of Fermented Barley Extract Obtained from a By-Product of Barley Shochu for Nisin Production. J. Biosci. Bioeng. 2008, 106, 393–397. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Panfil-Kuncewicz, H.; Łaniewska-Trokenheim, Ł. Detection of Viable but Nonculturable Cells of Listeria Monocytogenes with the Use of Direct Epifluorescent Filter Technique. J. Food Saf. 2015, 35, 86–90. [Google Scholar] [CrossRef]
- Truchado, P.; Gómez-Galindo, M.; Gil, M.I.; Allende, A. Cross-Contamination of Escherichia Coli O157:H7 and Listeria Monocytogenes in the Viable but Non-Culturable (VBNC) State during Washing of Leafy Greens and the Revival during Shelf-Life. Food Microbiol. 2023, 109, 104155. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Ma, Y.; Dou, X.; Zohaib Aslam, M.; Liu, Y.; Xia, X.; Yang, S.; Wang, X.; Qin, X.; Hirata, T.; et al. A Review of Potential Antibacterial Activities of Nisin against Listeria Monocytogenes: The Combined Use of Nisin Shows More Advantages than Single Use. Food Res. Int. 2023, 164, 112363. [Google Scholar] [CrossRef]
- Lei, W.; Hao, L.; You, S.; Yao, H.; Liu, C.; Zhou, H. Partial Purification and Application of a Bacteriocin Produced by Probiotic Lactococcus lactis C15 Isolated from Raw Milk. LWT 2022, 169, 113917. [Google Scholar] [CrossRef]
- Łepecka, A.; Szymański, P.; Okoń, A.; Zielińska, D. Antioxidant Activity of Environmental Lactic Acid Bacteria Strains Isolated from Organic Raw Fermented Meat Products. LWT 2023, 174, 114440. [Google Scholar] [CrossRef]
- Pokhrel, D.; Thames, H.T.; Zhang, L.; Dinh, T.T.N.; Schilling, W.; White, S.B.; Ramachandran, R.; Theradiyil Sukumaran, A. Roles of Aerotolerance, Biofilm Formation, and Viable but Non-Culturable State in the Survival of Campylobacter Jejuni in Poultry Processing Environments. Microorganisms 2022, 10, 2165. [Google Scholar] [CrossRef]
- Kruk, M.; Trząskowska, M. Analysis of Biofilm Formation on the Surface of Organic Mung Bean Seeds, Sprouts and in the Germination Environment. Foods 2021, 10, 542. [Google Scholar] [CrossRef]
- Moat, A.G.; Foster, J.W.; Spector, M.P. Nitrogen Metabolism. In Microbial Physiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; pp. 475–502. [Google Scholar] [CrossRef]
Saccharides | Barley Products [g kg−1 Dry Matter] | |||
---|---|---|---|---|
Grain | Malt | BSG | ||
Soluble fractions of arabinoxylans (S-AX) | Arabinose | 0.26 | 0.30 | 0.31 |
Xylose | 0.31 | 0.41 | 0.41 | |
Total S-AX | 0.57 | 0.71 | 0.72 | |
Insoluble fractions of arabinoxylans (I-AX) | Arabinose | 1.46 | 1.87 | 7.31 |
Xylose | 1.92 | 3.36 | 14.24 | |
Total I-AX | 3.38 | 5.23 | 21.55 | |
Total AX | 3.95 | 5.94 | 22.27 | |
Beta-glucans | 4.86 | 0.54 | 0.29 |
Barley Product | Non-Fermented | Fermented |
---|---|---|
Grain | 472 ± 26 Aa | 493 ± 34 Aa |
Malt | 718 ± 36 Ba | 737 ± 37 Ba |
BSG | 659 ± 27 Ca | 660 ± 55 Ca |
Antimicrobial Agent | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variant I Control | Variant II Lactic Acid | Variant III Fermentation with L. lactis 11454 | |||||||
Day of storage | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | |
Number of | B. subtilis ATCC 11774 | B. subtilis ATCC 11774 | L. lactis 11454 | ||||||
Barley products | Grain | 8.67 A | 7.33 A | 8.63 A | 7.48 A | 5.25 A | 3.42 A | 7.25 A | 7.87 A |
Malt | 8.67 A | 6.34 B | 8.70 A | 5.49 B | 4.55 A | 3.27 A | 8.01 B | 7.50 B | |
BSG | 7.94 B | 6.61 B | 8.16 B | 6.46 C | 3.39 B | 4.42 AB | 6.81 AC | 8.38 C | |
Number of | B. subtilis ATCC 6633 | B. subtilis ATCC 6633 | L. lactis 11454 | ||||||
Barley products | Grain | 7.78 A | 5.35 A | 7.70 A | 5.47 A | 3.80 A | 3.05 A | 7.90 A | 8.05 A |
Malt | 7.66 A | 8.14 B | 7.97 A | 4.98 A | 3.27 A | 4.20 B | 8.12 B | 7.66 A | |
BSG | 6.89 B | 5.41 AC | 6.96 AB | 4.61 AB | 3.24 AB | 3.33 C | 8.03 AC | 7.96 A | |
Number of | B. cereus ATCC 10876 | B. cereus ATCC 10876 | L. lactis 11454 | ||||||
Barley products | Grain | 8.22 A | 7.23 A | 7.81 A | 6.42 A | 4.67 A | 4.33 A | 7.88 A | 7.76 A |
Malt | 7.77 B | 6.81 A | 7.85 A | 5.31 B | 4.41 A | 3.74 A | 7.96 B | 7.83 B | |
BSG | 8.00 AB | 6.98 A | 6.35 B | 5.53 B | 3.97 AB | 3.32 AB | 8.17 C | 8.19 C | |
Number of | B. cereus ATCC 14579 | B. cereus ATCC 14579 | L. lactis 11454 | ||||||
Barley products | Grain | 7.78 A | 6.31 A | 7.72 A | 5.65 A | 3.83 A | 4.07 A | 8.05 A | 7.60 A |
Malt | 7.53 B | 5.27 B | 7.70 A | 5.10 A | 4.51 B | 3.30 A | 8.05 A | 8.03 B | |
BSG | 6.63 C | 6.25 AC | 7.71 A | 6.32 AB | 4.91 C | 4.30 AB | 8.41 A | 8.32 B |
Bacillus Strain | ||||
---|---|---|---|---|
CFS–Medium | B. subtilis ATCC 11774 | B. subtilis ATCC 6633 | B. cereus ATCC 10876 | B. cereus ATCC 14579 |
Grain | ++ | ++ | + | + |
Malt | ++ | ++ | +++ | - |
BSG | + | +++ | ++ | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokorski, P.; Trząskowska, M. In Situ Inactivation of Selected Bacillus Strains in Brewer’s Spent Grain during Fermentation by Lactococcus lactis ATCC 11454—The Possibility of Post-Production Residues Management. Foods 2023, 12, 2279. https://doi.org/10.3390/foods12122279
Pokorski P, Trząskowska M. In Situ Inactivation of Selected Bacillus Strains in Brewer’s Spent Grain during Fermentation by Lactococcus lactis ATCC 11454—The Possibility of Post-Production Residues Management. Foods. 2023; 12(12):2279. https://doi.org/10.3390/foods12122279
Chicago/Turabian StylePokorski, Patryk, and Monika Trząskowska. 2023. "In Situ Inactivation of Selected Bacillus Strains in Brewer’s Spent Grain during Fermentation by Lactococcus lactis ATCC 11454—The Possibility of Post-Production Residues Management" Foods 12, no. 12: 2279. https://doi.org/10.3390/foods12122279
APA StylePokorski, P., & Trząskowska, M. (2023). In Situ Inactivation of Selected Bacillus Strains in Brewer’s Spent Grain during Fermentation by Lactococcus lactis ATCC 11454—The Possibility of Post-Production Residues Management. Foods, 12(12), 2279. https://doi.org/10.3390/foods12122279