Development of a Flavor Fingerprint Using HS-GC-IMS for Volatile Compounds from Steamed Potatoes of Different Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Potato Steaming Process
2.3. Sensory Evaluation
2.4. HS-GC-IMS Analysis
2.4.1. GC Parameters
2.4.2. IMS Parameters
2.5. Statistical Analysis
3. Results and Discussion
3.1. Appearance Analysis and Sensory Evaluation of Steamed Potatoes from Six Varieties
3.2. HS-GC-IMS Analysis
3.2.1. HS-GC-IMS Topographic Plots of Steamed Potatoes from Different Varieties
3.2.2. Qualitative Results of Volatile Compounds in Samples of Steamed Potatoes from Different Varieties
3.2.3. Fingerprint Analysis of Volatile Compounds in Steamed Potatoes of Different Varieties
3.2.4. Effect of Variety on the Volatile Compounds in Steamed Samples
3.3. Cluster Analysis (PCA) and Fingerprint Similarity Analysis of Flavor Compounds Based on Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaheer, K.; Akhtar, M.H. Potato production, usage, and nutrition—A review. Crit. Rev. Food Sci. 2016, 56, 711–721. [Google Scholar] [CrossRef]
- McKenzie, M.; Corrigan, V. Chapter 12—Potato flavor. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 339–368. [Google Scholar]
- Jitsuyama, Y.; Tago, A.; Mizukami, C.; Iwama, K.; Ichikawa, S. Endogenous components and tissue cell morphological traits of fresh potato tubers affect the flavor of steamed tubers. Am. J. Potato Res. 2009, 86, 430–441. [Google Scholar] [CrossRef]
- Sotome, I.; Takenaka, M.; Koseki, S.; Ogasawara, Y.; Nadachi, Y.; Okadome, H.; Isobe, S. Blanching of potato with superheated steam and hot water spray. LWT-Food Sci. Technol. 2009, 42, 1035–1040. [Google Scholar] [CrossRef]
- Sotome, I.; Isobe, S. Food processing and cooking with new heating system combining superheated steam and hot water spray. JARQ-Jpn. Agric. Res. Q. 2011, 45, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Montero-Prado, P.; Bentayeb, K.; Nerin, C. Pattern recognition of peach cultivars (Prunus persica L.) from their volatile components. Food Chem. 2013, 138, 724–731. [Google Scholar] [CrossRef]
- Cohen, G.; Rudnik, D.; Laloush, M.; Yakir, D.; Karpas, Z. A novel method for determination of histamine in tuna fish by ion mobility spectrometry. Food Anal. Method. 2015, 8, 2376–2382. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry, 4th ed.; Springer: Berlin, Germany, 2009. [Google Scholar]
- Dresow, J.F.; Boehm, H. The influence of volatile compounds of the flavour of raw, boiled and baked potatoes: Impact of agricultural measures on the volatile components. Landbauforschung-vTI Agric. For. Res. 2009, 59, 309–337. [Google Scholar]
- Duckham, S.C.; Dodson, A.T.; Bakker, J.; Ames, J.M. Volatile flavour components of baked potato flesh. A comparison of eleven potato varieties. Food/Nahrung 2001, 45, 317–323. [Google Scholar] [CrossRef]
- Duckham, S.C.; Dodson, A.T.; Bakker, J.; Ames, J.M. Effect of variety and storage time on the volatile flavor components of baked potato. J. Agric. Food Chem. 2002, 50, 5640–5648. [Google Scholar] [CrossRef]
- Taylor, M.; McDougall, G.; Stewart, D. Potato flavor and texture. In Potato Biology and Biotechnology: Advances and Perspectives; Vreugdenhil, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 525–540. [Google Scholar]
- Jayanty, S.S.; Diganta, K.; Raven, B. Effects of cooking methods on nutritional content in potato tubers. Am. J. Potato Res. 2019, 96, 183–194. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, J.; Wang, J.; Wang, X.Y.; Du, D.D. Recent development of HS-GC-IMS technology in rapid and non-destructive detection of quality and contamination in agri-food products. TrAC-Trend. Anal. Chem. 2021, 144, 116435. [Google Scholar] [CrossRef]
- Mäkinen, M.; Nousiainen, M.; Sillanpää, M. Ion spectrometric detection technologies for ultra-traces of explosives: A review. Mass. Spectrom. Rev. 2011, 30, 940–973. [Google Scholar] [CrossRef] [PubMed]
- Shvartsburg, A.A. Ion Mobility Spectrometry (IMS) and Mass Spectrometry; No. PNNL-SA-63433; Pacific Northwest National Lab (PNNL): Richland, WA, USA, 2010. [Google Scholar]
- Sun, Z.; Lyu, Q.; Chen, L.; Zhuang, K.; Wang, G.; Ding, W.; Wang, Y.H.; Chen, X. An HS-GC-IMS analysis of volatile flavor compounds in brown rice flour and brown rice noodles produced using different methods. LWT 2022, 161, 113358. [Google Scholar] [CrossRef]
- Oruna-Concha, M.J.; Bakker, J.; Ames, J.M. Comparison of the volatile components of eight cultivars of potato after microwave baking. LWT-Food Sci. Technol. 2002, 35, 80–86. [Google Scholar] [CrossRef]
- Starowicz, M.; Zieliński, H. How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Oruna-Concha, M.J.; Bakker, J.; Ames, J.M. Comparison of the volatile components of two varieties of potato cooked by boiling, conventional baking and microwave baking. J. Sci. Food Agric. 2002, 82, 1080–1087. [Google Scholar] [CrossRef]
- Lu, R.; Yang, Z.M.; Song, H.L.; Zhang, Y.; Zheng, S.X.; Chen, Y.; Zhou, N. The aroma-active compound, acrylamide and ascorbic acid contents of pan-fried potato slices cooked by different temperature and time. J. Food Process. Pres. 2016, 40, 183–191. [Google Scholar] [CrossRef]
- Blanda, G.; Cerretani, L.; Comandini, P.; Toschi, T.G.; Lercker, G. Investigation of off-odour and off-flavour development in boiled potatoes. Food Chem. 2010, 118, 283–290. [Google Scholar] [CrossRef]
- Petersen, M.A.; Poll, L.; Larsen, L.M. Comparison of volatiles in raw and boiled potatoes using a mild extraction technique combined with GC odour profiling and GC-MS. Food Chem. 1998, 61, 461–466. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.G.; Chen, F.L.; Guan, H.N.; Liu, L.L.; Zhang, C.Y.; Zhu, P.Y.; Liu, Y.; et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; He, J.; Chen, L.; Zhang, J.; Jin, Y.; Zhou, J.H.; Zhang, Y.X. A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatographyion mobility spectrometry. Food Res. Int. 2019, 119, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Le Quach, M.; Melton, L.D.; Harris, P.J.; Burdon, J.N.; Smith, B.G. Cell wall compositions of raw and cooked corms of taro (Colocasia esculenta). J. Sci. Food Agric. 2001, 81, 311–318. [Google Scholar] [CrossRef]
- Rytel, E. The effect of industrial potato processing on the concentrations of glycoalkaloids and nitrates in potato granules. Food Control 2012, 28, 380–384. [Google Scholar]
- Ulrich, D.; Hoberg, E.; Neugebauer, W.; Tiemann, H.; Darsow, U. Investigation of the boiled potato flavor by human sensory and instrumental methods. Am. J. Potato Res. 2000, 77, 111–117. [Google Scholar] [CrossRef]
- Capitain, C.; Weller, P. Non-targeted screening approaches for profiling of volatile organic compounds based on gas chromatography-ion mobility spectroscopy (GC-IMS) and machine learning. Molecules 2021, 26, 5457. [Google Scholar] [CrossRef]
- Wang, F.; Gao, Y.; Wang, H.; Xi, B.; He, X.; Yang, X.L.; Li, W.H. Analysis of volatile compounds and flavor fingerprint in Jingyuan lamb of different ages using gas chromatography-ion mobility spectrometry (GC–IMS). Meat Sci. 2021, 175, 108449. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Oraby, H.F. Fatty acids and bioactive lipids of potato cultivars: An overview. J. Oleo Sci. 2016, 65, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Lal, M.K.; Kumar, A.; Jena, R.; Dutt, S.; Thakur, N.; Parmar, V.; Kumar, V.; Singh, B. Lipids in potato. In Potato; Raigond, P., Singh, B., Dutt, S., Chakrabarti, S., Eds.; Springer: Singapore, 2020; pp. 73–85. [Google Scholar]
- Hwang, H.S.; Ball, J.C.; Doll, K.M.; Anderson, J.E.; Vermillion, K. Investigation of polymers and alcohols produced in oxidized soybean oil at frying temperatures. Food Chem. 2020, 317, 126379. [Google Scholar] [CrossRef]
- Morris, W.L.; Shepherd, T.; Verrall, S.R.; McNicol, J.W.; Taylor, M.A. Relationships between volatile and non-volatile metabolites and attributes of processed potato flavour. Phytochemistry 2010, 71, 1765–1773. [Google Scholar] [CrossRef]
- Yao, L.Y.; Mo, Y.F.; Chen, D.; Feng, T.; Song, S.Q.; Wang, H.T.; Sun, M. Characterization of key aroma compounds in Xinjiang dried figs (Ficus carica L.) by GC-MS, GC-olfactometry, odor activity values, and sensory analyses. LWT 2021, 150, 111982. [Google Scholar] [CrossRef]
- Yang, Y.B.; Ni, D.R.; Lin, L.; Wang, D.Q.; Wang, L. Odor activity study on the aroma compounds of steamed sorghum. Food Ferment. Ind. 2018, 44, 222–226. (In Chinese) [Google Scholar]
- Thybo, A.K.; Christiansen, J.; Kaack, K.; Petersen, M.A. Effect of varieties, wound healing and storage on sensory quality and chemical components in pre-peeled potatoes. LWT-Food Sci. Technol. 2006, 39, 166–176. [Google Scholar] [CrossRef]
- O’Connor, C.J.; Fisk, K.J.; Smith, B.G.; Melton, L.D. Fat uptake in French fries as affected by different potato varieties and processing. J. Food Sci. 2001, 66, 903–908. [Google Scholar] [CrossRef]
- Ni, D.R.; Yang, Y.B.; Lin, L.; Wang, C.Q.; Wang, L. Analysis of characteristic aroma compounds in staemed sorghum. Food Ferment. Ind. 2017, 43, 202–206. (In Chinese) [Google Scholar]
- Gu, X.Z.; Yu, S.D.; Wu, Q.Y.; Gong, S.X.; Wang, Z.W.; Wu, J.H.; Wang, S.Y. A case study of a typical potato flavoring based on aroma characteristic of purple potato. Food Sci. Technol. Res. 2020, 26, 69–78. [Google Scholar] [CrossRef]
- Mutti, B.; Grosch, W. Potent odorants of boiled potatoes. Nahrung/Food 1999, 43, 302–306. [Google Scholar] [CrossRef]
- Solms, J.; Wyler, R. Taste components of potatoes. Food Taste Chem. 1994, 115, 175–184. [Google Scholar]
- Wang, H.; Liu, H.; Liu, J.; Chen, Z.; Li, J.; Dong, N.; Chen, Z.; Lv, D.; Wang, M.; Liu, Y. A comprehensive quality system of six different varieties of mashed potatoes. Int. Food Res. J. 2019, 26, 1495–1503. [Google Scholar]
- Eriksson, E.L.; Johansson, N.; Kettaneh-Wold, D.; Wold, S.; Trygg, J.; Wikstrom, C. Multi-and Megavariate Data Analysis-Part 1: Basic Principles and Applications, 2nd ed.; Umetrics Academy: San Jose, CA, USA, 2006; pp. 39–62. [Google Scholar]
- Wu, Z.B.; Chen, L.Z.; Wu, L.M.; Xue, X.F.; Zhao, J.; Li, Y.; Ye, Z.H.; Lin, G.H. Classification of Chinese honeys according to their floral origins using elemental and stable isotopic compositions. J. Agric. Food Chem. 2015, 63, 5388–5394. [Google Scholar] [CrossRef]
Count | Compound | CAS# | Formula | MW a | RI b | Rt c | Dt d |
---|---|---|---|---|---|---|---|
Ketones | |||||||
1 | 6-Methyl-5-hepten-2-one | C110930 | C8H14O | 126.2 | 989.9 | 340.709 | 1.17549 |
2 | 2-Heptanone(M) | C110430 | C7H14O | 114.2 | 886.3 | 255.621 | 1.26628 |
3 | 2-Heptanone(D) | C110430 | C7H14O | 114.2 | 888 | 256.563 | 1.63635 |
4 | 3-Hydroxy-2-butanone(M) | C513860 | C4H8O2 | 88.1 | 711.8 | 172.292 | 1.06848 |
5 | 3-Hydroxy-2-butanone(D) | C513860 | C4H8O2 | 88.1 | 702.8 | 168.67 | 1.33287 |
6 | 2-Butanone(M) | C78933 | C4H8O | 72.1 | 582.1 | 131.616 | 1.06168 |
7 | 2-Butanone(D) | C78933 | C4H8O | 72.1 | 581.6 | 131.475 | 1.24727 |
8 | 3-Octanone(M) | C106683 | C8H16O | 128.2 | 989.3 | 340.099 | 1.3099 |
9 | 3-Octanone(D) | C106683 | C8H16O | 128.2 | 988.9 | 339.771 | 1.72054 |
10 | 2-Hexanone | C591786 | C6H12O | 100.2 | 771.7 | 198.396 | 1.4981 |
11 | 2-Pentanone | C107879 | C5H10O | 86.1 | 672.8 | 158.044 | 1.37331 |
12 | Acetone | C67641 | C3H6O | 58.1 | 472.2 | 105.465 | 1.12323 |
Alcohols | |||||||
13 | 1-Hexanol(M) | C111273 | C6H14O | 102.2 | 865.1 | 243.988 | 1.32861 |
14 | 1-Hexanol(D) | C111273 | C6H14O | 102.2 | 866.4 | 244.701 | 1.64434 |
15 | Ethanol(M) | C64175 | C2H6O | 46.1 | 418 | 94.528 | 1.0485 |
16 | Ethanol(D) | C64175 | C2H6O | 46.1 | 421.2 | 95.15 | 1.13587 |
17 | 1-Octen-3-ol(M) | C3391864 | C8H16O | 128.2 | 982.1 | 333.275 | 1.15995 |
18 | 1-Octen-3-ol(D) | C3391864 | C8H16O | 128.2 | 983.4 | 334.565 | 1.60007 |
19 | 1-Pentanol(M) | C71410 | C5H12O | 88.1 | 756.6 | 191.436 | 1.25426 |
20 | 1-Pentanol(D) | C71410 | C5H12O | 88.1 | 754.3 | 190.412 | 1.51587 |
21 | 2-Methylpropanol(M) | C78831 | C4H10O | 74.1 | 621.7 | 142.563 | 1.17389 |
22 | 2-Methylpropanol(D) | C78831 | C4H10O | 74.1 | 623.9 | 143.203 | 1.37407 |
23 | Methionol | C505102 | C4H10OS | 106.2 | 972.6 | 324.545 | 1.08599 |
24 | Methanol | C67561 | CH4O | 32 | 397.6 | 90.724 | 0.98654 |
25 | 1-Penten-3-ol | C616251 | C5H10O | 86.1 | 671 | 157.461 | 0.94444 |
26 | 2-Methylbutanol | C137326 | C5H12O | 88.1 | 723.7 | 177.201 | 1.48523 |
Aldehydes | |||||||
27 | n-Nonanal | C124196 | C9H18O | 142.2 | 1104.9 | 503.956 | 1.47625 |
28 | Phenylacetaldehyde | C122781 | C8H8O | 120.2 | 1043.3 | 407.761 | 1.25821 |
29 | Methional | C3268493 | C4H8OS | 104.2 | 905.3 | 268.648 | 1.08682 |
30 | 2-Hexenal(M) | C505577 | C6H10O | 98.1 | 843.9 | 232.901 | 1.18075 |
31 | 2-Hexenal(D) | C505577 | C6H10O | 98.1 | 842.4 | 232.131 | 1.51787 |
32 | Hexanal(M) | C66251 | C6H12O | 100.2 | 783 | 203.731 | 1.26665 |
33 | Hexanal(D) | C66251 | C6H12O | 100.2 | 784.3 | 204.347 | 1.56356 |
34 | (E)-2-Pentenal(M) | C1576870 | C5H8O | 84.1 | 741.4 | 184.712 | 1.10869 |
35 | (E)-2-Pentenal(D) | C1576870 | C5H8O | 84.1 | 741.7 | 184.841 | 1.35597 |
36 | (E)-2-Octenal(M) | C2548870 | C8H14O | 126.2 | 1058.1 | 429.033 | 1.33069 |
37 | (E)-2-Octenal(D) | C2548870 | C8H14O | 126.2 | 1058.3 | 429.361 | 1.8206 |
38 | 2-Methylpropanal | C78842 | C4H8O | 72.1 | 555 | 124.625 | 1.28213 |
39 | Octanal | C124130 | C8H16O | 128.2 | 1004.8 | 357.162 | 1.41166 |
40 | Heptanal | C111717 | C7H14O | 114.2 | 898.4 | 263.467 | 1.68398 |
41 | Benzaldehyde(M) | C100527 | C7H6O | 106.1 | 960.6 | 313.766 | 1.15051 |
42 | Benzaldehyde(D) | C100527 | C7H6O | 106.1 | 959.7 | 312.96 | 1.46966 |
43 | 2-Methylbutanal(M) | C96173 | C5H10O | 86.1 | 655.7 | 152.67 | 1.16858 |
44 | 2-Methylbutanal(D) | C96173 | C5H10O | 86.1 | 660.7 | 154.206 | 1.40668 |
45 | 3-Methylbutanal(M) | C590863 | C5H10O | 86.1 | 642.2 | 148.576 | 1.18299 |
46 | 3-Methylbutanal(D) | C590863 | C5H10O | 86.1 | 639.2 | 147.681 | 1.40592 |
47 | 3-Methyl-2-butenal(M) | C107868 | C5H8O | 84.1 | 772.2 | 198.6 | 1.09275 |
48 | (E,E)-2,4-Heptadienal | C4313035 | C7H10O | 110.2 | 1014.3 | 368.921 | 1.19433 |
49 | 2-Furfural | C98011 | C5H4O2 | 96.1 | 822.2 | 222.074 | 1.08587 |
50 | Butanal | C123728 | C4H8O | 72.1 | 596.8 | 135.571 | 1.29434 |
51 | Pentanal(M) | C110623 | C5H10O | 86.1 | 685.1 | 162.01 | 1.19057 |
52 | Pentanal(D) | C110623 | C5H10O | 86.1 | 689.3 | 163.417 | 1.42639 |
53 | Decanal | C112312 | C10H20O | 156.3 | 1217.4 | 742.128 | 1.5427 |
Esters | |||||||
54 | Ethyl acetate(M) | C141786 | C4H8O2 | 88.1 | 604 | 137.549 | 1.09597 |
55 | Ethyl acetate(D) | C141786 | C4H8O2 | 88.1 | 602.4 | 137.125 | 1.33805 |
56 | Hexyl acetate(M) | C142927 | C8H16O2 | 144.2 | 1016.1 | 371.275 | 1.38917 |
57 | Hexyl acetate(D) | C142927 | C8H16O2 | 144.2 | 1016.9 | 372.26 | 1.90117 |
Acid | |||||||
58 | Acetic acid | C64197 | C2H4O2 | 60.1 | 612.8 | 140.008 | 1.05074 |
Furan | |||||||
59 | 2-Pentylfuran | C3777693 | C9H14O | 138.2 | 992.4 | 343.053 | 1.25272 |
60 | 2-Butylfuran | C4466244 | C8H12O | 124.2 | 889.9 | 257.673 | 1.17636 |
Others | |||||||
61 | (E)-2-Heptena(M) | C18829555 | C7H12O | 112.2 | 955.1 | 309.008 | 1.25676 |
62 | (E)-2-Heptena(D) | C18829555 | C7H12O | 112.2 | 956.2 | 309.936 | 1.67403 |
63 | Ortho-Guaiacol | C90051 | C7H8O2 | 124.1 | 1088 | 475.425 | 1.11647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Duan, W.; Zhao, Y.; Liu, X.; Wen, G.; Zeng, F.; Liu, G. Development of a Flavor Fingerprint Using HS-GC-IMS for Volatile Compounds from Steamed Potatoes of Different Varieties. Foods 2023, 12, 2252. https://doi.org/10.3390/foods12112252
Jiang H, Duan W, Zhao Y, Liu X, Wen G, Zeng F, Liu G. Development of a Flavor Fingerprint Using HS-GC-IMS for Volatile Compounds from Steamed Potatoes of Different Varieties. Foods. 2023; 12(11):2252. https://doi.org/10.3390/foods12112252
Chicago/Turabian StyleJiang, Hong, Wensheng Duan, Yuci Zhao, Xiaofeng Liu, Guohong Wen, Fankui Zeng, and Gang Liu. 2023. "Development of a Flavor Fingerprint Using HS-GC-IMS for Volatile Compounds from Steamed Potatoes of Different Varieties" Foods 12, no. 11: 2252. https://doi.org/10.3390/foods12112252
APA StyleJiang, H., Duan, W., Zhao, Y., Liu, X., Wen, G., Zeng, F., & Liu, G. (2023). Development of a Flavor Fingerprint Using HS-GC-IMS for Volatile Compounds from Steamed Potatoes of Different Varieties. Foods, 12(11), 2252. https://doi.org/10.3390/foods12112252