Quality and Oral Processing Characteristics of Traditional Serbian Ćevap Influenced by Game Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ćevap Preparation
2.2. Quality Characterization
2.3. Sensory Analysis
2.4. Oral Processing Characterization
3. Results and Discussion
3.1. Quality-Related Results
3.2. Oral Processing Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef]
- Mathijs, E. Exploring future patterns of meat consumption. Meat Sci. 2015, 109, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Font-I-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Röös, E.; Sundberg, C.; Tidåker, P.; Strid, I.; Hansson, P.A. Can carbon footprint serve as an indicator of the environmental impact of meat production? Ecol. Indic. 2013, 24, 573–581. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Rayner, M.; Scarborough, M. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef]
- Djekic, I.; Tomasevic, I. Environmental impacts of the meat chain—Current status and future perspectives. Trends Food Sci. Technol. 2016, 54, 94–102. [Google Scholar] [CrossRef]
- Ngapo, T.M. Meat analogues, the Canadian Meat Industry and the Canadian consumer. Meat Sci. 2022, 191, 108846. [Google Scholar] [CrossRef]
- Niva, M.; Vainio, A. Towards more environmentally sustainable diets? Changes in the consumption of beef and plant- and insect-based protein products in consumer groups in Finland. Meat Sci. 2021, 182, 108635. [Google Scholar] [CrossRef]
- Sveinsdottir, K.; Martinsdottir, E.; Hyldig, G.; Jørgensen, B.; Kristbergsson, K. Application of Quality Index Method (QIM) Scheme in Shelf-life Study of Farmed Atlantic Salmon (Salmo salar). J. Food Sci. 2002, 67, 1570–1579. [Google Scholar] [CrossRef]
- Fu, J.; Sun, C.; Chang, Y.; Li, S.; Zhang, Y.; Fang, Y. Structure analysis and quality evaluation of plant-based meat analogs. J. Texture Stud. 2022, 1–11. [Google Scholar] [CrossRef]
- Marescotti, M.E.; Caputo, V.; Demartini, E.; Gaviglio, A. Discovering market segments for hunted wild game meat. Meat Sci. 2019, 149, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, S.S.; Nogueira-Filho, S.L. Wildlife farming: An alternative to unsustainable hunting and deforestation in Neotropical forests? Biodivers. Conserv. 2011, 20, 1385–1397. [Google Scholar] [CrossRef]
- Kempen, E.; Wassenaar, A.; Tobias-Mamina, R. South African consumer attitudes underlying the choice to consume game meat. Meat Sci. 2023, 201, 109175. [Google Scholar] [CrossRef] [PubMed]
- Batat, W. Pillars of sustainable food experiences in the luxury gastronomy sector: A qualitative exploration of Michelin-starred chefs’ motivations. J. Retail. Consum. Serv. 2020, 57, 102255. [Google Scholar] [CrossRef]
- D’Souza, C. Game meats: Consumption values, theory of planned behaviour, and the moderating role of food neophobia/neophiliac behaviour. J. Retail. Consum. Serv. 2022, 66, 102953. [Google Scholar] [CrossRef]
- Demartini, E.; Vecchiato, D.; Tempesta, T.; Gaviglio, A.; Viganò, R. Consumer preferences for red deer meat: A discrete choice analysis considering attitudes towards wild game meat and hunting. Meat Sci. 2018, 146, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Tomasevic, I.; Novakovic, S.; Solowiej, B.; Zdolec, N.; Skunca, D.; Krocko, M.; Nedomova, S.; Kolaj, R.; Aleksiev, G.; Djekic, I. Consumers’ perceptions, attitudes and perceived quality of game meat in ten European countries. Meat Sci. 2018, 142, 5–13. [Google Scholar] [CrossRef]
- Johnson, J.L.; Zamzow, B.K.; Taylor, N.T.; Moran, M.D. Reported U.S. wild game consumption and greenhouse gas emissions savings. Hum. Dimens. Wildl. 2021, 26, 65–75. [Google Scholar] [CrossRef]
- Niewiadomska, K.; Kosicka-Gębska, M.; Gębski, J.; Jeżewska-Zychowicz, M.; Sułek, M. Perception of the Health Threats Related to the Consumption of Wild Animal Meat—Is Eating Game Risky? Foods 2021, 10, 1544. [Google Scholar] [CrossRef]
- Radder, L.; le Roux, R. Factors affecting food choice in relation to venison: A South African example. Meat Sci. 2005, 71, 583–589. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Wiklund, E. Game and venison—Meat for the modern consumer. Meat Sci. 2006, 74, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Neethling, J.; Hoffman, L.C.; Muller, M.M. Factors influencing the flavour of game meat: A review. Meat Sci. 2016, 113, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Popoola, I.O.; Soladoye, P.O.; Gaudette, N.J.; Wismer, W.V. A Review of Sensory and Consumer-related Factors Influencing the Acceptance of Red Meats from Alternative Animal Species. Food Rev. Int. 2020, 38, 266–285. [Google Scholar] [CrossRef]
- Wiklund, E.; Farouk, M.; Finstad, G. Venison: Meat from red deer (Cervus elaphus) and reindeer (Rangifer tarandus tarandus). Anim. Front. 2014, 4, 55–61. [Google Scholar] [CrossRef]
- Costa, J.; Mafra, I.; Oliveira, B.B.; Amaral, J.S. Game: Types and composition. In The Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 177–183. [Google Scholar]
- Valencak, T.G.; Gamsjäger, L.; Ohrnberger, S.; Culbert, N.J.; Ruf, T. Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res. Notes 2015, 8, 273. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Whittington, F.M.; Hughes, S.I. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Stajić, S.; Kalušević, A. Technological and sensory properties of Serbian traditional minced meat product ćevapi with improved nutritional properties. In Proceedings of the 13th International Symposium Modern Trends in Livestock Production, Belgrade, Serbia, 6–8 October 2021. [Google Scholar]
- Cardona, M.; Hernández, M.; Fuentes, A.; Barat, J.M.; Fernández-Segovia, I. Assessment of the attributes that most affect the choice of minced meat and hamburgers. Meat Sci. 2023, 198, 109089. [Google Scholar] [CrossRef]
- Verbeke, W.; Perez-Cueto, F.J.A.; de Barcellos, M.D.; Krystallis, A.; Grunert, K.G. European citizen and consumer attitudes and preferences regarding beef and pork. Meat Sci. 2010, 84, 284–292. [Google Scholar] [CrossRef]
- Djekic, I.; Bozickovic, I.; Djordjevic, V.; Smetana, S.; Terjung, N.; Ilic, J.; Doroski, A.; Tomasevic, I. Can we associate environmental footprints with production and consumption using Monte Carlo simulation? Case study with pork meat. J. Sci. Food Agric. 2021, 101, 960–969. [Google Scholar] [CrossRef]
- Rajic, S.; Simunovic, S.; Djordjevic, V.; Raseta, M.; Tomasevic, I.; Djekic, I. Quality Multiverse of Beef and Pork Meat in a Single Score. Foods 2022, 11, 1154. [Google Scholar] [CrossRef]
- Djekic, I.; Ilic, J.; Guiné, R.P.F.; Tomasevic, I. Can we understand food oral processing using Kano model? Case study with confectionery products. J. Texture Stud. 2020, 51, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Ngapo, T.M.; Riendeau, L.; Laberge, C.; Leblanc, D.; Fortin, J. “Chilled” pork—Part I: Sensory and physico-chemical quality. Meat Sci. 2012, 92, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Djekic, I.; Ilic, J.; Lorenzo, J.M.; Tomasevic, I. How do culinary methods affect quality and oral processing characteristics of pork ham? J. Texture Stud. 2021, 52, 36–44. [Google Scholar] [CrossRef]
- ISO 1442:1997; Meat and Meat Products—Determination of Moisture Content. International Organization for Standardization: Geneva, Switzerland, 1997.
- ISO 937:1978; Meat and Meat Products. Determination of Nitrogen Content. International Organization for Standardization: Geneva, Switzerland, 1978.
- ISO 1443:1973; Meat and Meat Products. Determination of Total Fat Content. International Organization for Standardization: Geneva, Switzerland, 1973.
- Jeong, K.; Hyeonbin, O.; Shin, S.Y.; Kim, Y.S. Effects of sous-vide method at different temperatures, times and vacuum degrees on the quality, structural, and microbiological properties of pork ham. Meat Sci. 2018, 143, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tomasevic, I.; Tomovic, V.; Milovanovic, B.; Lorenzo, J.; Đorđević, V.; Karabasil, N.; Djekic, I. Comparison of a computer vision system vs. traditional colorimeter for color evaluation of meat products with various physical properties. Meat Sci. 2018, 148, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Mokrzycki, W.S.; Tatol, M. Color difference ΔE—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Forde, C.; van Kuijk, N.; Thaler, T.; de Graaf, C.; Martin, N. Oral processing characteristics of solid savoury meal components, and relationship with food composition, sensory attributes and expected satiation. Appetite 2013, 60, 208–219. [Google Scholar] [CrossRef]
- Djekic, I.; Lorenzo, J.M.; Munekata, P.E.S.; Gagaoua, M.; Tomasevic, I. Review on characteristics of trained sensory panels in food science. J. Texture Stud. 2021, 52, 501–509. [Google Scholar] [CrossRef]
- Stajić, S.; Pisinov, B.; Tomasevic, I.; Djekic, I.; Čolović, D.; Ivanović, S.; Živković, D. Use of culled goat meat in frankfurter production—Effect on sensory quality and technological properties. Int. J. Food Sci. Technol. 2020, 55, 1032–1045. [Google Scholar] [CrossRef]
- Braghieri, A.; Piazzolla, N.; Galgano, F.; Condelli, N.; De Rosa, G.; Napolitano, F. Effect of preservative addition on sensory and dynamic profile of Lucanian dry-sausages as assessed by quantitative descriptive analysis and temporal dominance of sensations. Meat Sci. 2016, 122, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Ilic, J.; Tomasevic, I.; Djekic, I. Influence of boiling, grilling, and sous-vide on mastication, bolus formation, and dynamic sensory perception of wild boar ham. Meat Sci. 2022, 188, 108805. [Google Scholar] [CrossRef] [PubMed]
- Cheong, J.N.; Foster, K.D.; Morgenstern, M.P.; Grigor, J.M.; Bronlund, J.E.; Hutchings, S.C.; Hedderley, D.I. The Application of Temporal Dominance of Sensations (TDS) for Oral Processing Studies: An Initial Investigation. J. Texture Stud. 2014, 45, 409–419. [Google Scholar] [CrossRef]
- Pineau, N.; Schlich, P.; Cordelle, S.; Mathonnière, C.; Issanchou, S.; Imbert, A.; Rogeaux, M.; Etiévant, P.; Köster, E. Temporal Dominance of Sensations: Construction of the TDS curves and comparison with time–intensity. Food Qual. Prefer. 2009, 20, 450–455. [Google Scholar] [CrossRef]
- Hennequin, M.; Allison, P.; Veyrune, J.; Faye, M.; Peyron, M. Clinical evaluation of mastication: Validation of video versus electromyography. Clin. Nutr. 2005, 24, 314–320. [Google Scholar] [CrossRef]
- Nicolas, E.; Veyrune, J.L.; Lassauzay, C.; Peyron, M.A.; Hennequin, M. Validation of video versus electromyography for chewing evaluation of the elderly wearing a complete denture. J. Oral Rehabil. 2007, 34, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Mendoza, M.G.; Ketel, E.C.; van der Linden, E.; Forde, C.G.; Piqueras-Fiszman, B.; Stieger, M. Oral processing behavior of drinkable, spoonable and chewable foods is primarily determined by rheological and mechanical food properties. Food Qual. Prefer. 2019, 71, 87–95. [Google Scholar] [CrossRef]
- Rizo, A.; Peña, E.; Alarcón-Rojo, A.; Fiszman, S.; Tarrega, A. Relating texture perception of cooked ham to the bolus evolution in the mouth. Food Res. Int. 2019, 118, 4–12. [Google Scholar] [CrossRef]
- Heck, R.T.; Vendruscolo, R.G.; de Araújo Etchepare, M.; Cichoski, A.J.; de Menezes, C.R.; Barin, J.S.; Lorenzo, J.M.; Wagner, R.; Campagnol, P.C.B. Is it possible to produce a low-fat burger with a healthy n−6/n−3 PUFA ratio without affecting the technological and sensory properties? Meat Sci. 2017, 130, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.J.; Lorenzo, J.M.; Franco, D.; Vicente, A.A.; Cunha, R.L.; Pastrana, L.M.; Quiñones, J.; Cerqueira, M.A. Omega-3 and Polyunsaturated Fatty Acids-Enriched Hamburgers Using Sterol-Based Oleogels. Eur. J. Lipid Sci. Technol. 2019, 121, 1900111. [Google Scholar] [CrossRef]
- Altmann, B.A.; Gertheiss, J.; Tomasevic, I.; Engelkes, C.; Glaesener, T.; Meyer, J.; Schäfer, A.; Wiesen, R.; Mörlein, D. Human perception of color differences using computer vision system measurements of raw pork loin. Meat Sci. 2022, 188, 108766. [Google Scholar] [CrossRef]
- Tomasevic, I.; Djekic, I.; Font-I-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent advances in meat color research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Muller, M.; Schutte, D.W.; Calitz, F.J.; Crafford, K. Consumer expectations, perceptions and purchasing of South African game meat. S. Afr. J. Wildl. Res. 2005, 35, 33–42. [Google Scholar]
- Hoffman, L.C.; van Schalkwyk, S.; Muller, N.M. Physical and chemical properties of male and female mountain reedbuck (Redunca fulvorufula) meat. S. Afr. J. Wildl. Res. 2008, 38, 11–16. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Kubiak, D.; Winarski, R.; Koba-Kowalczyk, M. The effect of gender on the quality of roe deer (Capreolus capreolus L.) meat. Small Rumin. Res. 2012, 103, 169–175. [Google Scholar] [CrossRef]
- Wiklund, E.; Johansson, L.; Malmfors, G. Sensory meat quality, ultimate pH values, blood parameters and carcass characteristics in reindeer (Rangifer tarandus tarandus L.) grazed on natural pastures or fed a commercial feed mixture. Food Qual. Prefer. 2003, 14, 573–581. [Google Scholar] [CrossRef]
- Hutchison, C.; Mulley, R.; Wiklund, E.; Flesch, J. Effect of concentrate feeding on instrumental meat quality and sensory characteristics of fallow deer venison. Meat Sci. 2012, 90, 801–806. [Google Scholar] [CrossRef]
- Lammers, M.; Dietze, K.; Ternes, W. A comparison of the volatile profiles of frying European and Australian wild boar meat with industrial genotype pork by dynamic headspace-GC/MS analysis. J. Muscle Foods 2009, 20, 255–274. [Google Scholar] [CrossRef]
- Swanson, R.; Penfield, M. Reindeer meat: Relationship among dietary fat, flavor and acceptability. Agroborealis 1991, 23, 15–19. [Google Scholar]
- Modzelewska-Kapituła, M.; Żmijewski, T. The influence of age and gender on the quality of raw and roasted wild boars (Sus scrofa) meat. Meat Sci. 2021, 181, 108600. [Google Scholar] [CrossRef]
- Soriano, A.; Murillo, P.; Perales, M.; Sánchez-García, C.; Murillo, J.A.; Ruiz, A.G. Nutritional quality of wild Iberian red deer (Cervus elaphus hispanicus) meat: Effects of sex and hunting period. Meat Sci. 2020, 168, 108189. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Sazonov, E. Automatic measurement of chew count and chewing rate during food intake. Electronics 2016, 5, 62. [Google Scholar] [CrossRef] [PubMed]
Parameter | Sample “A” | Sample “B” | Sample “C” | Sample “D” |
---|---|---|---|---|
Meat mixtures | 40% deer meat; 40% wild boar meat; 20% SFT | 20% deer meat; 60% wild boar meat; 20% SFT | 80% pork meat; 20% SFT | 60% deer meat; 20% wild boar meat; 20% SFT |
Moisture content (%) | 65.44 ± 1.04 a | 65.11 ± 0.92 a | 65.35 ± 1.38 a | 65.41 ± 1.95 a |
Protein content (%) | 16.70 ± 0.23 a | 16.45 ± 1.40 a | 15.53 ± 1.00 a | 16.21 ± 0.46 a |
Fat content (%) | 16.14 ± 0.80 a | 16.01 ± 1.54 a | 16.67 ± 0.26 a | 16.26 ± 0.57 a |
pH value | 6.74 ± 0.07 a | 6.69 ± 0.09 a | 6.83 ± 0.04 a | 6.34 ± 0.06 b |
Fresh Samples | Sample “A” | Sample “B” | Sample “C” | Sample “D” |
---|---|---|---|---|
Meat Part | ||||
L* | 37.7 ± 7.5 a | 41.1 ± 5.5 a | 50.7 ± 4.7 b | 41.0 ± 4.4 a |
a* | 31.8 ± 4.3 a | 32.4 ± 2.9 a,b | 36.0 ± 2.2 b | 31.3 ± 3.7 a |
b* | 10.9 ± 2.0 | 10.4 ± 2.1 | 10.4 ± 1.4 | 11.2 ± 4.5 |
ΔΕ | 14.8 ± 6.7 | 11.2 ± 4.5 | 12.1 ± 4.5 | |
Fresh samples | Fat part | |||
L* | 78.4 ± 3.5 a,b | 76.4 ± 5.8 a | 81.7 ± 2.9 b | 79.7 ± 4.3 a,b |
a* | 7.7 ± 1.9 a | 11.4 ± 3.9 b | 6.8 ± 1.7 a | 7.4 ± 2.0 a |
b* | 2.1 ± 1.3 a | 4.1 ± 2.1 b | 0.4 ± 1.1 a | 1.9 ± 1.2 a |
ΔΕ | 4.7 ± 3.0 | 9.1 ± 5.5 | 4.3 ± 3.3 | |
Grilled samples | Intersection | |||
L* | 60.9 ± 2.7 a | 60.3 ± 2.1 a | 70.2 ± 2.4 b | 61.7 ± 4.5 a |
a* | 15.4 ± 1.4 a | 15.1 ± 1.2 a | 12.6 ± 1.4 b | 14.5 ± 1.5 a |
b* | 7.4 ± 1.2 a | 8.8 ± 1.0 b | 6.8 ± 1.2 a | 7.2 ± 0.4 a |
ΔΕ | 9.8 ± 2.9 | 10.5 ± 2.2 | 8.8 ± 4.6 | |
Parameter | Sample “A” | Sample “B” | Sample “C” | Sample “D” |
---|---|---|---|---|
Hardness [n] | 36.53 ± 2.21 | 35.76 ± 3.43 | 35.09 ± 1.97 | 35.28 ± 4.84 |
Adhesiveness [g·s] | −0.87 ± 1.30 | −6.49 ± 16.80 | −4.30 ± 4.51 | −0.78 ± 0.81 |
Springiness | 0.90 ± 0.01 a,b | 0.92 ± 0.02 a | 0.89 ± 0.02 b | 0.91 ± 0.03 a,b |
Cohesiveness | 0.40 ± 0.05 a | 0.38 ± 0.02 a | 0.45 ± 0.07 b | 0.39 ± 0.04 a |
Gumminess | 14.53 ± 2.29 | 13.52 ± 1.43 | 15.88 ± 2.51 | 13.81 ± 2.37 |
Chewiness [g] | 13.10 ± 2.06 | 12.43 ± 1.40 | 14.19 ± 2.07 | 12.51 ± 2.03 |
Resilience | 0.18 ± 0.03 a,b | 0.16 ± 0.02 a | 0.20 ± 0.04 b | 0.17 ± 0.02 a,b |
Cooking loss (%) | 17.95 ± 1.54 a | 21.06 ± 2.15 b | 17.99 ± 1.16 a | 14.23 ± 1.98 c |
Parameter | Sample “A” | Sample “B” | Sample “C” | Sample “D” |
---|---|---|---|---|
Number of chews | 64.63 ± 28.77 | 65.06 ± 22.30 | 67.13 ± 20.40 | 65.63 ± 21.97 |
Total exposure time [s] | 45.19 ± 25.11 | 46.81 ± 28.01 | 45.94 ± 26.03 | 43.88 ± 26.19 |
Number of swallows | 2.63 ± 0.81 | 2.69 ± 0.70 | 2.44 ± 0.51 | 2.31 ± 0.60 |
Mass of chewing sample [g] | 19.38 ± 1.68 | 20.08 ± 1.69 | 20.62 ± 2.22 | 20.15 ± 1.99 |
Chewing rate [chew/s] | 1.41 ± 0.28 | 1.38 ± 0.26 | 1.45 ± 0.22 | 1.48 ± 0.23 |
Eating rate [g/s] | 0.52 ± 0.19 | 0.52 ± 0.17 | 0.54 ± 0.20 | 0.58 ± 0.27 |
Number of chews per gram [chew/g] | 3.37 ± 2.08 | 3.29 ± 2.30 | 3.24 ± 1.84 | 3.21 ± 1.96 |
Chewing cycle duration [s/chew] | 0.74 ± 0.15 | 0.75 ± 0.14 | 0.71 ± 0.10 | 0.69 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djekic, I.; Stajic, S.; Udovicki, B.; Siladji, C.; Djordjevic, V.; Terjung, N.; Heinz, V.; Tomasevic, I. Quality and Oral Processing Characteristics of Traditional Serbian Ćevap Influenced by Game Meat. Foods 2023, 12, 2070. https://doi.org/10.3390/foods12102070
Djekic I, Stajic S, Udovicki B, Siladji C, Djordjevic V, Terjung N, Heinz V, Tomasevic I. Quality and Oral Processing Characteristics of Traditional Serbian Ćevap Influenced by Game Meat. Foods. 2023; 12(10):2070. https://doi.org/10.3390/foods12102070
Chicago/Turabian StyleDjekic, Ilija, Slavisa Stajic, Bozidar Udovicki, Caba Siladji, Vesna Djordjevic, Nino Terjung, Volker Heinz, and Igor Tomasevic. 2023. "Quality and Oral Processing Characteristics of Traditional Serbian Ćevap Influenced by Game Meat" Foods 12, no. 10: 2070. https://doi.org/10.3390/foods12102070
APA StyleDjekic, I., Stajic, S., Udovicki, B., Siladji, C., Djordjevic, V., Terjung, N., Heinz, V., & Tomasevic, I. (2023). Quality and Oral Processing Characteristics of Traditional Serbian Ćevap Influenced by Game Meat. Foods, 12(10), 2070. https://doi.org/10.3390/foods12102070