Bioactive Compounds in Sea Buckthorn and their Efficacy in Preventing and Treating Metabolic Syndrome
Abstract
:1. Introduction
2. Bioactive Compounds in Sea Buckthorn
2.1. Polyphenols
2.2. Fatty Acids
2.3. Vitamins
2.4. Phytosterols
3. Efficacy and Mechanism of Sea Buckthorn Active Compounds in Treating Metabolic Syndrome
3.1. Clinical Trials of Sea Buckthorn
3.2. Hyperlipidemia and Obesity
3.3. Hyperglycemia and Diabetes
3.4. Hypertension and Cardiovascular Disease
4. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, K.; Binosha Fernando, W.M.A.D.; Durham, R.; Stockmann, R.; Jayasena, V. Nutritional value, health-promoting benefits and food application of sea buckthorn. Food Rev. Int. 2021, 2122–2137. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, F.; Wei, P.; Chai, X.; Hou, G.; Meng, Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review. Front. Nutr. 2022, 9, 1036295. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. The beneficial health aspects of sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) oil. J. Ethnopharmacol. 2018, 213, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Suryakumar, G.; Gupta, A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 2011, 138, 268–278. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Z.; Liao, X. Bioactive compounds, health benefits and functional food products of sea buckthorn: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6761–6782. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Li, N.; Su, C.; Wang, Y.; Zhao, X.; Yang, L.; Li, Y.; Zhang, B.; Chen, J.; Ma, X. The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv. 2020, 10, 44654–44671. [Google Scholar] [CrossRef]
- Wen, P.; Zhao, P.; Qin, G.; Tang, S.; Li, B.; Zhang, J.; Peng, L. Genotoxicity and teratogenicity of seabuckthorn (Hippophae rhamnoides L.) berry oil. Drug. Chem. Toxicol. 2020, 43, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Zuchowski, J. Phytochemistry and pharmacology of sea buckthorn (Elaeagnus rhamnoides; syn. Hippophae rhamnoides): Progress from 2010 to 2021. Phytochem. Rev. 2023, 22, 3–33. [Google Scholar] [CrossRef]
- Ciesarova, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolkova, B.; Koplik, R.; Belajova, E.; Kukurova, K.; Dasko, L.; Panovska, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 9170. [Google Scholar] [CrossRef]
- Gatlan, A.M.; Gutt, G. Sea buckthorn in plant based diets. An analytical approach of sea buckthorn fruits composition: Nutritional value, applications, and health benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. [Google Scholar] [CrossRef]
- Ruixue, G.; Xiaoxiao, C.; Xinbo, G.; Brennan, C.S.; Tong, L.; Xiong, F.; Rui Hai, L. Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophae rhamnoides L.) berries as affected by in vitro digestion. Food Funct. 2017, 8, 4229–4240. [Google Scholar] [CrossRef]
- Ma, X.; Moilanen, J.; Laaksonen, O.; Yang, W.; Tenhu, E.; Yang, B. Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophae rhamnoides) leaves. Food Chem. 2019, 272, 1–11. [Google Scholar] [CrossRef]
- Rop, O.; Ercisli, S.; Mlcek, J.; Jurikova, T.; Hoza, I. Antioxidant and radical scavenging activities in fruits of 6 sea buckthorn (Hippophae rhamnoides L.) cultivars. Turk. J. Agric. For. 2014, 38, 224–232. [Google Scholar] [CrossRef]
- Bittova, M.; Krejzova, E.; Roblova, V.; Kuban, P.; Kuban, V. Monitoring of HPLC profiles of selected polyphenolic compounds in sea buckthorn (Hippophae rhamnoides L.) plant parts during annual growth cycle and estimation of their antioxidant potential. Cent. Eur. J. Chem. 2014, 12, 1152–1161. [Google Scholar] [CrossRef]
- Zadernowski, R.; Naczk, M.; Czaplicki, S.; Rubinskiene, M.; Szlakiewicz, M. Composition of phenolic acids in sea buckthorn (Hippophae rhamnoides L.) berries. J. Am. Oil Chem. Soc. 2005, 82, 175–179. [Google Scholar] [CrossRef]
- Chen, C.; Xu, X.M.; Chen, Y.; Yu, M.Y.; Wen, F.Y.; Zhang, H. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis). Food Chem. 2013, 141, 1573–1579. [Google Scholar] [CrossRef]
- Xueying, M.; Wei, Y.; Marsol-Vall, A.; Laaksonen, O.; Baoru, Y. Analysis of flavour compounds and prediction of sensory properties in sea buckthorn (Hippophae rhamnoides L.) berries. Int. J. Food Sci. Technol. 2020, 55, 1705–1715. [Google Scholar] [CrossRef]
- Ji, M.; Gong, X.; Li, X.; Wang, C.; Li, M. Advanced research on the antioxidant activity and mechanism of polyphenols from Hippophae species-a review. Molecules 2020, 25, 917. [Google Scholar] [CrossRef] [PubMed]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef]
- Slawinska, N.; Zuchowski, J.; Stochmal, A.; Olas, B. Extract from sea buckthorn seeds-a phytochemical, antioxidant, and hemostasis study; Effect of thermal processing on its chemical content and biological activity in vitro. Nutrients 2023, 15, 686. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, J.; Zhu, L.; Yu, X.; Zhang, Q.; Li, M.; Hu, B.; Yang, X. Metabolomics provide a novel interpretation of the changes in flavonoids during sea buckthorn (Hippophae rhamnoides L.) drying. Food Chem. 2023, 413, 135598. [Google Scholar] [CrossRef]
- Craciun, I. Comparative study of liposoluble vitamins and fatty acids from sea buckthorn oil, wheat germ oil and fish oil. Acta Univ. Cibiniensis Ser. E Food Technol. 2018, 22, 85–90. [Google Scholar] [CrossRef]
- Dulf, F.V. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chem. Cent. J. 2012, 6, 106. [Google Scholar] [CrossRef] [PubMed]
- Teleszko, M.; Wojdylo, A.; Rudzinska, M.; Oszmianski, J.; Golis, T. Analysis of lipophilic and hydrophilic bioactive compounds content in sea buckthorn (Hippophae rhamnoides L.) berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, K.A.; Juhasz, M.L.W.; Mesinkovska, N.A. The role of oral vitamins and supplements in the management of atopic dermatitis: A systematic review. Int. J. Dermatol. 2019, 58, 1371–1376. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, F.; Hu, F.; Chen, J.; Lu, Y. Study on enriching palmitoleic acid from seabuckthorn fruit oil by short-path molecular distillation technology. Cereals Oils 2015, 28, 39–41. [Google Scholar]
- Zhang, H.; Zhao, H.; Zhang, Y.; Shen, Y.; Su, H.; Jin, J.; Jin, Q.; Wang, X. Characterization of positional distribution of fatty acids and triacylglycerol molecular compositions of marine fish oils rich in omega-3 polyunsaturated fatty acids. BioMed Res. Int. 2018, 2018, 9682. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, G.; Czaplicki, S.; Szustak, M.; Cichonska, E.; Gendaszewska-Darmach, E.; Konopka, I. Composition of flesh lipids and oleosome yield optimization of selected sea buckthorn (Hippophae rhamnoides L.) cultivars grown in Poland. Food Chem. 2022, 369, 130921. [Google Scholar] [CrossRef]
- Hooper, L.; Martin, N.; Abdelhamid, A.; Davey Smith, G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2015, 8, CD011737. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef]
- Lemos, G.O.; Torrinhas, R.S.; Waitzberg, D.L. Nutrients, physical activity, and mitochondrial dysfunction in the setting of metabolic syndrome. Nutrients 2023, 15, 1217. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Alegria, K.; Arias, C. Functional consequences of brain exposure to saturated fatty acids: From energy metabolism and insulin resistance to neuronal damage. Endocrinol. Diabetes Metab. 2023, 6, e386. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.; Couture, P.; Lamarche, B. Diet quality, saturated fat and metabolic syndrome. Nutrients 2020, 12, 3232. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Lu, J.; Wen, X. Summary of sea buckthorn plant resources distribution and nutrition application. Soil Water Conserv. CHN 2019, 448, 45–49. [Google Scholar] [CrossRef]
- Bernath, J.; Foeldesi, D. Sea buckthorn (Hippophae rhamnoides L.): A promising new medicinal and food crop. J. Herbs Spices Med. Plants 1992, 1, 27–35. [Google Scholar] [CrossRef]
- Green, R.C.; Low, N.H. Physicochemical composition of buffaloberry (Shepherdia argentea), chokecherry (Prunus virginiana) and sea buckthorn (Hippophae rhamnoides) fruit harvested in Saskatchewan, Canada. Can. J. Plant. Sci. 2013, 93, 1143–1153. [Google Scholar] [CrossRef]
- Gutzeit, D.; Moench, S.; Jerz, G.; Winterhalter, P.; Rychlik, M. Folate content in sea buckthorn berries and related products (Hippophae rhamnoides L. ssp. rhamnoides): LC-MS/MS determination of folate vitamer stability influenced by processing and storage assessed by stable isotope dilution assay. Anal. Bioanal. Chem. 2008, 391, 211–219. [Google Scholar] [CrossRef]
- Martinez-Villaluenga, C.; Penas, E.; Hernandez-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 1178. [Google Scholar] [CrossRef]
- Brigelius-Flohe, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [CrossRef]
- Gumustekin, K.; Taysi, S.; Alp, H.H.; Aktas, O.; Oztasan, N.; Akcay, F.; Suleyman, H.; Akar, S.; Dane, S.; Gul, M. Vitamin E and Hippophea rhamnoides L. extract reduce nicotine-induced oxidative stress in rat heart. Cell Biochem. Funct. 2010, 28, 329–333. [Google Scholar] [CrossRef]
- Pop, E.A.; Diaconeasa, Z.M.; Fetea, F.; Bunea, A.; Dulf, F.; Pintea, A.; Socaciu, C. Carotenoids, tocopherols and antioxidant activity of lipophilic extracts from sea buckthorn berries (Hippophae rhamnoides), apricot pulp and apricot kernel (Prunus armeniaca). Bull. UASVM Food Sci. Technol. 2015, 72, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Kallio, H.; Yang, B.R.; Peippo, P.; Tahvonen, R.; Pan, R.L. Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp sinensis and mongolica) of sea buckthorn (Hippophae rhamnoides). J. Agric. Food Chem. 2002, 50, 3004–3009. [Google Scholar] [CrossRef]
- Ma, X.; Yang, W.; Kallio, H.; Yang, B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides). Crit. Rev. Food Sci. Nutr. 2021, 62, 3798–3816. [Google Scholar] [CrossRef] [PubMed]
- Bal, L.M.; Venkatesh, M.; Naik, S.N.; Santosh, S. Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res. Int. 2011, 44, 1718–1727. [Google Scholar] [CrossRef]
- Zhang, J. Chemical constituents of seabuckthorn fruit. Sci. Technol. Food Ind. 1987, 56–62. [Google Scholar] [CrossRef]
- Li, T.; Beveridge, T.; Drover, J. Phytosterol content of sea buckthorn (Hippophae rhamnoides L.) seed oil: Extraction and identification. Food Chem. 2007, 101, 1633–1639. [Google Scholar] [CrossRef]
- Olas, B. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food Chem. Toxicol. 2016, 97, 199–204. [Google Scholar] [CrossRef]
- Mihalcea, L.; Turturica, M.; Cucolea, E.I.; Danila, G.M.; Dumitrascu, L.; Coman, G.; Constantin, O.E.; Grigore-Gurgu, L.; Stanciuc, N. CO2 supercritical fluid extraction of oleoresins from sea buckthorn pomace: Evidence of advanced bioactive profile and selected functionality. Antioxidants 2021, 10, 1681. [Google Scholar] [CrossRef]
- Sajfrtova, M.; Lickova, I.; Wimmerova, M.; Sovova, H.; Wimmer, Z. Beta-Sitosterol: Supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds. Int. J. Mol. Sci. 2010, 11, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Baoru, Y.; Karlsson, R.M.; Oksman, P.H.; Kallio, H.P. Phytosterols in sea buckthorn (Hippophaerhamnoides L.) berries: Identification and effects of different origins and harvesting times. J. Agric. Food Chem. 2001, 49, 5620–5629. [Google Scholar] [CrossRef]
- Zheng, L.; Shi, L.-K.; Zhao, C.-W.; Jin, Q.-Z.; Wang, X.-G. Fatty acid, phytochernical, oxidative stability and in vitro antioxidant property of sea buckthorn (Hippophae rhamnoides L.) oils extracted by supercritical and subcritical technologies. LWT-Food Sci. Technol. 2017, 86, 507–513. [Google Scholar] [CrossRef]
- Wangjun, H.; Zouyan, H.; Hanyue, Z.; Jianhui, L.; Erika, K.; Yimin, Z.; Ka Ying, M.; Wen-Sen, H.; Zhen-Yu, C. Sea buckthorn seed oil reduces blood cholesterol and modulates gut microbiota. Food Funct. 2019, 10, 5669–5681. [Google Scholar] [CrossRef]
- Virgolici, B.; Lixandru, D.; Casariu, E.D.; Stancu, M.; Greabu, M.; Totan, A.; Miricescu, D.; Mohora, M. Sea buckthorn pulp oil treatment prevents atherosclerosis in obese children. ISRN Oxid. Med. 2013, 2013, 164941. [Google Scholar] [CrossRef]
- Lindstedt, A.; Jarvinen, R.; Sinkkonen, J.; Lehtonen, H.-M.; Graca, G.; Viitanen, M.; Gil, A.M.; Kallio, H. Postprandial response on fatty meal is affected by sea buckthorn (Hippophae rhamnoides) supplementation: NMR metabolomics study. Food Res. Int. 2014, 58, 23–34. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, J.; Zhao, A.; Zhang, Y.; Wang, P. Effects of sea buckthorn puree on risk factors of cardiovascular disease in hypercholesterolemia population: A double-blind, randomized, placebo-controlled trial. Anim. Biotechnol. 2022, 33, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhou, F.; Zhang, J.; Li, P.; Zhang, Y.; Yang, B. Dietary supplementation with sea buckthorn berry puree alters plasma metabolomic profile and gut microbiota composition in hypercholesterolemia population. Foods 2022, 11, 2481. [Google Scholar] [CrossRef]
- Mortensen, M.W.; Spagner, C.; Cuparencu, C.; Astrup, A.; Raben, A.; Dragsted, L.O. Sea buckthorn decreases and delays insulin response and improves glycaemic profile following a sucrose-containing berry meal: A randomised, controlled, crossover study of Danish sea buckthorn and strawberries in overweight and obese male subjects. Eur. J. Nutr. 2018, 57, 2827–2837. [Google Scholar] [CrossRef]
- Ren, Z.; Gong, H.; Zhao, A.; Zhang, J.; Yang, C.; Wang, P.; Zhang, Y. Effect of sea buckthorn on plasma glucose in individuals with impaired glucose regulation: A two-stage randomized crossover intervention study. Foods 2021, 10, 40804. [Google Scholar] [CrossRef]
- Huang, N.K.; Matthan, N.R.; Galluccio, J.M.; Shi, P.; Lichtenstein, A.H.; Mozaffarian, D. Supplementation with seabuckthorn oil augmented in 16:1n-7t increases serum trans-palmitoleic acid in metabolically healthy adults: A randomized crossover dose-escalation study. J. Nutr. 2020, 150, 1388–1396. [Google Scholar] [CrossRef]
- Vivek, V.; Kalpana, B.; Ashish, K.; Kumar Hota, S.; Prakash Chaurasia, O.; Bhuvnesh, K. Effect of seabuckthorn seed oil in reducing cardiovascular risk factors: A longitudinal controlled trial on hypertensive subjects. Clin. Nutr. 2017, 36, 1231–1238. [Google Scholar] [CrossRef]
- Cheng, C.; Li, Z.; Zhao, X.; Liao, C.; Quan, J.; Bode, A.M.; Cao, Y.; Luo, X. Natural alkaloid and polyphenol compounds targeting lipid metabolism: Treatment implications in metabolic diseases. Eur. J. Pharmacol. 2020, 870, 2922. [Google Scholar] [CrossRef] [PubMed]
- Jiesi, W.; Wen, Z.; Dan, Z.; Xinglei, Z.; Xiufeng, P.; Weijing, Q. Hypolipidaemic and hypoglycaemic effects of total flavonoids from seed residues of Hippophae rhamnoides L. in mice fed a high-fat diet. J. Sci. Food Agric. 2011, 91, 1446–1451. [Google Scholar]
- Bharti, N.; Rajdeep, K.; Gargi, D. Protective effects of a novel sea buckthorn wine on oxidative stress and hypercholesterolemia. Food Funct. 2013, 4, 240–248. [Google Scholar]
- Yang, F.; Suo, Y.; Chen, D.; Tong, L. Protection against vascular endothelial dysfunction by polyphenols in sea buckthorn berries in rats with hyperlipidemia. Biosci. Trends 2016, 10, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Mulati, A.; Ma, S.; Zhang, H.; Ren, B.; Zhao, B.; Wang, L.; Liu, X.; Zhao, T.; Kamanova, S.; Sair, A.T.; et al. Sea buckthorn flavonoids alleviate high-fat and high-fructose diet-induced cognitive impairment by inhibiting insulin resistance and neuroinflammation. J. Agric. Food Chem. 2020, 68, 5835–5846. [Google Scholar] [CrossRef]
- Xiao, P.-T.; Liu, S.-Y.; Kuang, Y.-J.; Jiang, Z.-M.; Lin, Y.; Xie, Z.-S.; Liu, E.H. Network pharmacology analysis and experimental validation to explore the mechanism of sea buckthorn flavonoids on hyperlipidemia. J. Ethnopharmacol. 2021, 264, 3380. [Google Scholar] [CrossRef] [PubMed]
- Bin, X.; Chunmei, S.; Juan, D.; Hongjuan, G. Research of Hippophae rhamnoides L on serum lipids and protective effect of liver in high-fat diet rats. CHN J. Vet. Med. 2016, 52, 111–113. [Google Scholar]
- NQin, N.; Wang, H.; Yang, J.; Zhang, N.; Chen, C.; Li, G.; Cao, M.; Fan, G. Lipid-lowering effect of compound seabuckthorn concentrate on hyperlipidemic rats. Sci. Technol. Food Ind. 2023, 44, 352–358. [Google Scholar] [CrossRef]
- Kwon, E.Y.; Lee, J.; Kim, Y.J.; Do, A.; Choi, J.Y.; Cho, S.J.; Jung, U.J.; Lee, M.K.; Park, Y.B.; Choi, M.S. Seabuckthorn leaves extract and flavonoid glycosides extract from seabuckthorn leaves ameliorates adiposity, hepatic steatosis, insulin resistance, and inflammation in diet-induced obesity. Nutrients 2017, 9, 569. [Google Scholar] [CrossRef]
- Xin, Y.; Qian, W.; Zeng-Run, P.; Meng-Ran, P.; Wen, Z. Flavonoid-enriched extract from Hippophae rhamnoides seed reduces high fat diet induced obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in C57BL/6 mice. Pharm. Biol. 2017, 55, 1207–1214. [Google Scholar] [CrossRef]
- Ting, Z.; Xuze, Q.; Yuxin, C.; Jianxin, Z.; Junxing, Z. Sea buckthorn (Hippophae rhamnoides L.) oil enhances proliferation, adipocytes differentiation and insulin sensitivity in 3T3-L1 cells. Food Sci. Biotechnol. 2020, 29, 1511–1518. [Google Scholar] [CrossRef]
- Shan, G.; Gaoshuang, H.; Dong, L.; Mingzhe, S.; Dehua, M. Anti-hyperlipidemia effect of sea buckthorn fruit oil extract through the AMPK and Akt signaling pathway in hamsters. J. Funct. Foods 2020, 66, 103837. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, X.; Zhang, Y.; Zhang, B.; Zhang, D. Evaluation of the effect of seabuckthorn sterol on blood lipids. China Food Addit. 2019, 30, 129–137. [Google Scholar]
- Feng, X.; Sureda, A.; Jafari, S.; Memariani, Z.; Tewari, D.; Annunziata, G.; Barrea, L.; Hassan, S.T.S.; Smejkal, K.; Malanik, M.; et al. Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics. Theranostics 2019, 9, 1923–1951. [Google Scholar] [CrossRef]
- Korkus, E.; Dąbrowski, G.; Szustak, M.; Czaplicki, S.; Madaj, R.; Chworoś, A.; Koziołkiewicz, M.; Konopka, I.; Gendaszewska-Darmach, E. Evaluation of the anti-diabetic activity of sea buckthorn pulp oils prepared with different extraction methods in human islet EndoC-betaH1 cells. NFS J. 2022, 27, 54–66. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, J.; Wang, J.; Pang, X.; Zhuang, X.; Zhu, X.; Qu, W. Hypoglycemic effect of aqueous extract of sea buckthorn (Hippophae rhamnoides L.) seed residues in streptozotocin-induced diabetic rats. Phytother. Res. 2010, 24, 228–232. [Google Scholar] [CrossRef]
- Xue, Y.; Miao, Q.; Zhao, A.; Zheng, Y.; Zhang, Y.; Wang, P.; Kallio, H.; Yang, B. Effects of sea buckthorn (Hippophae rhamnoides) juice and L-quebrachitol on type 2 diabetes mellitus in db/db mice. J. Funct. Foods 2015, 16, 223–233. [Google Scholar] [CrossRef]
- Yi, J.; Wang, Z.; Bai, H.; Zuo, L.; Gao, J. Hpyerglycemic of flavonoids and various components from Hippophae rhamnoides L. in ICR mice with alloxan induced diabetes. Sci. Technol. Food Ind. 2014, 35, 347–350. [Google Scholar] [CrossRef]
- Middha, S.K.; Usha, T.; Basistha, B.C.; Goyal, A.K. Amelioration of antioxidant potential, toxicity, and antihyperglycemic activity of Hippophae salicifolia D. Don leaf extracts in alloxan-induced diabetic rats. 3 Biotech 2019, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Tao, C.; Yuan, W.; Lv, Z. Sea buckthorn leaf l-quebrachitol extract for improved glucose and lipid metabolism in insulin resistant HepG2 Cells. Bioresources 2022, 17, 527–542. [Google Scholar] [CrossRef]
- Guo, F.; Zeng, Y.; Li, J.; Chen, Z.; Ma, J. Effects of Hippophae rhamnoides L. subsp. chinensis Rousi polysaccharide on alpha-glucosidase enzyme activity and level of blood glucose. Acta Pharm. Sin. 2013, 48, 604–608. [Google Scholar] [CrossRef]
- Xiping, Z.; Wei, W.; Chun, C. Hypoglycemic effect of hydrophobic BCAA peptides is associated with altered PI3K/Akt protein expression. J. Agric. Food Chem. 2021, 69, 4446–4452. [Google Scholar] [CrossRef]
- Huaibo, Y.; Fangfang, S.; Lina, M.; Wenjuan, W. Effect of sea buckthorn protein on the intestinal microbial community in streptozotocin-induced diabetic mice. Int. J. Biol. Macromol. 2018, 107, 1168–1174. [Google Scholar] [CrossRef]
- Huaibo, Y.; Xiping, Z.; Wenjuan, W.; Lina, M.; Deyi, C.; Cuan, Z. Hypoglycemic and anti-inflammatory effects of sea buckthorn seed protein in diabetic ICR mice. Food Funct. 2016, 7, 1610–1615. [Google Scholar] [CrossRef]
- Shan, G.; Qing, G.; Chengguang, Q.; Rui, S.; Zesheng, Z. Sea buckthorn fruit oil extract alleviates insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus cells and rats. J. Agric. Food Chem. 2017, 65, 1328–1336. [Google Scholar] [CrossRef]
- Gao, S.; Liu, X.; Wang, J.; Qin, C.; Zhang, Z. Research of sea buckthorn palmitic acid extract on regulating muscle glycogen synthesis and alleviating insulin resistance in type 2 diabetes mellitus rats. China Food Addit. 2017, 165, 51–57. [Google Scholar]
- Ju-Sung, K.; Yong-Soo, K.; Yeo-Jin, S.; Myong-Jo, K. Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and alpha-glucosidase inhibitory effect. J. Agric. Food Chem. 2011, 59, 138–144. [Google Scholar]
- Shuxian, C.; Jianmin, T.; Shanshan, W.; Ling, L. Kaempferol protects lipopolysaccharide-induced inflammatory injury in human aortic endothelial cells (HAECs) by regulation of miR-203. Biomed. Pharmacother. 2019, 115, 108888. [Google Scholar] [CrossRef]
- Pang, X.; Zhao, J.; Zhang, W.; Zhuang, X.; Wang, J.; Xu, R.; Xu, Z.; Qu, W. Antihypertensive effect of total flavones extracted from seed residues of Hippophae rhamnoides L. in sucrose-fed rats. J. Ethnopharmacol. 2008, 117, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 1993, 342, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Eccleston, C.; Baoru, Y.; Tahvonen, R.; Kallio, H.; Rimbach, G.; Minihane, A.M. Effects of an antioxidant-rich juice (sea buckthorn) on risk factors for coronary heart disease in humans. J. Nutr. Biochem. 2002, 13, 346–354. [Google Scholar] [CrossRef]
- Bao, M.; Lou, Y. Flavonoids from seabuckthorn protect endothelial cells (EA.hy926) from oxidized low-density lipoprotein induced injuries via regulation of LOX-1 and eNOS expression. J. Cardiovasc. Pharmacol. 2006, 48, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Taka, A.; Togashi, H. Effects of a herbal medicine, Hippophae rhamnoides, on cardiovascular functions and coronary microvessels in the spontaneously hypertensive stroke-prone rat. Clin. Hemorheol. Microcirc. 2009, 41, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Hu, N.; Gong, C.; Suo, Y. Research the protective effect based on NOS of seabuckthorn Vp on vascular endothelial of hyperlipidemia rats. Chin. Med. Mat. 2016, 39, 2324–2328. [Google Scholar] [CrossRef]
- Basu, M.; Prasad, R.; Jayamurthy, P.; Pal, K.; Arumughan, C.; Sawhney, R.C. Anti-atherogenic effects of seabuckthorn (Hippophaea rhamnoides) seed oil. Phytomedicine 2007, 14, 770–777. [Google Scholar] [CrossRef]
- Suchal, K.; Bhatia, J.; Malik, S.; Malhotra, R.K.; Gamad, N.; Goyal, S.; Nag, T.C.; Arya, D.S.; Ojha, S. Seabuckthorn pulp oil protects against myocardial ischemia-reperfusion injury in rats through activation of Akt/eNOS. Front. Pharmacol. 2016, 7, 155. [Google Scholar] [CrossRef]
- Hsu, Y.W.; Tsai, C.F.; Chen, W.K.; Lu, F.J. Protective effects of seabuckthorn (Hippophae rhamnoides L.) seed oil against carbon tetrachloride-induced hepatotoxicity in mice. Food Chem. Toxicol. 2009, 47, 2281–2288. [Google Scholar] [CrossRef]
- Olas, B. The multifunctionality of berries toward blood platelets and the role of berry phenolics in cardiovascular disorders. Platelets 2017, 28, 540–549. [Google Scholar] [CrossRef]
- Johansson, A.K.; Korte, H.; Yang, B.R.; Stanley, J.C.; Kallio, H.P. Sea buckthorn berry oil inhibits platelet aggregation. J. Nutr. Biochem. 2000, 11, 491–495. [Google Scholar] [CrossRef]
- Guo, X.-F.; Yang, B.; Cai, W.; Li, D. Effect of sea buckthorn (Hippophae rhamnoides L.) on blood lipid profiles: A systematic review and meta-analysis from 11 independent randomized controlled trials. Trends Food Sci. Technol. 2017, 61, 1–10. [Google Scholar] [CrossRef]
Phenolic Acids | Content (mg/kg DM) | Reference | |
---|---|---|---|
Berries | Leaves | ||
2,5-Dihydroxybenzoic acid | 0.1–6.1 | [15] | |
Gallic acid | 1.0–16.9 | 19.1–79.1 | [14,15] |
Pyrocatechinic acid | 0.8–6.3 | [15] | |
Protocatechuic acid | 0.7–4.3 | [15] | |
Salicylic acid | 21–47.5 | [15] | |
Vanillic acid | 0.5–1.8 | [15] | |
Caffeic acid | 0–6.7 | 5.9–9.8 | [14,15] |
m-Coumaric acid | 0.3–6.1 | [15] | |
o-Coumaric acid | 2.2–13.3 | [15] | |
p-Coumaric acid | 1.4–22.3 | 8.4–13.4 | [14,15] |
p-Hydroxyphenyl-lactic | 5.3–24.1 | [15] | |
Ferulic acid | 0–10.5 | 7.2–15.1 | [14,15] |
Flavonoids | Content (mg/kg DW) | Reference | ||
---|---|---|---|---|
Berries | Leaves | Seeds | ||
Kaempferol | 102 | 2.8–4.1 | 60 | [11] |
Quercetin | 40–375 | 332–1381 | 110 | [11] |
Isorhamnetin | 103–964 | 270 | [11] | |
K-3-O-glucoside | 56–101 | [11] | ||
K-3-O-rutinoside | 291–894 | [11] | ||
Q-3-O-rutinoside/Rutin | 233–288 | 471–1310 | 590 | [11] |
Q-3-O-glucoside | 402 | [11] | ||
Q-3-O-galactoside | 205–458 | [11] | ||
Q-3-O-sorphroside-7-O-rhamnoside | 227–272 | 301–359 | 240 | [11] |
I-3-O-rutinoside | 210–840 | 107–496 | 490 | [11] |
I-3-O-glucoside | 260 | 254–339 | 280 | [11] |
K-3-O-sophroside-7-rhamnoside | 341 | [11] | ||
I-3-O-sophroside-7-O-rhamnoside | 308–753 | 250–446 | 370 | [11] |
I-3-O-glucoside-7-O-rhamnoside | 1340 | 691–1110 | [11] | |
I-3-O-neohesperidoside | 546–1847 | 585–1639 | [11] | |
I-3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside | 122–300 | 91–345 | [16] | |
Q-3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside | 15–253 | 751–1821 | [16] | |
K-3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside | 75–597 | 292–1134 | [16] | |
Proanthocyanidins (PA) | ||||
PA Dimers | 10–89 | [17] | ||
PA Timers | 13–95 | [17] | ||
PA Tetramers | 8–71 | [17] | ||
PA oligomers | 37–255 | [17] | ||
Total PAs | 1670–19,410 | [17] |
Fatty Acids | Content (% Total Fatty Acid) | Reference | ||
---|---|---|---|---|
Berries | Seeds | Pulp/Peel | ||
Saturated fatty acids | 13.70–42.68 | 10.62–63.92 | 18.99–71.02 | [22] |
Monounsaturated fatty acid | 40.73–60.37 | 12.52–22.95 | 19.66–68.86 | [22] |
Polyunsaturated fatty acids | 3.70–24.62 | 22.75–76.70 | 3.55–25.92 | [22] |
Palmitoleic acid (16:1, x–7) | 16–54 | 0.8–5 | 15–50 | [22,23] |
Vaccenic acid (18:1, x–7) | 4.55–8.12 | 2.2 | 8.1 | [22,23] |
Palmitic acid (16:0) | 17–47 | 6–11.3 | 15–40 | [22,23] |
Oleic acid (18:1, x–9) | 2–45.90 | 15–26 | 10–26.2 | [22,23] |
Linoleic acid (18:2, x–6) | 3.05–20.13 | 35–40 | 4.4–15 | [22,23] |
Stearic acid | 2.6 | 0.55–1.37 | [22,23] |
Vitamin | Content (mg/kg FW) | Reference | ||||
---|---|---|---|---|---|---|
Berries | Seeds | Pulp | Seed Oil | Pulp Oil | ||
α-Tocopherol | 43–223 | 42–160 | 21–168 | 444–1550 | 630–1940 | [41,42] |
β-Tocopherol | 1.3–17 | 10–16 | 1.2–19 | 67–164 | [41,42] | |
γ-Tocopherol | 0.50–15 | 56–95 | 0.6–13 | 461–1349 | 1–3 | [41,42] |
δ-Tocopherol | 0.294 | 37–113 | 320–490 | [41] | ||
α-Tocotrienol | 0.2–4.5 | [42] | ||||
β-Tocotrienol | 0.7–2.3 | 3–11 | 30–120 | [42] | ||
γ-Tocotrienol | 0.3–3.5 | 0.6–8.4 | [42] | |||
δ-Tocotrienol | 0.133 | [41] | ||||
Carotenoids | 20–600 | 300 | 1200 | [1,9] | ||
β-carotene | 2–170 | [43] | ||||
VK | 1100–2300 | [44] | ||||
VC | 400–15,500 | [36] | ||||
VB1 | 0.16–0.35 | [45] | ||||
VB2 | 0.3–5.0 | [45] | ||||
VB11 | 0–7.9 | [37] |
Phytosterol | Pulp Oil (g/kg) | Seed Oil (g/kg) | Seeds | Reference |
---|---|---|---|---|
β-sitosterol | 3.0–5.7 | 5.9–13.8 | 5.6–10.3 | [47,51,52] |
∆5-Avenasterol | 3.3 | 3.5 | [51] | |
Cycloartenol | 1.9 | 1.8 | [51] | |
Stigmasterol | 1.0–1.2 | 0.6–1.2 | [52] | |
Gramisterol | 0.6 | 0.5 | [51] | |
Citrostadienol | 0.5 | [52] | ||
Campesterol | 0.3–1.9 | 0.3 | [51,52] | |
Total sterols | 20–30 | 10–20 | [47] |
Subject | Research Object | Dose | Time | Effects and Mechanisms | Reference |
---|---|---|---|---|---|
Sea buckthorn pulp oil | A total of 41 overweight children (22 boys and 19 girls) with a mean age of 13.32 ± 4.6 years and 30 healthy children and adolescents (16 boys and 14 girls) with normal weight | 800 mg/d | 60 d | Lowered inflammation and blood pressure levels, improved plasma lipid profile, and reduced respiratory burst. | [53] |
Sea buckthorn berry powder | Fourteen healthy non-smoking males (body mass index 23.5 ± 2.0 kg/m2 and age 20–40 years with ca. 26 years) | 80 g/d | 1 day and 6-day wash-out period | Delayed postprandial increase of lipid levels and the restrained increase of 3-hydroxy butanoic acid and N-acetyl glycoproteins. | [54] |
Sea buckthorn puree | A total of 111 patients with hypercholesterolemia | 90 g/d | 90 d | Lowered the diastolic blood pressure and reduced inflammation biomarker hsCRP. | [55] |
Sea Buckthorn Berry Puree | A total of 56 subjects with hypercholesterolemia | 90 g/d | 90 d | Effectively regulated energy metabolism and intestinal microbiome composition in patients with hypercholesterolemia. | [56] |
Sea buckthorn berry | A total of 18 normal-weight subjects | 150 g/d | 1 day and 2 days apart | Pronounced effect on the postprandial insulin concentration, resulting in a decreased and delayed insulin response. | [57] |
Sea buckthorn fruit puree | A total of 38 subjects with IGR | 90 mL/day | 5 weeks | Downward trend on fasting plasma glucose in subjects with IGR. | [58] |
Sea buckthorn Oil | Thirteen participants (7 women and 6 men; age 48 ± 16 y, BMI 30.4 ± 3.7 kg/m2) | 380, 760, 1520 mg/d | 3 weeks, with a 4-week washout phase between the 2 supplements | Increased concentrations of their corresponding phospholipid fatty acids (PLFAs) in metabolically healthy adults. | [59] |
Sea buckthorn seed oil | A total of 32 normal and 74 hypertensive and hypercholesterolemic human subjects | 0.75 mL/d | 30 d | Reduced dyslipidemia and hypertension in male human population. | [60] |
Source | Model | Administration | Active Compounds | Effects and Mechanisms | Reference |
---|---|---|---|---|---|
Sea buckthorn berries | High-cholesterol diet-fed LACA mice | Oral administration of sea buckthorn wine 20 mL/kg/day for 15 days | Phenolics from sea buckthorn wine | Reduces the TC and LDL-C | [63] |
High-fat diet-fed SD rat | Oral administration of sea buckthorn berries’ polyphenols 7, 14, 28 mg/kg/day for 5 weeks | Polyphenols from sea buckthorn berries | Improves hyperlipidemia tolerance; Prevents aortic endothelial dysfunction; Enhances antioxidant enzyme activity; Decreases the expression level of eNOS, ICAM-1, and LOX-1; Reduces the levels of TNF-α and IL-6. | [64] | |
High-fat and -fructose diet-induced C57BL/6J mice. | Oral administration of sea buckthorn flavonoids 0.06%, 0.31% (w/w)/day for 5 weeks | Flavonoids from sea buckthorn | Alleviates insulin resistance, neuroinflammation, and cognitive impairment; Stimulates IRS/AKT activation; Reduces PTP1B expression. | [65] | |
Cholesterol-treated HL7702 cells | Incubation with 6.25–100 μM sea buckthorn flavonoids extract | Flavonoids from sea buckthorn | Promotes cholesterol transformation into bile acids and cholesterol efflux; Inhibits cholesterol de novo synthesis; Accelerates fatty acids oxidation; Upregulates the mRNA expression of PPAR-γ, PPAR-α, ABCA1, and CPT1A; Downregulates SREBP-2 and its target gene LDLR; Increases the protein expression of PPAR-γ, LXRα, and CYP7A1. | [66] | |
High-fat diet-fed Wistar rat | Oral administration of sea buckthorn powder homogenate 0.5, 2.5, 5 mg/g/day for 28 days Oral administration of sea buckthorn compound stock solution 3.57, 7.14, 14.28 mL/kg/day for 4 weeks | Flavonoids from sea buckthorn powder Flavonoids from sea buckthorn juice | Decreases serum TC, TG, LDL-C, MDA content, AST and ALT activity; Increases serum HDL-C, GSH content, and dT-SOD activity. | [67,68] | |
Sea buckthorn leaves | High-fat diet-fed C57BL/6J mice | Oral administration of ethanol-extracted sea buckthorn leaves 1.8% (w/w) and flavonoid glycosides from sea buckthorn 0.04% (w/w) leaves /day for 12 weeks | Sea buckthorn leaves flavonoid glycoside | Inhibits adipogenesis in adipose tissue; Inhibits liver fat production and lipid absorption; Improves liver steatosis and promote liver FAO; Reduces plasma GIP levels; inhibits the resistin and proinflammatory cytokines; Improves insulin sensitivity. | [69] |
Sea buckthorn seed | High-fat diet-fed ICR mice | Oral administration of ethanol-extracted sea buckthorn seed 50, 100, 150 mg/kg/day for 12 weeks | Total flavonoids from seed residues of Hippophae rhamnoides L. | Reduces body, liver, and epididymal fat pad weight in mice; Lowers serum TC and LDL-C levels; Reduces TC and TG concentrations in the liver; Inhibits elevation of blood glucose, improves glucose tolerance abnormalities. | [62] |
High-fat diet-fed C57BL/6J mice | Oral administration of ethanol-extracted sea buckthorn seed 100, 300 mg/kg/day for 9 weeks | Flavonoid-enriched extract from Hippophae rhamnoides L. (Elaeagnaceae) seed | Suppress PPARγ expression; Upregulates PPARα expression; Decreases TG concentration in serum and liver. | [70] | |
Sea buckthorn oil | High-fat diet-fed golden Syrian hamsters | Oral administration of sea buckthorn seed oil 50, 100 mg/kg/day for 6 weeks | Fatty acid from sea buckthorn seed oil | Downregulates gene expression of ACAT2, MTP, and ABCG8; Modulates the relative abundance of Bacteroidales_S24-7_group, Ruminococcaceae, Eubacteriaceae; Increases intestinal cholesterol excretion. | [52] |
3T3-L1 cells with adipocyte differentiation induction | Incubation with sea buckthorn oil (10−4 and 10−5, volume of SBO/volume of medium(V/V)) | Fatty acid from sea buckthorn seed oil | Upregulates proliferating cell nuclear antigen, adipogenic transcriptional factors, mitochondrial biogenesis related gene, glucose transporter 4, greater phosphorylated insulin receptor substrate 1, phosphorylated-Akt, and phosphorylated AMP-activated protein kinase. Promotes 3T3-L1 cells proliferation, adipogenesis, and insulin sensitivity. | [71] | |
High-fat diet-fed golden Syrian hamsters | Oral administration of sea buckthorn fruit oil 50, 100, 200 mg/kg/day for 6 weeks | Palmitoleic acid from sea buckthorn fruit oil | Influences the expression of key genes in the AMPK and Akt pathway; Promotes AMPK and Akt protein phosphorylation; Controls body weight and adipose tissue mass; Reduce TC, TG, HDL-C, non-HDL-C level, oxidative stress, liver impairment, and fat accumulation. | [72] | |
High-fat diet-fed SD rat | Oral administration of saponification-extracted sea buckthorn 100, 200, 400 mg/kg/day for 42 days | Sterols from sea buckthorn | Decreases TC, TG, LDL-C, Apo-A, HDL-C content, and lipid droplet in cytoplasm; Increases Apo-B, HL, and LPL content; Repairs damaged hepatocyte structures. | [73] |
Source | Model | Administration | Active Compounds | Effects and Mechanisms | Reference |
---|---|---|---|---|---|
Sea buckthorn berries | db/db mice | Oral administration of sea buckthorn juice 5 mL/kg/day and sea buckthorn juice with 25, 50, 100 mg/kg/day L-quebrachitol for 10 weeks | Flavanol glycosides in sea buckthorn juice | Reduces food intake, weight gain, and blood glucose levels; Decreases expression of insulin receptor β in liver; Improves glucose tolerance and pancreatic tissue integrity. | [77] |
Alloxan-induced diabetic mice | Oral administration of ethanol-extracted sea buckthorn 2, 20, 40 mg/kg/day for 4 weeks | Flavonoids from sea buckthorn | Reduces blood sugar levels and BUN content; Increases insulin level, liver (muscle) glycogen content, and maltase level. | [78] | |
Sea buckthorn leaves | Alloxan-induced diabetic Wistar rats | Oral administration of methanol-extracted sea buckthorn leaves 200, 400 mg/kg/day for 45 days | sea buckthorn leaf polyphenol | Increases the endogenous antioxidant enzymes, SOD, GSH peroxidase levels; Decreases the malondialdehyde level; Enhances the antioxidant defense against reactive oxygen species. | [79] |
Insulin-resistant HepG2 cells | Incubation with 200 μL sea buckthorn leaf L-resveratrol extract (0.5, 1.0, 2.0, 4.0 mg/mL, diluted with DMEM) | L-resveratrol | Decreases the expression of G6Pase; Increases the expression of PPARα; Inhibits α-amylase activity; Increases glucose consumption; Decreases TG and NEFA. | [80] | |
High-sugar diet-fed mice | Oral administration of ethanol-extracted sea buckthorn leaves 240, 480, 960 mg/kg/day for 4 days | Hippophae rhamnoides L. subsp. chinensis Rousi polysaccharide | Enhances the inhibitory effect of α-glucosidase; Improves glucose tolerance; Reduces blood glucose level. | [81] | |
Sea buckthorn seed | 6−8 weeks old db/db mice | Oral administration of purified sea buckthorn seed meal 0.5, 1, 2 g/kg/day for 8 weeks | Hydrophobic branched chain amino acid polypeptide | Upregulates GLUT4 and PI3K protein levels; Downregulates AKT, GSK-3β, and PI3K/Akt protein expression; Increases glycogen synthase activity and muscle glycogen content; Lowers fasting blood sugar levels, weight, and insulin resistance. | [82] |
Streptozotocin-induced diabetic mice | Oral administration of purified sea buckthorn seed 50, 100, 200 mg/kg/day for 4 weeks | Protein from sea buckthorn seed | Reduces body weight and blood glucose level; The Bifidobacterium, Lactobacillus, Bacteroides, Clostridium coccoides colony was recovered; Increases gut microbial diversity (H) and Simpson index value (E). | [83] | |
Streptozocin-induced diabetic ICR mice | Oral administration of purified sea buckthorn seed 50, 100, 200 mg/kg/d for 4 weeks | Protein from sea buckthorn seed | Reduces CRP, IL-6, TNF-α, and NF-κ B levels; Decreases weight; Decreases FBG; Reduces inflammatory factors and lipid level. | [84] | |
Sea buckthorn oil | High-fat diet-fed SD rat and glucose-trade HepG2 cells | Incubation with sea buckthorn fruit oil (50, 100, 200, 400 μM, diluted with DMEM) Oral administration of sea buckthorn fruit oil 50, 100, 150 mg/kg/day for 4 weeks | Palmitoleic acid from sea buckthorn seed oil | Promotes the expression of PI3K and GS; Inhibits the expression of GSK-3β; Increases the glucose uptake; Lowers blood glucose; Improves insulin indices. | [85] |
High-fat and -sugar diet-fed SD rats | Oral administration of purify sea buckthorn fruit oil 50, 100, 150 mg/kg/d for 4 weeks | Palmitoleic acid | Activates the PI3K pathway; Promotes GS in skeletal muscle; Relieves insulin resistance; Reduces blood glucose. | [86] | |
Glucose-trade human islet EndoC-betaH1 cells | Incubation with sea buck-thorn pulp oil (10μM, diluted with DMEM) | Palmitoleic acid from sea buckthorn pulp oil | Activates G protein-coupled receptors present in pancreatic β-cells; Augments glucose-induced insulin secretion. | [75] |
Source | Model | Administration | Active Compounds | Effects and Mechanisms | Reference |
---|---|---|---|---|---|
Sea buckthorn berries | Spontaneously hypertensive stroke-prone rat | Oral administration of powdered Hippophae fruit 136 mg/kg/d for 60 days | Polyphenol from powdered Hippophae fruits | Decreases mean arterial blood pressure, heart rate, plasma TC, TG, glycosylated hemoglobin, and alkaline phosphatase microvascular capillary partial expression; Reduces hypertensive stress on the ventricular microvessels. | [93] |
High-fat diet-fed SD rat | Oral administration of ethanol-extracted sea buckthorn 7, 14, 28 mg/kg/d for 5 weeks | Flavone from sea buckthorn | Improves SOD activity in liver tissue; Reduces blood lipid level, liver tissue MDA, serum VEGF, VCAM-1 content, aorta eNOS, iNOS protein, and mRNA expression level. | [94] | |
Sea buckthorn leaves | Endothelial cell line EA hy926 cultured with DMEM | Incubation with sea buckthorn flavonoids | Flavonoids from sea buckthorn | Attenuates ox-LDL-induced LOX-1 upregulation; Increases ox-LDL-reduced eNOS expression; Inhibits superoxide overproduction; Enhances cellular antioxidant defenses. | [92] |
Sea buckthorn seed | Sucrose-fed rats | Oral administration of ethanol-extracted sea buckthorn seed residues 50, 100, 150 mg/kg/d for 8 weeks | Total flavones from seed residues of Hippophae rhamnoides L. | Suppresses elevated hypertension, hyperinsulinemia, and dyslipidemia. | [89] |
High cholesterol diet-fed white albino rabbits | Oral administration of supercritical-extracted sea buckthorn seed oil 1 mL/d for 30 days | Fatty acids from sea buckthorn seed oil | Reduces plasma cholesterol, LDL-C, AI, and HDL-C levels; Reduces LDL/HDL ratio and HDL-C/TC ratio; Increases vasorelaxant activity of the aorta. | [95] | |
Sea buckthorn oil | IR-induced Wistar rats | Oral administration of sea buckthorn pulp oil 5, 10, 20 mL/kg/d for 31 days | Fatty acids from sea buckthorn seed oil | Increases expression of Akt–eNOS and Bcl-2; Decreases expression of IKKβ/NF-κB and Bax; Inhibits lipid peroxidation; Reduces malondialdehyde levels, tumor necrosis factor and activities of myocyte injury marker enzymes, lactate dehydrogenase, and creatine kinase-MB; Improves hemodynamic and contractile function. | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Cai, Y.; Wang, K.; Wang, Y. Bioactive Compounds in Sea Buckthorn and their Efficacy in Preventing and Treating Metabolic Syndrome. Foods 2023, 12, 1985. https://doi.org/10.3390/foods12101985
Chen Y, Cai Y, Wang K, Wang Y. Bioactive Compounds in Sea Buckthorn and their Efficacy in Preventing and Treating Metabolic Syndrome. Foods. 2023; 12(10):1985. https://doi.org/10.3390/foods12101985
Chicago/Turabian StyleChen, Ying, Yunfei Cai, Ke Wang, and Yousheng Wang. 2023. "Bioactive Compounds in Sea Buckthorn and their Efficacy in Preventing and Treating Metabolic Syndrome" Foods 12, no. 10: 1985. https://doi.org/10.3390/foods12101985
APA StyleChen, Y., Cai, Y., Wang, K., & Wang, Y. (2023). Bioactive Compounds in Sea Buckthorn and their Efficacy in Preventing and Treating Metabolic Syndrome. Foods, 12(10), 1985. https://doi.org/10.3390/foods12101985