Selection of a Fermentation Strategy for the Preparation of Clam Sauce with Acceptable Flavor Perception
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Bean Koji
2.3. Preparation of Clam Meat Koji
2.4. Preparation of Mixed Koji
2.5. Preparation of Fermented Clam Sauce
2.6. E-Tongue Analysis
2.7. Amino Acid Nitrogen Analysis
2.8. Amino Acid Analysis
2.9. E-Nose Analysis
2.10. GC-MS Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Taste of Clam Sauces by an Electronic Tongue
3.2. Analysis of Amino Acid Nitrogen in Clam Sauces
3.3. Analysis of Free Amino Acids in Clam Sauces
3.4. Electronic Nose Analysis of Clam Sauce Favor Profiles
3.5. Identification of Volatile Compounds in Clam Sauces via HS-SPME/GC-MS
PLS-DA Analysis of Volatile Compound Content in Clam Sauces
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spence, C. The psychology of condiments: A review. Int. J. Gastron. Food Sci. 2018, 11, 41–48. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X. The Development Trend and Problems of Chinese Condiments. IOP Conf. Ser.: Earth Environ. Sci. 2020, 615, 012088. [Google Scholar] [CrossRef]
- Hajeb, P.; Jinap, S. Umami taste components and their sources in Asian foods. Crit. Rev. Food Sci. Nutr. 2015, 55, 778–791. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Teo, J.N.; Liu, S.Q. Fermented shellfish condiments: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4447–4477. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, L.; Song, H.; Feng, J.; Hu, Z.; Yang, M.-J.; Shi, P.; Li, Y.-R.; Guo, Y.-J.; Li, H.-Z. Examination of the regulation of energy metabolism, antioxidant response, and ammonia detoxification in hard clam, Mercenaria mercenaria, under hypersalinity stress. Aquaculture 2023, 563, 738916. [Google Scholar] [CrossRef]
- Karnjanapratum, S.; Benjakul, S.; Kishimura, H.; Tsai, Y.-H. Chemical compositions and nutritional value of Asian hard clam (Meretrix lusoria) from the coast of Andaman Sea. Food Chem. 2013, 141, 4138–4145. [Google Scholar] [CrossRef]
- Han, J.; Kong, T.; Wang, Q.; Jiang, J.; Zhou, Q.; Li, P.; Zhu, B.; Gu, Q. Regulation of microbial metabolism on the formation of characteristic flavor and quality formation in the traditional fish sauce during fermentation: A review. Crit. Rev. Food Sci. Nutr. 2022, 1–20. [Google Scholar] [CrossRef]
- Cai, L.; Wang, Q.; Dong, Z.; Liu, S.; Zhang, C.; Li, J. Biochemical, Nutritional, and Sensory Quality of the Low Salt Fermented Shrimp Paste. J. Aquat. Food Prod. Technol. 2017, 26, 706–718. [Google Scholar] [CrossRef]
- Chen, Q.; Song, J.; Bi, J.; Meng, X.; Wu, X. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC–MS coupled with E-nose. Food Res. Int. 2018, 105, 605–615. [Google Scholar] [CrossRef]
- Sakpetch, P.; Benchama, O.; Masniyom, P.; Salaipeth, L.; Kanjan, P. Physicochemical characteristics and flavor profiles of fermented fish sauce (budu) during fermentation in commercial manufacturing plant. J. Food Sci. Technol. 2022, 59, 693–702. [Google Scholar] [CrossRef]
- Chen, Q.; Kong, B.; Han, Q.; Xia, X.; Xu, L. The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavour development. LWT 2017, 77, 389–396. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, C.; Zhao, H.; Gao, X.; Zhao, M.; Sun, W. Effect of koji fermentation on generation of volatile compounds in soy sauce production. Int. J. Food Sci. Technol. 2013, 48, 609–619. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.; Feng, X.; Zhang, M.; Ding, T.; Zhao, Y.; Wang, C. Comparative proteome and volatile metabolome analysis of Aspergillus oryzae 3.042 and Aspergillus sojae 3.495 during koji fermentation. Food Res. Int. 2023, 165, 112527. [Google Scholar] [CrossRef] [PubMed]
- Trang, N.H.; Shimada, K.-I.; Sekikawa, M.; Ono, T.; Mikami, M. Fermentation of meat with koji and commercial enzymes, and properties of its extract. J. Sci. Food Agric. 2005, 85, 1829–1837. [Google Scholar] [CrossRef]
- Ruan, L.; Ju, Y.; Zhan, C.; Hou, L. Improved umami flavor of soy sauce by adding enzymatic hydrolysate of low-value fish in the natural brewing process. LWT 2022, 155, 112911. [Google Scholar] [CrossRef]
- Chen, D.; Wang, S.; Li, M.; Hao, T.; Lin, S. The dynamic changes in product attributes of shiitake mushroom pilei and stipes during dehydration by hot air drying. J. Food Process. Preserv. 2021, 45, e15648. [Google Scholar] [CrossRef]
- Li, W.; Lu, H.; He, Z.; Sang, Y.; Sun, J. Quality characteristics and bacterial community of a Chinese salt-fermented shrimp paste. LWT 2021, 136, 110358. [Google Scholar] [CrossRef]
- Yu, Y.; Fan, F.; Wu, D.; Yu, C.; Wang, Z.; Du, M. Antioxidant and ACE Inhibitory Activity of Enzymatic Hydrolysates from Ruditapes philippinarum. Molecules 2018, 23, 1189. [Google Scholar] [CrossRef]
- Liu, M.; Han, X.; Tu, K.; Pan, L.; Tu, J.; Tang, L.; Liu, P.; Zhan, G.; Zhong, Q.; Xiong, Z. Application of electronic nose in Chinese spirits quality control and flavour assessment. Food Control 2012, 26, 564–570. [Google Scholar] [CrossRef]
- Luo, X.; Hu, S.; Xu, X.; Du, M.; Wu, C.; Dong, L.; Wang, Z. Improving air-fried squid quality using high internal phase emulsion coating. J. Food Meas. Charact. 2022, 16, 3844–3854. [Google Scholar] [CrossRef]
- Yu, J.; Xu, X.B.; Murtada, K.; Pawliszyn, J. Untargeted analysis of microbial metabolites and unsaturated fatty acids in salmon via hydrophilic-lipophilic balanced solid-phase microextraction arrow. Food Chem. 2022, 380, 132219. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yang, F.; Zhu, B.; Yin, S.; Fu, Y.; Li, Y.; Liao, Y.; Kang, M.; Zhang, Y.; He, J.; et al. Optimization of HS-SPME-GC-MS for the Determination of Volatile Flavor Compounds in Ningxiang Pork. Foods 2023, 12, 297. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-J.; Zhou, T.; Jiang, W.; Zhu, B.-W.; Du, M.; Xu, X.-B. Balanced extraction of volatile and semi-volatile compounds by dynamic linked position unity solid-phase microextraction. Food Chem. 2023, 407, 135160. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Feng, Y.; Hadiatullah, H.; Zheng, F.; Yao, Y. Chemical Characteristics of Three Kinds of Japanese Soy Sauce Based on Electronic Senses and GC-MS Analyses. Front. Microbiol. 2021, 11, 579808. [Google Scholar] [CrossRef] [PubMed]
- Selli, S.; Cayhan, G.G. Analysis of volatile compounds of wild gilthead sea bream (Sparus aurata) by simultaneous distillation–extraction (SDE) and GC–MS. Microchem. J. 2009, 93, 232–235. [Google Scholar] [CrossRef]
- Ouyang, Q.; Chen, Q.; Zhao, J.; Lin, H. Determination of Amino Acid Nitrogen in Soy Sauce Using Near Infrared Spectroscopy Combined with Characteristic Variables Selection and Extreme Learning Machine. Food Bioprocess Technol. 2012, 6, 2486–2493. [Google Scholar] [CrossRef]
- Wang, L.; Su, L.; Zhang, Y.; Pan, S.; Du, Y.; Zhang, J. Biochemical and Sensory Changes of Low-Salt Anchovy (Engraulis japonicus) Sauce Prepared by a Novel Technique. J. Aquat. Food Prod. Technol. 2017, 26, 695–705. [Google Scholar] [CrossRef]
- Bermúdez, R.; Franco, D.; Carballo, J.; Sentandreu, M.Á.; Lorenzo, J.M. Influence of muscle type on the evolution of free amino acids and sarcoplasmic and myofibrillar proteins through the manufacturing process of Celta dry-cured ham. Food Res. Int. 2014, 56, 226–235. [Google Scholar] [CrossRef]
- Zhu, W.; Luan, H.; Bu, Y.; Li, X.; Li, J.; Ji, G. Flavor characteristics of shrimp sauces with different fermentation and storage time. LWT 2019, 110, 142–151. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Shi, J.; Nian, Y.; Da, D.; Xu, X.; Zhou, G.; Zhao, D.; Li, C. Characterization of flavor volatile compounds in sauce spareribs by gas chromatography–mass spectrometry and electronic nose. LWT 2020, 124, 109182. [Google Scholar] [CrossRef]
- Guan, C.; Liu, T.; Li, Q.; Wang, D.; Zhang, Y. Analyzing the Effect of Baking on the Flavor of Defatted Tiger Nut Flour by E-Tongue, E-Nose and HS-SPME-GC-MS. Foods 2022, 11, 446. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Cai, Y.; Sun-Waterhouse, D.; Fu, X.; Su, G.; Zhao, M. Reducing the influence of the thermally induced reactions on the determination of aroma-active compounds in soy sauce using SDE and GC-MS/O. Food Anal. Methods 2017, 10, 931–942. [Google Scholar] [CrossRef]
- Romeo, V.; Ziino, M.; Giuffrida, D.; Condurso, C.; Verzera, A. Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC–MS. Food Chem. 2007, 101, 1272–1278. [Google Scholar] [CrossRef]
- Mohamed, H.N.; Man, Y.C.; Mustafa, S.; Manap, Y.A. Tentative identification of volatile flavor compounds in commercial budu, a Malaysian fish sauce, using GC-MS. Molecules 2012, 17, 5062–5080. [Google Scholar] [CrossRef]
- Li, Z.; Dong, L.; Huang, Q.; Wang, X. Bacterial communities and volatile compounds in Doubanjiang, a Chinese traditional red pepper paste. J. Appl. Microbiol. 2016, 120, 1585–1594. [Google Scholar] [CrossRef]
- Ding, A.; Zhu, M.; Qian, X.; Shi, L.; Huang, H.; Xiong, G.; Wang, J.; Wang, L. Effect of fatty acids on the flavor formation of fish sauce. LWT 2020, 134, 110259. [Google Scholar] [CrossRef]
- Wu, J.; Chen, R.; Li, X.; Fu, Z.; Xian, C.; Zhao, W.; Zhao, C.; Wu, X. Comprehensive identification of key compounds in different quality grades of soy sauce-aroma type baijiu by HS-SPME-GC-MS coupled with electronic nose. Front. Nutr. 2023, 10, 1132527. [Google Scholar] [CrossRef]
- Wen, X.; Chen, A.; Xu, Y.; Wu, Y.; Yang, Y.; Zhang, Y.; Cao, Y.; Chen, S. Comparative Evaluation of Volatile Profiles of Asian Hard Clams (Meretrix meretrix) with Different Shell Colors by Electronic Nose and GC-MS. J. Aquat. Food Prod. Technol. 2021, 30, 107–121. [Google Scholar] [CrossRef]
- Pham, A.J.; Schilling, M.W.; Yoon, Y.; Kamadia, V.V.; Marshall, D.L. Characterization of fish sauce aroma-impact compounds using GC-MS, SPME-Osme-GCO, and Stevens’ power law exponents. J. Food Sci. 2008, 73, C268–C274. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, C.-D.; Huang, J.; Zhou, R.-Q.; Liao, X.-P. Analysis of volatile compounds in Chinese soy sauces moromi cultured by different fermentation processes. Food Sci. Biotechnol. 2013, 22, 605–612. [Google Scholar] [CrossRef]
- Gao, L.; Liu, T.; An, X.; Zhang, J.; Ma, X.; Cui, J. Analysis of volatile flavor compounds influencing Chinese-type soy sauces using GC-MS combined with HS-SPME and discrimination with electronic nose. J. Food Sci. Technol. 2017, 54, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, M.; Song, H.; Meng, Q.; Guan, X. Characterization of key odor-active compounds in commercial high-salt liquid-state soy sauce by switchable GC/GC× GC–olfactometry–MS and sensory evaluation. Food Chem. 2021, 342, 128224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, C.; Zhuang, H.; Liu, Y.; Feng, T.; Nie, B. Characterization of Volatile Component Changes in Peas under Different Treatments by GC-IMS and GC-MS. J. Food Qual. 2021, 2021, 6533083. [Google Scholar] [CrossRef]
MOS | General Description | Sensitive Gas |
---|---|---|
W1C | Aromatic compounds | Toluene, 10 ppm |
W5S | Very sensitive to nitrogen oxides | NO2, 1 ppm |
W3C | Ammonia, used as a sensor for aromatic compounds | Benzene, 10 ppm |
W6S | Mainly hydrogen, selectively (breath gases) | H2, 100 ppb |
W5S | Alkenes, aromatic compounds, less polar compounds | Propane, 1 ppm |
W1S | Sensitive to methane broad range | CH3, 100 ppm |
W1W | Reacts to sulphur compounds | H2S, 1 ppm |
W2S | Detects alcohols, partially aromatic compounds | CO, 100 ppm |
W2W | Aromatics compounds, sulphur organic compounds | H2S, 1 ppm |
W3S | Reacts to high concentrations | CH3, 100 ppm |
Taste | Item | Sauce I | Sauce II | Sauce III | Sauce IV |
---|---|---|---|---|---|
FAA b (mg/100 g) | FAA (mg/100 g) | FAA (mg/100 g) | FAA (mg/100 g) | ||
Umami (+) | Asp | 274.90 ± 1.80 C | 233.67 ± 3.37 B | 299.63 ± 19.03 C | 177.73 ± 3.00 A |
Glu | 268.37 ± 0.59 A | 266.47 ± 3.66 A | 330.7 ± 5.30 C | 296.53 ± 3.60 B | |
Ala | 312.77 ± 4.23 B | 281.63 ± 2.59 A | 328.53 ± 2.21 C | 306.13 ± 2.90 B | |
Gly | 140.93 ± 0.40 C | 118.93 ± 1.55 A | 191.93 ± 2.15 D | 135.07 ± 3.21 B | |
Total | 996.97 ± 5.52 | 900.7 ± 9.61 | 1150.79 ± 26.10 | 915.46 ± 10.57 | |
Sweetness (+) | Ser | 168.27 ± 0.81 C | 144.87 ± 2.05 B | 121.37 ± 3.62 A | 158.97 ± 5.77 C |
Thr | 119.87 ± 0.35 B | 108.33 ± 1.55 A | 138.23 ± 6.02 C | 164.03 ± 1.96 D | |
Pro | 93.73 ± 0.46 C | 69.53 ± 5.23 A | 103.87 ± 2.21 D | 85.40 ± 1.91 B | |
Bitterness/Sweetness (−) | Val | 272.77 ± 8.32 C | 244.73 ± 18.19 B | 179.17 ± 1.58 A | 268.5 ± 1.04 BC |
Met | 49.3 ± 4.26 BC | 42.63 ± 3.21 AB | 40.30 ± 0.80 A | 55.03 ± 2.37 C | |
Lys | 106.70 ± 8.66 A | 135.70 ± 2.13 A | 171.83 ± 1.86 B | 140.20 ± 1.39 AB | |
Bitterness (−) | Ile | 90.53 ± 1.37 C | 80.30 ± 1.28 A | 96.43 ± 1.23 C | 78.40 ± 3.46 A |
Leu | 170.50 ± 1.87 AB | 160.63 ± 2.01 A | 171.67 ± 6.41 B | 173.63 ± 3.06 B | |
Tyr | 21.40 ± 3.91 B | 19.93 ± 0.40 B | 7.30 ± 0.30 A | 23.1 ± 0.35 B | |
Phe | 103.80 ± 9.88 A | 108.87 ± 2.44 A | 162.73 ± 1.60 B | 110.17 ± 4.39 A | |
TFAA c | 2193.84 ± 17.52 | 2016.22 ± 15.43 | 2343.69 ± 40.19 | 2172.89 ± 23.14 |
Compounds d | Molecular Formula | CAS | MV | Characterization | RI a | RI b | RT (min) | Sauce I | Sauce II | Sauce III | Sauce IV |
---|---|---|---|---|---|---|---|---|---|---|---|
c Content | Content | Content | Content | ||||||||
Alcohols (11) | |||||||||||
Phenylethyl alcohol | C8H10O | 60-12-8 | 122 | 91 | 1906 | 1889 | 22.77 | 0.46 ± 0.02 | 1.76 ± 0.02 | ND | 7.30 ± 0.47 |
(E)-2-Octen-1-ol | C8H16O | 18409-17-1 | 128 | 57 | 1614 | 1595 | 18.25 | 0.59 ± 0.29 | 0.38 ± 0.01 | 0.16 ± 0.02 | ND |
1-Octen-3-ol | C8H16O | 3391-86-4 | 128 | 57 | 1450 | 1458 | 13.69 | 2.84 ± 0.29 | 0.20 ± 0.00 | 3.58 ± 0.18 | ND |
3-(methylthio)-1-propanol | C4H10OS | 505-10-2 | 106 | 61 | 1719 | 1709 | 19.84 | 0.16 ± 0.03 | ND | 0.22 ± 0.01 | 0.79 ± 0.01 |
1-Tetradecanol | C20H42O | 629-96-9 | 214 | 55 | 2171 | 2165 | 29.03 | ND | 0.09 ± 0.00 | 0.06 ± 0.00 | ND |
Trans-4-methyl-cyclohexanol | C7H14O | 7731-29-5 | 114 | 57 | 1452 | 1444 | 14.49 | 0.16 ± 0.02 | ND | ND | ND |
1-Hepten-3-ol | C7H14O | 4938-52-7 | 114 | 57 | 1351 | 1332 | 11.86 | ND | 0.03 ± 0.00 | ND | ND |
2-Nonen-1-ol | C9H18O | 22104-79-6 | 142 | 57 | 1692 | - | 5.51 | ND | 0.19 ± 0.03 | ND | ND |
2,3-Butanediol | C4H10O2 | 107-88-0 | 90 | 57 | 1543 | 1542 | 16.69 | ND | ND | 3.19 ± 0.26 | ND |
[R-(R*,R*)]-2,3-butanediol | C4H10O2 | 24347-58-8 | 90 | 57 | - | 1502 | 15.81 | ND | ND | 1.95 ± 0.05 | ND |
Isopulegol | C10H18O | 89-79-2 | 154 | 68 | 1571 | 1554 | 16.93 | ND | ND | ND | 0.33 ± 0.03 |
Alkanes and Olefins (9) | |||||||||||
(E)-2-dodecene | C12H24 | 7206-13-5 | 168 | 55 | 1265 | 1260 | 10.19 | ND | 0.11 ± 0.08 | 0.23 ± 0.01 | 0.58 ± 0.02 |
3-(1-methylpropyl)-cyclohexene | C10H18 | 15232-91-4 | 138 | 81 | 1187 | 1186 | 8.55 | 0.20 ± 0.12 | ND | ND | 0.36 ± 0.01 |
1-isocyano-butane | C5H9N | 2769-64-4 | 83 | 55 | - | - | 5.51 | 0.59 ± 0.04 | ND | ND | 0.40 ± 0.04 |
3-methyl-butanenitrile | C5H9N | 625-28-5 | 83 | 68 | 1129 | - | 6.18 | 0.22 ± 0.04 | ND | ND | ND |
Cyclodecane | C10H20 | 293-96-9 | 140 | 55 | 1261 | 1261 | 10.23 | 0.81 ± 0.25 | ND | ND | ND |
Butyl aldoxime, 2-methyl-, anti- | C5H11NO | 49805-55-2 | 101 | 56 | 1486 | 1468 | 15.55 | 0.25 ± 0.19 | ND | ND | ND |
Cyclododecane | C12H24 | 294-62-2 | 168 | 55 | 1517 | 1526 | 17.36 | 0.56 ± 0.40 | ND | ND | ND |
4-methyl-undecane | C12H26 | 2980-69-0 | 170 | 71 | 1147 | 1160 | 7.87 | ND | ND | 0.58 ± 0.03 | ND |
Longifolene | C15H24 | 475-20-7 | 204 | 161 | 1577 | 1566 | 17.20 | ND | ND | ND | 0.23 ± 0.03 |
Aldehydes and Ketones (22) | |||||||||||
Nonanal | C9H18O | 124-19-6 | 142 | 57 | 1391 | 1377 | 12.54 | 1.54 ± 0.14 | 0.43 ± 0.00 | 0.36 ± 0.01 | 0.71 ± 0.05 |
3-Octanone | C8H16O | 106-68-3 | 128 | 57 | 1253 | 1236 | 9.12 | 2.05 ± 0.29 | 0.72 ± 0.04 | 0.90 ± 0.04 | 1.71 ± 0.03 |
Benzaldehyde | C7H6O | 100-52-7 | 106 | 106 | 1520 | 1502 | 16.84 | 1.50 ± 0.69 | 1.46 ± 0.00 | 1.08 ± 0.10 | 3.11 ± 0.02 |
Benzeneacetaldehyde | C10H10O | 503-74-2 | 129 | 91 | 1640 | 1633 | 18.70 | 16.13 ± 1.59 | 9.57 ± 1.76 | 22.56 ± 0.73 | 14.95 ± 0.57 |
2-ethyl-hexanal | C8H16O | 123-05-7 | 128 | 72 | 1213 | 1213 | 8.93 | 0.07 ± 0.02 | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.08 ± 0.01 |
5-methyl-2-phenyl-2-hexenal | C13H16O | 21834-92-4 | 188 | 117 | 2056 | 2068 | 27.21 | 0.30 ± 0.05 | 0.31 ± 0.13 | 0.44 ± 0.00 | 0.48 ± 0.02 |
(E)-2-Octenal | C8H14O | 2548-87-0 | 126 | 55 | 1429 | 1444 | 13.45 | 0.38 ± 0.29 | 0.38 ± 0.01 | ND | 0.35 ± 0.01 |
3-methyl-butanal | C5H10O | 590-86-3 | 86 | 58 | 918 | - | 3.29 | 2.33 ± 0.07 | ND | ND | 2.61 ± 0.57 |
2-ethyl-2-hexenal | C8H14O | 645-62-5 | 126 | 55 | 1333 | 1331 | 11.86 | 0.10 ± 0.05 | ND | ND | 0.16 ± 0.02 |
5-methyl-hexanal | C7H14O | 1860-39-5 | 114 | 58 | 1150 | 1145 | 7.53 | 0.20 ± 0.12 | ND | 0.16 ± 0.01 | ND |
5,6-dihydro-6-pentyl-2H-Pyran-2-one | C10H16O2 | 54814-64-1 | 168 | 97 | 2227 | 2238 | 30.28 | 0.05 ± 0.02 | ND | ND | 0.17 ± 0.01 |
Furaneol | C6H8O3 | 3658-77-3 | 128 | 57 | 2031 | 2016 | 26.29 | ND | 0.07 ± 0.00 | 0.17 ± 0.01 | ND |
5-methyl-2-hexanone | C7H14O | 110-12-3 | 114 | 58 | 1156 | 1147 | 7.56 | ND | 0.12 ± 0.00 | 0.16 ± 0.01 | 0.36 ± 0.02 |
3-methyl-butanal | C5H10O | 590-86-3 | 86 | 58 | 918 | - | 3.32 | ND | ND | ND | 1.37 ± 0.04 |
Cis-4-decenal | C10H18O | 21662-09-9 | 154 | 55 | 1544 | 1529 | 16.40 | ND | 0.42 ± 0.02 | ND | ND |
5-methyl-2-furancarboxaldehyde | C12H24O | 118447-56-6 | 110 | 110 | 1570 | 1554 | 16.93 | ND | 0.16 ± 0.01 | ND | ND |
1-(2-hydroxy-5-methylphenyl)-ethanone | C9H10O2 | 1450-72-2 | 150 | 135 | 2185 | 2187 | 29.40 | ND | 0.07 ± 0.01 | ND | ND |
2-methyl-butanal | C5H10O | 96-17-3 | 86 | 58 | 914 | - | 3.32 | ND | 1.37 ± 0.04 | 0.83 ± 0.07 | ND |
2-cyclopenten-1-one | C6H8O2 | 80-71-7 | 112 | 112 | 1830 | 1812 | 22.36 | ND | ND | 0.08 ± 0.00 | ND |
2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one, | C6H8O4 | 28564-83-2 | 144 | 144 | 2267 | 2249 | 30.43 | ND | ND | 0.18 ± 0.04 | ND |
α-ethylidene-benzeneacetaldehyde | C10H10O | 503-74-2 | 129 | 91 | 1640 | 1620 | 18.31 | ND | ND | 5.36 ± 0.28 | ND |
6,10-dimethyl-5,9-undecadien-2-one | C13H22O | 689-67-8 | 194 | 69 | 1845 | 1841 | 23.03 | ND | ND | ND | 0.25 ± 0.06 |
heterocyclic compounds (13) | |||||||||||
3-phenyl-furan | C10H8O | 13679-41-9 | 144 | 144 | 1849 | 1836 | 21.94 | 0.18 ± 0.04 | 0.11 ± 0.00 | 8.19 ± 0.31 | 0.21 ± 0.02 |
Benzyl nitrile | C8H7N | 140-29-4 | 117 | 117 | 1910 | 1905 | 23.04 | 1.02 ± 0.07 | 0.16 ± 0.01 | 0.70 ± 0.04 | 0.08 ± 0.02 |
Maltol | C6H6O3 | 118-71-8 | 126 | 126 | 1969 | 1952 | 24.16 | 1.99 ± 0.26 | 1.14 ± 0.02 | 4.13 ± 0.17 | 0.90 ± 0.03 |
2-methoxy-4-vinylphenol | C9H10O2 | 7786-61-0 | 150 | 107 | 2188 | 2182 | 29.38 | 0.38 ± 0.08 | ND | 5.64 ± 0.19 | ND |
2-pentyl-furan | C10H18 | 3983-7-1 | 138 | 81 | 1231 | 1184 | 8.45 | ND | 0.09 ± 0.00 | 0.16 ± 0.02 | ND |
Benzonitrile | C7H5N | 100-47-0 | 103 | 103 | 1585 | 1574 | 17.64 | 0.33± | ND | ND | 0.35 ± 0.06 |
1-(1H-pyrrol-2-yl)-ethanone | C6H7NO | 1072-83-9 | 109 | 94 | 1973 | 1953 | 25.09 | 2.33 ± 0.77 | ND | ND | ND |
2-ethyl-3,5-dimethyl-pyrazine | C8H12N2 | 1124-11-4 | 136 | 135 | 1455 | 1447 | 14.57 | ND | ND | 3.66 ± 0.16 | ND |
Phenyl-oxirane | C8H8O | 122-78-1 | 120 | 91 | 1631 | 1616 | 18.53 | ND | ND | 6.03 ± 0.95 | ND |
Butylated hydroxytoluene | C15H24O | 128-37-0 | 220 | 205 | 1909 | 1890 | 23.91 | ND | ND | 0.35 ± 0.01 | ND |
Phenol | C6H6O | 108-95-2 | 94 | 94 | 2000 | 1984 | 25.71 | ND | ND | 0.39 ± 0.01 | ND |
2,3-dihydro-benzofuran | C8H8O | 496-16-2 | 120 | 120 | 2389 | 2383 | 32.69 | ND | ND | 1.13 ± 0.10 | ND |
Benzothiazole | C7H5NS | 95-16-9 | 135 | 135 | 1958 | 1945 | 24.96 | ND | ND | ND | 0.15 ± 0.06 |
Esters (5) | |||||||||||
Pentyl ester acetic acid | C7H14O2 | 628-63-7 | 130 | 70 | 1176 | - | 6.21 | ND | 0.17 ± 0.02 | 0.13 ± 0.02 | 0.68 ± 0.03 |
Nonanoic acid, ethyl ester | C4H8O2 | 79-31-2 | 186 | 88 | 1531 | 1527 | 16.37 | ND | ND | 1.11 ± 0.00 | ND |
n-Butyl nitrite | C4H9NO2 | 544-16-1 | 103 | 60 | - | 1409 | 13.70 | ND | ND | ND | 0.52 ± 0.43 |
2-phenylethyl ester acetic acid | C10H12O2 | 103-45-7 | 164 | 104 | 1813 | 1796 | 21.98 | ND | ND | ND | 0.62 ± 0.01 |
Ethyl 9-hexadecenoate | C18H34O2 | 54546 | 281 | 55 | 2281 | 2279 | 31.00 | ND | ND | ND | 0.07 ± 0.01 |
Acids(4) | |||||||||||
Octanoic acid | C8H16O2 | 124-07-2 | 144 | 60 | 2060 | 2044 | 26.82 | 0.19 ± 0.05 | 0.07 ± 0.02 | 0.10 ± 0.01 | 0.20 ± 0.00 |
4-methyl-pentanoic acid | C6H12O2 | 646-07-1 | 116 | 57 | 1803 | 1820 | 22.56 | ND | 0.21 ± 0.02 | 0.43 ± 0.03 | ND |
3-methyl-pentanoic acid | C6H12O2 | 105-43-1 | 116 | 60 | 1782 | 1796 | 22.05 | ND | 0.10 ± 0.1 | ND | ND |
Benzoic acid | C9H12O2 | 80-15-9 | 122 | 105 | 2412 | 2425 | 33.37 | ND | 0.05 ± 0.00 | 0.22 ± 0.00 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Ma, Y.; Jiang, W.; Fu, B.; Xu, X. Selection of a Fermentation Strategy for the Preparation of Clam Sauce with Acceptable Flavor Perception. Foods 2023, 12, 1983. https://doi.org/10.3390/foods12101983
Zhou T, Ma Y, Jiang W, Fu B, Xu X. Selection of a Fermentation Strategy for the Preparation of Clam Sauce with Acceptable Flavor Perception. Foods. 2023; 12(10):1983. https://doi.org/10.3390/foods12101983
Chicago/Turabian StyleZhou, Tao, Yunjiao Ma, Wei Jiang, Baoshang Fu, and Xianbing Xu. 2023. "Selection of a Fermentation Strategy for the Preparation of Clam Sauce with Acceptable Flavor Perception" Foods 12, no. 10: 1983. https://doi.org/10.3390/foods12101983
APA StyleZhou, T., Ma, Y., Jiang, W., Fu, B., & Xu, X. (2023). Selection of a Fermentation Strategy for the Preparation of Clam Sauce with Acceptable Flavor Perception. Foods, 12(10), 1983. https://doi.org/10.3390/foods12101983