Modeling the Effects of Seed Maturity on Cooking Time of ‘Dimitra’ Lentils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Agronomic and Morphological Seed Characteristics
2.3. Assessment of Cooking Quality
2.3.1. Cooking Procedure
2.3.2. Texture Analysis
2.3.3. Establishing Optimal Cooking Time (OCT)
2.4. Model Development
2.5. Validation for OCT Prediction Model
2.6. Experimental Design and Statistical Analyses
3. Results and Discussion
3.1. Increase in Seed Mass and Overcooked Seeds during Cooking
3.2. Seed Texture Analysis during Cooking
3.3. Organoleptic Test
3.4. Modeling of Average Values of Texture Analysis Parameters during CT
3.5. Modeling of the Percentage of the Number of Cooked Seeds
3.6. Validation of OCT Prediction Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Irakli, M.; Kargiotidou, A.; Tigka, E.; Beslemes, D.; Fournomiti, M.; Pankou, C.; Kostoula, S.; Tsivelika, N.; Vlachostergios, D.N. Genotypic and Environmental Effect on the Concentration of Phytochemical Contents of Lentil (Lens culinaris L.). Agronomy 2021, 11, 1154. [Google Scholar] [CrossRef]
- Nanos, G.D.; Gerasopoulos, D. Fruits, vegetables, legumes, and grains. In The Mediterranean Diet: Constituents and Health Promotion; Matalas, A.-L., Zampelas, A., Stavrinos, V., Eds.; CRC Press: Boca Raton, FL, USA, 2001; Volume 97, pp. 125–155. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748355691&partnerID=40&md5=f4d196f67734c6c79903c2b3307da79f (accessed on 3 October 2022).
- Williams, P.C.; Nakoul, H.; Singh, K.B. Relationship between cooking time and some physical characteristics in chickpeas (Cicer arietinum L.). J. Sci. Food Agric. 1983, 34, 492–496. [Google Scholar] [CrossRef]
- Bhatty, R.S.; Nielsen, M.A.; Slinkard, A.E. Comparison of the Cooking Quality of Laird and Commercial Chilean Lentils Grown in the Canadian Prairies. Can. Inst. Food Sci. Technol. J. 1983, 16, 104–110. [Google Scholar] [CrossRef]
- Ross, K.; Alejo-Lucas, D.; Malcolmson, L.; Arntfield, S.; Cenkowski, S. Interpretation of the Force-Deformation Curves of Cooked Red Lentils (Lens culinaris). J. Texture Stud. 2009, 40, 109–126. [Google Scholar] [CrossRef]
- Theologidou, G.S.; Lazaridou, A.; Zorić, L.; Tsialtas, I.T. Cooking Quality of Lentils Produced under Mediterranean Conditions. Crop. Sci. 2018, 58, 2121–2130. [Google Scholar] [CrossRef]
- Iliadis, C. Influence of genotype and soil type on cooking time in lentil (Lens culinaris Medikus). Int. J. Food Sci. Technol. 2003, 38, 89–93. [Google Scholar] [CrossRef]
- Ninou, E.; Papathanasiou, F.; Vlachostergios, D.N.; Mylonas, I.; Kargiotidou, A.; Pankou, C.; Papadopoulos, I.; Sinapidou, E.; Tokatlidis, I. Intense Breeding within Lentil Landraces for High-Yielding Pure Lines Sustained the Seed Quality Characteristics. Agriculture 2019, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Kherdekar, M.S.; Sharma, D.; Saxema, K.B. Cooking quality and chemical composition of some early, medium and late maturing cultivars of pigeon pea (Cajanus cajan L.). J. Food Sci. Technol. 1984, 2, 1367. [Google Scholar]
- Erskine, W.; Williams, P.C.; Nakkoul, H. Genetic and environmental variation in the seed size, protein, yield, and cooking quality of lentils. Field Crop. Res. 1985, 12, 153–161. [Google Scholar] [CrossRef]
- Bhatty, R.S. Composition and Quality of Lentil (Lens culinaris Medik): A Review. Can. Inst. Food Sci. Technol. J. 1988, 21, 144–160. [Google Scholar] [CrossRef]
- Iliadis, C. Effects of harvesting procedure, storage time and climatic conditions on cooking time of lentils (Lens culinaris Medikus). J. Sci. Food Agric. 2001, 81, 590–593. [Google Scholar] [CrossRef]
- Vlachostergios, D.N.; Noulas, C.; Kargiotidou, A.; Baxevanos, D.; Tigka, E.; Pankou, C.; Kostoula, S.; Beslemes, D.; Irakli, M.; Tziouvalekas, M.; et al. Identification of the Optimum Environments for the High Yield and Quality Traits of Lentil Genotypes Evaluated in Multi-Location Trials. Sustainability 2021, 13, 8247. [Google Scholar] [CrossRef]
- Zer, M.S.; Kaya, F. Physical, chemical and physicochemical properties of some lentil varieties grown in Turkey. J. Food Agric. Environ. 2010, 8, 610–613. [Google Scholar]
- Jood, S.; Bishnoi, S.; Sharma, A. Chemical analysis and physico-chemical properties of chickpea and lentil cultivars. Food/Nahr. 1998, 42, 71–74. [Google Scholar] [CrossRef]
- Wood, J.A. Evaluation of Cooking Time in Pulses: A Review. Cereal Chem. 2017, 94, 32–48. [Google Scholar] [CrossRef]
- Scanlon, M.G.; Malcolmson, L.J.; Arntfield, S.D.; Watts, B.; Ryland, D.; Prokopowich, D.J. Micronization Pretreatments for Reducing the Cooking Time of Lentils. J. Sci. Food Agric. 1998, 76, 23–30. [Google Scholar] [CrossRef]
- Bourne, M. Relation between Texture and Mastication. J. Texture Stud. 2004, 35, 125–143. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Wang, N.; Panozzo, J.F.; Wood, J.; Malcolmson, L.J.; Arganosa, G.C.; Baik, B.-K.; Driedger, D.; Han, J.L. AACCI Approved Methods Technical Committee Report: Collaborative Study on a Method for Determining Firmness of Cooked Pulses (AACCI Method 56-36.01). Cereal Foods World 2012, 57, 230–234. Available online: https://www.cerealsgrains.org/publications/plexus/cfw/pastissues/2012/documents/CFW-57-5-0230.pdf (accessed on 3 October 2022). [CrossRef]
- Wang, N.; Daun, J.K. Determination of cooking times of pulses using an automated Mattson cooker apparatus. J. Sci. Food Agric. 2005, 85, 1631–1635. [Google Scholar] [CrossRef]
- Taiwo, A.; Akanbi, O.C.; Ajibola, O.O. The effects of soaking and cooking time on the cooking properties of two cowpea varieties. J. Food Eng. 1997, 33, 337–346. [Google Scholar] [CrossRef]
- Wassimi, N.; Abu-Shakra, S.; Tannous, R.; Hallab, A.H. Effect of Mineral Nutrition on Cooking Quality of Lentils. Can. J. Plant. Sci. 1978, 58, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Bhatty, R.S. Cooking quality of lentils: The role of structure and composition of cell walls. J. Agric. Food Chem. 1990, 38, 376–383. [Google Scholar] [CrossRef]
- Galiotou-Panayotou, M.; Kyriakidis, N.B.; Margaris, I. Phytase-phytate-pectin hypothesis and quality of legumes cooked in calcium solutions. J. Sci. Food Agric. 2007, 88, 355–361. [Google Scholar] [CrossRef]
- Sita, K.; Sehgal, A.; Bhandari, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.; Nayyar, H. Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. J. Sci. Food Agric. 2018, 98, 5134–5141. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Sita, K.; Bhandari, K.; Kumar, S.; Kumar, J.; Vara Prasad, P.V.; Siddique, K.H.M.; Nayyar, H. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant. Cell Environ. 2019, 42, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Bhatty, R.S. Relationship between physical and chemical characters and cooking quality in lentil. J. Agric. Food Chem. 1984, 32, 1161–1166. [Google Scholar] [CrossRef]
- Jackson, G.M.; Varriano-Marston, E. Hard-to-Cook Phenomenon in Beans: Effects of Accelerated Storage on Water Absorption and Cooking Time. J. Food Sci. 1981, 46, 799–803. [Google Scholar] [CrossRef]
- Wang, N.; Hou, A.; Santos, J.; Maximiuk, L. Effects of Cultivar, Growing Location, and Year on Physicochemical and Cooking Characteristics of Dry Beans (Phaseolus vulgaris). Cereal Chem. 2017, 94, 128–134. [Google Scholar] [CrossRef]
- Varoquaux, P.; Offant, P.; Varoquaux, F. Firmness, seed wholeness and water uptake during the cooking of lentils (Lens culinaris cv. anicia) for ‘sous vide’ and catering preparations. Int. J. Food Sci. Technol. 2007, 30, 215–220. [Google Scholar] [CrossRef]
Seed Sample | 1000-Seed Mass, Whole Sample (g) | 1000-Seed Mass, MB Seeds (g) | 1000-Seed Mass, IMG Seeds (g) | ΜΒ Seeds (%) | IMG Seeds (%) | Whole Sample Lightness (L*) | Whole Sample Redness (a*) | Whole Sample Yellowness (b*) |
---|---|---|---|---|---|---|---|---|
SCT | 24.4 B | 33.35 A | 16.65 B | 47.6 B | 52.4 A | 56.0 B | 3.2 B | 25.2 A |
LCT | 34.1 A | 33.64 A | 35.49 A | 75.0 A | 25.0 B | 61.6 A | 5.1 A | 25.9 A |
Source of Variability | DF | APF (g) | AAPF (g∙s) | GAPF (g∙s−1) | |||
---|---|---|---|---|---|---|---|
η2 | P | η2 | P | η2 | P | ||
Seed sample (A) | 1 | 26.96 | *** | 25.07 | *** | 26.28 | *** |
Cooking time (B) | 4 | 61.24 | *** | 58.55 | *** | 63.18 | *** |
Seed maturity (C) | 1 | 3.80 | *** | 6.99 | *** | 0.53 | NS |
(A) × (B) | 4 | 5.53 | ** | 4.50 | * | 8.22 | ** |
(A) × (C) | 1 | 0.26 | NS | 0.28 | NS | 0.07 | NS |
(B) × (C) | 4 | 1.30 | NS | 6.87 | NS | 2.33 | NS |
(A) × (B) × (C) | 4 | 0.15 | NS | 0.58 | NS | 0.50 | NS |
Means | |||||||
Seed sample (A) | SCT | 0.68 B | 3.91 B | 0.06 B | |||
LCT | 1.03 A | 5.75 A | 0.12 A | ||||
Cooking time (B) | 20 min | 1.27 A | 6.84 A | 0.16 | |||
30 min | 1.04 B | 6.10 A | 0.11 B | ||||
40 min | 0.76 C | 4.34 | 0.08 C | ||||
50 min | 0.64 D | 3.58 BC | 0.06 CD | ||||
60 min | 0.55 D | 3.28 C | 0.05 D | ||||
Seed maturity (C) | MB | 0.79 B | 4.34 B | 0.09 A | |||
IMG | 0.92 A | 5.31 A | 0.09 A |
Cooking Time (min) | AFP (g) | AAFP (g∙s) | GAFP (g∙s−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SCT | LCT | SCT | LCT | SCT | LCT | SCT | LCT | SCT | LCT | SCT | LCT | |
Average | Weighted Average | Average | Weighted Average | Average | Weighted Average | |||||||
Mature-brown | ||||||||||||
20 | 0.76 ± 0.35 A | 1.34 ± 0.53 A | 0.37 ± 0.17 | 1.23 ± 0.48 | 4.94 ± 3.06 A | 6.71 ± 3.56 A | 2.40 ± 1.48 | 6.13 ± 3.25 | 0.25 ± 0.22 A | 0.19 ± 0.11 A | 0.09 ± 0.08 | 0.17 ± 0.10 |
30 | 0.73 ± 0.32 A | 1.18 ± 0.48 A | 0.34 ± 0.15 | 0.99 ± 0.40 | 4.55 ± 2.14 A | 6.45 ± 3.93 A | 2.11 ± 0.99 | 5.45 ± 3.32 | 0.09 ± 0.03 B | 0.13 ± 0.05 B | 0.05 ± 0.02 | 0.11 ± 0.05 |
40 | 0.46 ± 0.30 B | 0.87 ± 0.37 B | 0.23 ± 0.15 | 0.67 ± 0.29 | 4.47 ± 3.25 B | 4.50 ± 2.30 B | 2.29 ± 1.66 | 3.46 ± 1.77 | 0.09 ± 0.03 BC | 0.11 ± 0.09 B | 0.03 ± 0.01 | 0.09 ± 0.07 |
50 | 0.45 ± 0.18 B | 0.73 ± 0.33 B | 0.22 ± 0.09 | 0.55 ± 0.29 | 4.00 ± 2.34 B | 3.56 ± 2.06 B | 2.00 ± 1.17 | 2.69 ± 1.56 | 0.08 ± 0.04 CD | 0.08 ± 0.08 BC | 0.04 ± 0.02 | 0.06 ± 0.06 |
60 | 0.38 ± 0.14 B | 0.57 ± 0.21 B | 0.14 ± 0.05 | 0.42 ± 0.16 | 3.51 ± 2.18 B | 2.86 ± 1.61 B | 1.30 ± 0.81 | 2.12 ± 1.20 | 0.06 ± 0.03 D | 0.05 ± 0.02 C | 0.02 ± 0.01 | 0.04 ± 0.02 |
Immature green | ||||||||||||
20 | 1.06 ± 0.46 A | 1.63 ± 0.53 A | 0.97 ± 0.42 | 1.50 ± 0.75 | 10.78 ± 3.06 A | 8.94 ± 3.56 A | 9.87 ± 4.34 | 8.22 ± 4.28 | 0.29 ± 0.22 A | 0.21 ± 0.11 A | 0.27 ± 0.27 | 0.19 ± 0.15 |
30 | 0.83 ± 0.43 B | 1.18 ± 0.48 B | 0.75 ± 0.39 | 1.00 ± 0.38 | 4.55 ± 2.14 AB | 6.45 ± 3.93B | 6.58 ± 2.37 | 5.76 ± 2.89 | 0.09 ± 0.03 B | 0.13 ± 0.05 B | 0.12 ± 0.05 | 0.12 ± 0.05 |
40 | 0.67 ± 0.25 BC | 0.87 ± 0.37 C | 0.53 ± 0.20 | 0.71 ± 0.25 | 4.47 ± 3.25 BC | 4.50 ± 2.30 BC | 4.62 ± 1.71 | 4.23 ± 1.71 | 0.09 ± 0.03 BC | 0.11 ± 0.09 C | 0.07 ± 0.02 | 0.07 ± 0.02 |
50 | 0.54 ± 0.24 C | 0.73 ± 0.26 C | 0.41 ± 0.18 | 0.52 ± 0.18 | 4.49 ± 1.77 C | 3.83 ± 1.69 C | 3.42 ± 1.35 | 2.71 ± 1.19 | 0.08 ± 0.03 C | 0.08 ± 0.04 C | 0.06 ± 0.02 | 0.05 ± 0.03 |
60 | 0.51 ± 0.12 C | 0.65 ± 0.19 C | 0.38 ± 0.12 | 0.40 ± 0.12 | 4.24 ± 1.86 C | 3.58 ± 1.37 C | 3.17 ± 1.39 | 2.21 ± 0.84 | 0.07 ± 0.03 C | 0.06 ± 0.03 C | 0.05 ± 0.02 | 0.04 ± 0.02 |
total seeds | ||||||||||||
20 | 0.91 ± 0.43 A | 1.49 ± 0.69 A | 0.73 ± 0.31 | 1.32 ± 0.57 | 7.86 ± 4.92 A | 7.83 ± 4.23 A | 8.69 ± 3.06 | 7.47 ± 3.58 | 0.27 ± 0.26 A | 0.20 ± 0.14 A | 0.28 ± 0.18 | 0.19 ± 0.12 |
30 | 0.78 ± 0.38 B | 1.19 ± 0.46 B | 0.60 ± 0.29 | 1.01 ± 0.40 | 5.88 ± 2.74 A | 6.67 ± 3.66 A | 6.35 ± 1.78 | 6.58 ± 3.22 | 0.11 ± 0.05 B | 0.13 ± 0.06 B | 0.12 ± 0.04 | 0.13 ± 0.05 |
40 | 0.56 ± 0.29 C | 0.88 ± 0.34 C | 0.41 ± 0.18 | 0.70 ± 0.28 | 5.09 ± 2.82 BC | 4.90 ± 2.23 B | 5.21 ± 1.69 | 4.77 ± 1.75 | 0.09 ± 0.03 BC | 0.10 ± 0.07C | 0.09 ± 0.02 | 0.12 ± 0.06 |
50 | 0.41 ± 0.17 C | 0.73 ± 0.29 CD | 0.49 ± 0.21 | 0.57 ± 0.23 | 4.24 ± 2.07 BC | 3.69 ± 1.87 BC | 4.28 ± 1.26 | 3.64 ± 1.48 | 0.08 ± 0.03 CD | 0.08 ± 0.06 CD | 0.08 ± 0.02 | 0.11 ± 0.05 |
60 | 0.37 ± 0.10 C | 0.61 ± 0.20 D | 0.45 ± 0.14 | 0.45 ± 0.15 | 3.86 ± 2.04 C | 3.20 ± 1.52 C | 3.96 ± 1.13 | 3.07 ± 1.13 | 0.07 ± 0.03 D | 0.06 ± 0.00 D | 0.07 ± 0.02 | 0.10 ± 0.02 |
Seed Sample | Seed Maturity | Model 1: Exponential Decay | r2 | p Value | Estimated OCT Time (min) | Model 1 Predicted OCT (min) | Model 1: Exponential Decay | r2 | p Value | Estimated OCT Time (min) | Model 1 Predicted OCT (min) | Model 2: Sigmoid. 3rd Parameter | r2 | p Value | Model 2 Predicted OCT (min) | % Cooked Seeds |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average | Weighted Average | % Cooked Seeds | ||||||||||||||
APF | ||||||||||||||||
SCT | MB | f = 9.86 + 112.2 * exp(−0.023 * x) | 0.8942 | ns | <20 | <10 | f = 2.51 + 60.23 * exp(−0.021 * x) | 0.9401 | ** | <20 | <10 | f(mat.−brown) = 100.1/(1 − exp(−(x − 13.88)/5.6)) | 0.9964 | *** | 42 | 97 |
IMG | f = 39.24 + 170.1 * exp(−0.044 * x) | 0.9960 | ** | 30–40 | 31.5 | f = 23.34 + 182.14 * exp(−0.043 * x) | 0.992 | ** | 20–30 | 26.8 | f(imm.−green) = 101.79/(1 − exp(−(x − 29.28)/8.6)) | 0.9960 | *** | 67.7 | 99 | |
Total | f = 27.21 + 133.8 * exp(−0.034 * x) | 0.9782 | * | 20–30 | 26.8 | f = 14.79 + 102.9 * exp(−0.031 * x) | 0.934 | ns | <20 | 14.2 | F(total) = 103.5/(1 − exp(−(x − 21.9)/9.4)) | 0.9964 | *** | 66.1 | 99 | |
LCT | MB | f = −71.02 + 268.1 * exp(−0.012 * x) | 0.9868 | * | 40–50 | 46.3 | f = 1.14 + 218.5 * exp(−0.027 * x) | 0.9870 | * | 30–40 | 36.4 | f(mat.−brown) = 101.16/(1 − exp(−(x − 31.1)/8.4)) | 0.9948 | *** | 74.29 | 99 |
IMG | f = 48.71 + 319.4 * exp(−0.049 * x) | 0.9988 | ** | 40–50 | 46.3 | f = 21.88 + 343.9 * exp(−0.048 * x) | 1 | *** | 40–50 | 36.2 | f(imm.−green) = 99.62/(1 − exp(−(x − 44.83)/6.5)) | 0.9968 | *** | 79.21 | 99 | |
Total | f = 26.41 + 240.18 * exp(−0.032 * x) | 0.9959 | ** | 40–50 | 46.3 | f = 16.73 + 243.9 * exp(−0.035 * x) | 0.995 | ** | 30–40 | 37.4 | F(total) = 100.27/(1 − exp(−(x − 44.5)/7.5)) | 0.9964 | *** | 75.3 | 99 | |
AAPF | ||||||||||||||||
SCT | MB | f = 600.3 * exp(−0.0048 * x) | 0.7533 | ns | 40–50 | 59.45 | f = 312.7 * exp(−0.0107 * x) | 0.671 | ns | <20 | <10 | f(mat.−brown) = 106.09/(1 − exp(−(x − 18.88)/13.22)) | 0.9702 | *** | 86.32 | 99 |
IMG | f = 430.9 + 3020.4 * exp(−0.0704 * x) | 0.9991 | *** | 40–60 | >70 | f = 240.7 + 2557.7 * exp(−0.0601 * x) | 0.938 | ** | 40–50 | 41.6 | f(imm.−green) = 88.03/(1 − exp(−(x − 12.99)/4.75)) | 0.9951 | *** | 81.95 | 99 | |
Total | f = 331.1 + 1245.5 * exp(−0.0490 * x) | 0.9952 | ** | 40–50 | 47.7 | f = 343.4 + 1656.5 * exp(−0.0559 * x) | 0.999 | ** | 30–40 | 48.9 | F(total) = 127.83/(1 − exp(−(x − 40.19)/23.9)) | 0.9767 | *** | 85.78 | 99 | |
LCT | MB | f = 8.01 + 4169.6 * exp(−0.2730 * x) | 0.9856 | * | 20–30 | 28.0 | f = 2.77 + 76.55 * exp(−0.1253 * x) | 0.961 | * | <20 | 18.9 | f(mat.−brown) = 101.16/(1 − exp(−(x − 31.1)/8.4)) | 0.9948 | *** | 81.40 | 99 |
IMG | f = 7.12 + 283.2 * exp(−0.1258 * x) | 0.9995 | *** | 20–30 | 36.7 | f = 5.11 + 283.1 * exp(−0.1150 * x) | 1 | *** | 30–40 | 33.4 | f(imm.−green) = 99.62/(1 − exp(−(x − 44.83)/6.5)) | 0.9968 | *** | 75.93 | 99 | |
Total | f = 7.61 + 517.2 * exp(−0.1620 * x) | 0.9966 | ** | 30–40 | 33.2 | f = 7.51 + 441.5 * exp(−0.1523 * x) | 0.998 | ** | 30–40 | 34.1 | F(total) = 100.27/(1 − exp(−(x − 44.57)/7.5)) | 0.9964 | *** | 80.31 | 99 | |
GAPF | ||||||||||||||||
SCT | MB | f = 1100.4 * exp(−0.0211 * x) | 0.9369 | ** | 40–50 | 42.3 | f = 1162.1 * exp(−0.0268 * x) | 0.9640 | ** | 30–40 | 35.5 | f(mat.−brown) = 96.87/(1 − exp(−(x − 17.59)/6.6)) | 0.99 | *** | >100 | 97 |
IMG | f = 164.9 + 1528.5 * exp(−0.0353 * x) | 0.9916 | ** | 40–50 | 47.3 | f = 150.7 + 1695.1 * exp(−0.0421 * x) | 0.992 | ** | 40–50 | 41.1 | f(imm.−green) = 97.05/(1 − exp(−(x − 36.76)/4.8)) | 0.9960 | *** | >100 | 97 | |
Total | f = −59.7 + 1325.1 * exp(−0.0210 * x) | 0.9831 | * | 40–50 | 45.6 | f = −2.91 + 1262.7 * exp(−0.0257 * x) | 0.986 | * | 40–50 | 39.8 | F(total) = 100.6/(1 − exp(−(x − 21.0)/6.7)) | 0.9975 | *** | 61 | 99 | |
LCT | MB | f = −4.44 + 34.8 * exp(−0.0208 * x) | 0.9700 | * | 40–50 | 42.5 | f = −0.64 + 35.1 * exp(−0.0329 * x) | 0.9752 | * | 30–40 | 36.7 | f(mat.−brown) = 101.16/(1 − exp(−(x − 31.1)/8.4)) | 0.9948 | *** | 65.00 | 99 |
IMG | f = 5.01 + 60.0 * exp(−0.0646 * x) | 0.9919 | ** | 40–50 | 38.50 | f = 4.07 + 64.7 * exp(−0.0681 * x) | 0.992 | ** | 30–40 | 35.31 | f(imm.−green) = 99.62/(1 − exp(−(x − 44.83)/6.5)) | 0.9968 | *** | >100 | 97 | |
Total | f = 3.08 + 45.1 * exp(−0.052 * x) | 0.9948 | ** | 40–50 | 36 | f = 3.46 + 42.1 * exp(−0.0465 * x) | 0.996 | ** | 20–30 | 40.2 | F(total) = 101.37/(1 − exp(−(x − 33.1)/8.2)) | 0.9976 | *** | 65.54 | 99 |
Seed Sample | Predicted OCT (min) | Applied CT (min) | APF (N) | Tactile | Chewiness | Cooked Seeds (%) |
---|---|---|---|---|---|---|
SCT | 66.1 | 66.1 | 0.64 ± 0.13 | 6.8 ± 0.94 | 7.1 ± 2.1 | 97.6 |
LCT | 75.3 | 75.3 | 0.63 ± 0.11 | 7.0 ± 0.60 | 7.3 ± 6.0 | 98.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svarna, M.; Mavromatis, A.; Vlachostergios, D.N.; Gerasopoulos, D. Modeling the Effects of Seed Maturity on Cooking Time of ‘Dimitra’ Lentils. Foods 2023, 12, 42. https://doi.org/10.3390/foods12010042
Svarna M, Mavromatis A, Vlachostergios DN, Gerasopoulos D. Modeling the Effects of Seed Maturity on Cooking Time of ‘Dimitra’ Lentils. Foods. 2023; 12(1):42. https://doi.org/10.3390/foods12010042
Chicago/Turabian StyleSvarna, Maria, Athanasios Mavromatis, Dimitrios N. Vlachostergios, and Dimitrios Gerasopoulos. 2023. "Modeling the Effects of Seed Maturity on Cooking Time of ‘Dimitra’ Lentils" Foods 12, no. 1: 42. https://doi.org/10.3390/foods12010042
APA StyleSvarna, M., Mavromatis, A., Vlachostergios, D. N., & Gerasopoulos, D. (2023). Modeling the Effects of Seed Maturity on Cooking Time of ‘Dimitra’ Lentils. Foods, 12(1), 42. https://doi.org/10.3390/foods12010042