Valorization of Beetroot By-Products for Producing Value-Added Third Generation Snacks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Beetroot By-Product Powder Manufacturing
2.3. Formulation and Preparation of Corn 3G Extruded Pellets
2.4. Microwave Expansion
2.4.1. Microwave Dehydration-Kinetics
- Mt: Water mass fraction of the sample at each drying time (gwater/gproduct);
- Me: Water mass fraction of at the end of the process (gwater/gproduct);
- M0: Water mass fraction of sample before the process (gwater/gproduct);
- a, b, c and k: Drying constants;
- n: Drying exponent;
- t: Microwave-drying time (h);
2.4.2. Microwave Expansion-Kinetics
2.5. Analytical Determinations
2.5.1. Water Activity and Water Loss
2.5.2. Extrusion Parameters
2.5.3. Bioactive Compounds
- Betalains
- a: absorbance at 538 nm
- b: absorbance at 476 nm
- c: absorbance at 600 nm
- x: absorbance of betanin corrected for colored impurities
- y: absorbance of vulgaxanthin-I corrected for colored impurities
- z: absorbance of impurities
- A: absorbance of betanin corrected for colored impurities (x) or absorbance of vulgaxanthin-I corrected for colored impurities (y)
- DF: dilution factor and the pathlength of the 1 cm cuvette.
- MW: molecular weights of the representative compounds betanin (550 g/mol)and vulgaxanthin-I (308 g/mol)
- EC: extinction coefficients of the representative compounds betanin (60,000 L/mol·cm) and vulgaxanthin-I (48,000 L/mol·cm)
- Total phenols
- Antioxidant capacity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Microwaving Expansion Kinetics
3.2. Snacks Characterization
3.2.1. Physicochemical Properties
3.2.2. Bioactive Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; Bin Ujang, Z. The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- Elijah, A.I.; Edem, V.E. Value addition to Food and Agricultural wastes: A Biotechnological approach. Nig. J. Agric. Food Environ. 2017, 13, 139–154. [Google Scholar]
- United Nations Environment Programme. Food Waste Index Report; United Nations Environment Programme: Nairobi, Kenya, 2021; ISBN 978-92-807-3868-1. [Google Scholar]
- Aureli, V.; Scalvedi, M.L.; Rossi, L. Food Waste of Italian Families: Proportion in Quantity and Monetary Value of Food Purchases. Foods 2021, 10, 1920. [Google Scholar] [CrossRef] [PubMed]
- Rechkemmer, G. Funktionelle Lebensmittel-Zukunft de Ernahrung oder Marketing-Strategie. Forsch. Sonderh. 2001, 55, S-332. [Google Scholar]
- Koul, V.K.; Jain, M.P.; Koul, S.; Sharma, V.K.; Tikoo, C.L.; Jain, S.M. Spray drying of beet root juice using different carriers. Indian J. Chem. Technol. 2002, 9, 442–445. [Google Scholar]
- Roy, K.; Gullapalli, S.; Chaudhuri, U.R.; Chakraborty, R. The use of a natural colorant based on betalain in the manufacture of sweet products in India. Int. J. Food Sci. Technol. 2004, 39, 1087–1091. [Google Scholar] [CrossRef]
- Panghal, A.; Virkar, K.; Kumar, V.; Dhull, S.B.; Gat, Y.; Chhikara, N. Development of Probiotic Beetroot Drink. Curr. Res. Nutr. Food Sci. 2017, 5, 257–262. [Google Scholar] [CrossRef]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; García-Villanova, B.; Guerra-Hernández, E.J.; Ruíz-López, M.D. Changes in dietary behaviours during the COVID-19 outbreak confinement in the Spanish COVIDiet study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Jeyakumar, D.T.; Jayawardena, R.; Chourdakis, M. The impact of COVID-19 lockdown on snacking habits, fast-food and alcohol consumption: A systematic review of the evidence. Clin Nutr. 2021, 41, 3038–3045. [Google Scholar] [CrossRef]
- Sinisterra-Loaiza, L.I.; Vázquez, B.I.; Miranda, J.M.; Cepeda, A.; Cardelle-Cobas, A. Food habits in the Galician population during confinement for COVID-19. Nutr Hospit. 2020, 37, 1190–1196. [Google Scholar]
- Enriquez-Martinez, O.G.; Martins, M.C.T.; Pereira, T.S.S.; Pacheco, S.O.S.; Pacheco, F.J.; Lopez, K.V.; Huancahuire-Vega, S.; Silva, D.A.; Mora-Urda, A.I.; Rodriguez-Vásquez, M.; et al. Diet and lifestyle changes during the COVID-19 pandemic in ibero-american countries: Argentina, Brazil, Mexico, Peru, and Spain. Front Nutr. 2021, 8, 671004. [Google Scholar] [CrossRef] [PubMed]
- Larrea, M.A.; Chang, Y.K.; Bustos, F.M. Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chem. 2005, 89, 301–308. [Google Scholar] [CrossRef]
- Berrios, J.D.J.; Cámara, M.; Torija, M.E.; Alonso, M. Effect of extrusion cooking and sodium bicarbonate addition on the carbohydrate composition of black bean flours. J. Food Process Preser. 2002, 26, 113–128. [Google Scholar] [CrossRef]
- Riaz, M.N. Extruders in Food Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Kraus, S.; Sólyom, K.; Schuchmann, H.P.; Gaukel, V. Drying kinetics and expansion of non-predried extruded starch-based pellets during microwave vacuum processing. J. Food Process Eng. 2013, 36, 763–773. [Google Scholar] [CrossRef]
- Boischot, C.; Moraru, C.I.; Kokini, J.L. Factors that influence the microwave expansion of glassy amylopectin extrudates. Cereal Chem. 2003, 80, 56–61. [Google Scholar] [CrossRef]
- Gutiérrez, J.D.; Catalá-Civera, J.M.; Bows, J.; Peñaranda-Foix, F.L. Dynamic measurement of dielectric properties of food snack pellets during microwave expansion. J. Food Eng. 2017, 202, 1–8. [Google Scholar] [CrossRef]
- Gimeno, E.; Moraru, C.I.; Kokini, J.L. Effect of xanthan gum and CMC on the structure and texture of corn flour pellets expanded by microwave heating. Cereal Chem. 2004, 81, 100–107. [Google Scholar] [CrossRef]
- García-Segovia, P.; Igual, M.; Martínez-Monzó, J. Beetroot microencapsulation with pea protein using spray drying: Physicochemical, structural and functional properties. Appl. Sci. 2021, 11, 6658. [Google Scholar] [CrossRef]
- Igual, M.; García-Martínez, E.; Martín-Esparza, M.E.; Martínez-Navarrete, N. Effect of processing on the drying kinetics and functional value of dried apricot. Food Res. Int. 2012, 47, 284–290. [Google Scholar] [CrossRef]
- Patil, R.T.; Berrios, J.d.J.; Tang, J.; Swanson, B.G. Evaluation of methods for expansion properties of legume extrudates. Appl. Eng. Agric. 2007, 23, 777–783. [Google Scholar] [CrossRef]
- Patil, R.T.; Singh, D.S.; Tribelhorn, R.E. Effect of processing conditions on extrusion cooking of soy-rice blend with a dry extrusion cooker. J. Food Sci. Technol. 1990, 27, 376–378. [Google Scholar]
- García-Segovia, P.; Igual, M.; Noguerol, A.T.; Martínez-Monzó, J. Use of insects and pea powder as alternative protein and mineral sources in extruded snacks. Eur. Food Res. Technol. 2020, 246, 703–712. [Google Scholar] [CrossRef]
- Singh, N.; Smith, A.C. A comparison of wheat starch, whole wheat meal and oat flour in the extrusion cooking process. J. Food Eng. 1997, 34, 15–32. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Influence of microalgae addition in formulation on colour, texture, and extrusion parameters of corn snacks. Food Sci. Technol. Int. 2020, 26, 685–695. [Google Scholar] [CrossRef]
- Robertson, J.A.; De Monredon, F.D.; Dysseler, P.; Guillon, F.; Amadò, R.; Thibault, J.F. Hydration properties of dietary fiber and resistant starch: A European collaborative study. LWT Food Sci. Technol. 2000, 33, 72–79. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Corke, H. Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Igual, M.; Chi¸s, M.S.; Paucean, A.; Vodnar, D.C.; Muste, S.; Man, S.; Martínez-Monzó, J.; García-Segovia, P. Valorization of Rose Hip (Rosa canina) Puree Co-Product in Enriched Corn Extrudates. Foods 2021, 10, 2787. [Google Scholar] [CrossRef]
- Bouvier, J.M. Melt expansion in extrusion-cooking. Feed Technol. 1997, 1, 13–15. [Google Scholar]
- Nilsson, T. Studies into the pigments in beetroot (Beta vulgaris L. ssp. vulgaris var. rubra L.). Lantbr. Ann. 1970, 36, 179–219. [Google Scholar]
- Igual, M.; García-Martínez, E.; Camacho, M.M.; Martínez-Navarrete, N. Stability of micronutrients and phytochemicals of grapefruit jam as affected by the obtention process. Food Sci. Technol. Int. 2016, 22, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Umbach, S.L.; Davis, E.A.; Gordon, J.; Callaghan, P.T. Water self-diffusion coefficients and dielectric properties determined for starch-gluten-water mixtures heated by microwave and by conventional methods. Cereal Chem. 1992, 69, 637–642. [Google Scholar]
- Simpson, R.; Ramírez, C.; Nuñez, H.; Jaques, A.; Almonacid, S. Understanding the success of Page’s model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends Food Sci. Technol. 2017, 62, 194–201. [Google Scholar] [CrossRef]
- Camire, M.E.; Camire, A.; Krumhar, K. Chemical and nutritional changes in foods during extrusion. Crit. Rev. Food Sci. Nutr. 1990, 29, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Moraru, C.; Kokini, J. Nucleation and expansion during extrusion and microwave heating of cereal foods. Compr. Rev. Food Sci. Food Saf. 2006, 2, 147–165. [Google Scholar] [CrossRef]
- Wang, S.; Gu, B.J.; Ganjyal, G.M. Impacts of the inclusion of various fruit pomace types on the expansion of corn starch extrudates. LWT 2019, 110, 223–230. [Google Scholar] [CrossRef]
- Igual, M.; Chiş, M.S.; Socaci, S.A.; Vodnar, D.C.; Ranga, F.; Martínez-Monzó, J.; García-Segovia, P. Effect of Medicago sativa addition on physicochemical, nutritional and functional characteristics of corn extrudates. Foods 2021, 10, 928. [Google Scholar] [CrossRef]
- Karkle, E.L.; Keller, L.; Doogan, H.; Alavi, S. Matrix transformation in fiber-added extruded products: Impact of different hydration regimens on texture, microstructure and digestibility. J. Food Eng. 2012, 108, 171–182. [Google Scholar] [CrossRef]
- Igual, M.; Baldo, J.V.L.; García-Segovia, P.; Martínez-Monzó, J. Impact of Urtica dioica on phenols, antioxidant capacity, color, texture and extrusion parameters of extruded corn products. Br. Food J. 2022; ahead-of-print. [Google Scholar]
- Samray, M.N.; Masatcioglu, T.M.; Koksel, H. Bread crumbs extrudates: A new approach for reducing bread waste. J. Cereal Sci. 2019, 85, 130–136. [Google Scholar] [CrossRef]
- Lusas, E.W.; Rooney, L.W. Snack Foods Processing; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kumar, R.; Xavier, K.A.M.; Lekshmi, M.; Balange, A.; Gudipati, V. Fortification of Extruded Snacks with Chitosan: Effects on Techno Functional and Sensory Quality. Carbohydr. Polym. 2018, 194, 267–273. [Google Scholar] [CrossRef]
- Kim, C.H.; Maga, J.A.; Martin, J.T. Properties of extruded blends of wheat dried distiller grain flour with other flours. Int. J. Food Sci. 1989, 24, 373–384. [Google Scholar] [CrossRef]
- Matthey, F.P.; Hanna, M.A. Physical and functional properties of twin-screw extruded whey protein concentrate–Corn starch blends. LWT 1997, 30, 359–366. [Google Scholar] [CrossRef]
- Pelembe, L.A.M.; Erasmus, C.; Taylor, J.R.N. Development of a protein-rich composite sorghum–cowpea instant porridge by extrusion cooking process. LWT 2002, 35, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Seker, M.; Hanna, M.A. Cross-linking starch at various moisture contents by phosphate substitution in an extruder. Carbohydr Polym. 2005, 59, 541–544. [Google Scholar] [CrossRef]
- Alam, M.R.; Scampicchio, M.; Angeli, S.; Ferrentino, G. Effect of hot melt extrusion on physical and functional properties of insect based extruded products. J. Food Eng. 2019, 259, 44–51. [Google Scholar] [CrossRef]
- Gümüşay, Ö.A.; Şeker, M.; Sadıkoğlu, H. Response surface methodology for evaluation of the effects of screw speed, feed moisture, and xanthan gum level on functional and physical properties of corn half products. LWT 2019, 111, 622–631. [Google Scholar] [CrossRef]
- Carmo, C.S.D.; Varela, P.; Poudroux, C.; Dessev, T.; Myhrer, K.; Rieder, A.; Zobel, H.; Sahlstrøm, S.; Knutsen, S.H. The impact of extrusion parameters on physicochemical, nutritional and sensorial properties of expanded snacks from pea and oat fractions. LWT 2019, 112, 108252. [Google Scholar] [CrossRef]
- Azzollini, D.; Derossi, A.; Fogliano, V.; Lakemond, C.M.M.; Severini, C. Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-riched snack. Innov. Food Sci. Emerg. Technol. 2018, 45, 344–353. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, C.; Li, J.; Hussain, S.; Yan, S.; Wang, Q. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT 2018, 93, 204–211. [Google Scholar] [CrossRef]
- Patil, R.T.; Berrios, J.D.J.; Tang, J.; Pan, J.; Swanson, B. Physical characteristics of food extrudates-a review. In 2005 ASAE Annual Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005. [Google Scholar]
- Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. J. Food Eng. 2020, 282, 110032. [Google Scholar] [CrossRef]
- Navarro-Cortez, R.O.; Aguilar-Palazuelos, E.; Castro-Rosas, J.; Falfán Cortés, R.N.; Cadena Ramírez, A.; Delgado-Licon, E.; Gómez-Aldapa, C.A. Physicochemical and sensory characterization of an extruded product from blue maize meal and orange bagasse using the response surface methodology. CYTA J. Food 2018, 16, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Ben Haj Koubaier, H.; Snoussi, A.; Essaidi, I.; Chaabouni, M.M.; Thonart, P.; Bouzouita, N. Betalain and phenolic compositions, antioxidant activity of tunisian red beet (Beta vulgaris L. conditiva) roots and stems extracts. Int J Food Prop. 2014, 17, 1934–1945. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.; Nascimento, H.; Sampaio, K.; Souza, E. A review on bioactive compounds of beet (Beta vulgaris L. subsp. vulgaris) with special emphasis on their beneficial effects on gut microbiota and gastrointestinal health. Crit. Rev. Food Sci. Nutr. 2020, 61, 2022–2033. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Saguy, I.S. Effect of water activity and moisture content on the stability of beet powder pigments. J. Food Sci. 2006, 48, 703–707. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Jaglan, S.; Sharma, P.; Panghal, A. Nutritional, physicochemical, and functional quality of beetroot (Beta vulgaris L.) incorporated Asian noodles. Cereal Chem. 2019, 96, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, T.; Martinez-Villaluenga, C.; Frias, J.; Wiczkowski, W.; Peñas, E.; Bączek, N.; Zieliński, H. The effect of processing and in vitro digestion on the betalain profile and ACE inhibition activity of red beetroot products. J. Funct. Foods. 2019, 55, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Esquivel, P.; Betalains. Handbook on Natural Pigments in Food and Beverages; Carle, R., Schweiggert, R.M., Eds.; Woodhead Publishing: Duxford, UK, 2016; pp. 81–99. [Google Scholar]
- Khan, M.I. Plant betalains: Safety, antioxidant activity, clinical efficacy, and bioavailability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 316–330. [Google Scholar] [CrossRef]
Sample | Model | |||
---|---|---|---|---|
Page | Logarithmic | Midilli–Kucuk | ||
C25 | Model constants | k: 0.00062 n: 1.93984 | a: 2.2581 k: 0.0082 c: −1.150 | a: 1.0939 k: 0.0069 n: 1.2271 b: −0.0029 |
Adj. R2 | 96.36 | 91.52 | 91.41 | |
RMSE | 0.078 | 0.119 | 0.120 | |
C30 | Model constants | k: 0.00054 n: 1.81839 | a: 1.4349 k: 0.0115 c: −0.3080 | a: 0.9752 k: 0.00002 n: 2.6097 b: −0.0006 |
Adj. R2 | 93.99 | 84.15 | 95.93 | |
RMSE | 0.086 | 0.140 | 0.071 | |
25B5 | Model constants | k: 0.00053 n: 1.82760 | a: 1.3991 k: 0.0116 c: −0.2898 | a: 1.0185 k: 0.00028 n: 1.8714 b: −0.0026 |
Adj. R2 | 90.36 | 78.79 | 89.15 | |
RMSE | 0.110 | 0.163 | 0.116 | |
25B10 | Model constants | k: 0.00044 n: 2.00154 | a: 1.5595 k: 0.0140 c: −0.4164 | a: 1.0831 k: 0.0140 n: 1.4746 b: −0.0018 |
Adj. R2 | 95.54 | 87.83 | 91.46 | |
RMSE | 0.086 | 0.1424 | 0.119 | |
30B5 | Model constants | k: 0.00028 n: 2.05887 | a: 1.4313 k: 0.0135 c: −0.3159 | a: 0.9927 k: 0.0002 n: 2.1548 b: 0.0003 |
Adj. R2 | 98.22 | 91.93 | 97.55 | |
RMSE | 0.048 | 0.1029 | 0.057 | |
30B10 | Model constants | k: 0.00036 n: 1.89348 | a: 1.4084 k: 0.0111 c: −0.2683 | a: 1.1026 k: 0.0016 n: 1.3214 b: −0.0054 |
Adj. R2 | 93.43 | 80.02 | 88.25 | |
RMSE | 0.089 | 0.1549 | 0.119 |
Beetroot % | SEI | ρb (g/cm3) | ε (%) | WAI | WSI (%) | SWE (mLswollen/gdry solid) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
25 % Water Content in Mixture | |||||||||||
0 | 9.4 (0.2) aA | 0.565 (0.002) aA | 13.165 (0.113) aC | 4.1 (0.7) aA | 23 (2) aA | 7.2 (0.6) aA | 0.209 (0.002) bB | 70 (1.3) aA | 7.3 (0.4) bA | 10.6 (0.5) aC | 2.36 (0.04) bC |
5 | 9.24 (0.08) aA | 0.568 (0.003) aA | 14.5 (0.4) bB | 1.4 (0.2) aB | 24 (2) aA | 7.75 (0.9) aA | 0.27 (0.02) bA | 64.5 (0.6) aB | 6.26 (0.09) bB | 14.23 (0.13) aA | 3.5525 (0.0003) bB |
10 | 9.4 (0.2) bA | 0.543 (0.008) aB | 15.8 (0.2) aA | 1.7 (0.7) aB | 24 (2) aA | 6.5 (0.4) aB | 0.246 (0.013) bA | 65.8 (1.4) aB | 5.7 (0.2) bC | 13.2 (0.4) aB | 5.230 (0.097) aA |
30% Water Content in Mixture | |||||||||||
0 | 9.6 (0.2) aB | 0.5465 (0.0106) bA | 13.1 (0.4) aB | 3.8 (0.7) aA | 20.7 (1.4) aB | 6.3 (0.3) bA | 0.265 (0.007) aB | 65 (2) aA | 8.821 (0.006) aA | 2.54 (0.03) bB | 5.412 (0.206) aA |
5 | 9.21 (0.04) aC | 0.5365 (0.0007) bA | 15.3 (0.2) aA | 2.2 (0.5) aB | 23.1 (0.7) aA | 5.5 (0.4) bB | 0.35 (0.05) aA | 55 (4) bB | 7.70 (0.12) aB | 6.8 (0.2) bA | 4.54 (0.04) aB |
10 | 10.00 (0.13) aA | 0.545 (0.002) aA | 14.82 (0.06) bA | 1.3 (0.9) aB | 22.15 (1.08) aAB | 4.9 (0.5) bB | 0.335 (0.012) aA | 58 (2) bB | 6.5 (0.4) aC | 6.6 (0.5) bA | 5.3 (0.2) aA |
Beetroot % | |||||
---|---|---|---|---|---|
25% Water Content in Mixture | |||||
0 | 0.61 (0.04) aB | 4.60 (0.13) bB | 4.2 (0.8) aB | 7.4 (0.7) aA | 63 (8) aA |
5 | 0.71 (0.05) aB | 5.5 (0.4) aA | 4.5 (0.2) aB | 7.8 (0.3) bA | 54 (6) aAB |
10 | 0.9 (0.2) aA | 6.07 (1.02) aA | 6.0 (1.3) aA | 7.1 (0.7) bA | 50 (8) aB |
30% Water Content in Mixture | |||||
0 | 0.69 (0.07) aA | 5.3 (0.5) aB | 4.5 (0.3) aB | 7.2 (1.3) aB | 50 (8) bA |
5 | 0.7 (0.2) aA | 5.8 (1.3) aB | 5.7 (1.2) aAB | 8.8 (0.4) aA | 48 (6) aA |
10 | 0.78 (0.12) aA | 7294 (1108) aA | 6.22 (1.03) aA | 9.3 (0.6) aA | 49 (9) aA |
Beetroot % | L* | a* | b* | C* | h* | ΔE1 | ΔE2 |
---|---|---|---|---|---|---|---|
25% Water Content in Mixture | |||||||
0 | 77.00 (0.13) aA | 5.38 (0.04) aC | 41.2 (0.4) aA | 41.6 (0.4) aA | 82.57 (0.02) aA | 3.9 (0.4) bC | 8.95 (0.09) aC |
5 | 56.5 (0.8) aB | 23.9 (0.4) aB | 26.1 (0.5) aB | 35.4 (0.7) aB | 47.44 (0.09) bB | 16.9 (0.4) aA | 20.2 (0.5) aA |
10 | 41 (2) bC | 24.5 (0.4) aA | 17.2 (0.7) bC | 29.9 (0.7) bC | 35.0 (0.7) bC | 10.5 (2) aB | 13 (2) aB |
30% Water Content in Mixture | |||||||
0 | 76.8 (0.2) aA | 5.26 (0.07) aC | 40.10 (0.09) bA | 40.44 (0.09) bA | 82.53 (0.09) aA | 4.89 (0.09) aC | 5.9 (0.2) bC |
5 | 55.7 (0.8) aB | 22.780 (0.104) bB | 26.405 (0.006) aB | 34.87 (0.07) aB | 49.22 (0.12) aB | 11.8 (0.6) bA | 19.9 (0.7) aA |
10 | 51.4 (0.8) aC | 24.09 (0.09) aA | 23.00 (0.13) aC | 33.30 (0.15) aC | 43.68 (0.07) aC | 8.2 (0.6) bB | 13.8 (0.6) aB |
Beetroot % | BC | BX | TP | AC | BC | BX | TP | AC |
---|---|---|---|---|---|---|---|---|
Mixtures | Expanded Products | |||||||
25% Water Content in Mixture | ||||||||
0 | -aC | -aC | 33 (2) aC | 2.0 (0.4) aB | -aC | -aC | 19.1 (0.8) aB | 1.5 (0.3) aC |
5 | 7.48 (0.12) aB | 6.9 (0.2) aB | 38.7 (1.4) bB | 7.79 (0.13) bA | 5.67 (0.12) aB | 4.64 (0.15) aB | 20.2 (1.2) aB | 4.22 (0.15) aB |
10 | 11.7 (0.2) aA | 12.4 (0.2) aA | 45 (2) aA | 7.5 (0.7) aA | 8.211 (0.012) aA | 7.3 (0.5) aA | 25 (1) aA | 6.4 (0.2) aA |
30% Water Content in Mixture | ||||||||
0 | -aC | -aC | 34.18 (1.09) aC | 3.0 (0.3) aB | -aC | -aC | 20.2 (0.6) aB | 1.33 (0.12) aC |
5 | 6.3 (0.2) bB | 6.7 (0.2) aB | 41.93 (1.09) aB | 8 (0.12) aA | 4.236 (0.109) bB | 3.3 (0.2) bB | 19.9 (0.5) aB | 4.27 (0.06) aB |
10 | 9.89 (0.12) bA | 12.0 (0.4) aA | 48 (3) aA | 9.5 (0.9) aA | 6.19 (0.16) bA | 7.8 (0.3) aA | 24.45 (1.02) aA | 5.2 (0.3) bA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igual, M.; Moreau, F.; García-Segovia, P.; Martínez-Monzó, J. Valorization of Beetroot By-Products for Producing Value-Added Third Generation Snacks. Foods 2023, 12, 176. https://doi.org/10.3390/foods12010176
Igual M, Moreau F, García-Segovia P, Martínez-Monzó J. Valorization of Beetroot By-Products for Producing Value-Added Third Generation Snacks. Foods. 2023; 12(1):176. https://doi.org/10.3390/foods12010176
Chicago/Turabian StyleIgual, Marta, Faustine Moreau, Purificación García-Segovia, and Javier Martínez-Monzó. 2023. "Valorization of Beetroot By-Products for Producing Value-Added Third Generation Snacks" Foods 12, no. 1: 176. https://doi.org/10.3390/foods12010176
APA StyleIgual, M., Moreau, F., García-Segovia, P., & Martínez-Monzó, J. (2023). Valorization of Beetroot By-Products for Producing Value-Added Third Generation Snacks. Foods, 12(1), 176. https://doi.org/10.3390/foods12010176