Development of Non-Targeted Mass Spectrometry Method for Distinguishing Spelt and Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Spelt and Wheat Samples
2.2. Wet Lab Procedure
2.2.1. Sample Preparation, Protein Digestion and Purification
2.2.2. Liquid Chromatography Mass Spectrometry (LC-MS)
2.3. Dry Lab Pipeline
2.3.1. Spectral Data Preparation
2.3.2. Nested Cross Validation (NCV)
2.3.3. Neural Network Analysis
2.4. Decision Based on D Scores
3. Results
3.1. Wet Lab LC-HRMS Measurements
3.2. Internal Validation: Youden Plot with the D Scores for Calibration Set
3.3. Precision Parameters
3.4. External Validation Set: Processed Goods and Artificial Mixes
3.5. External Valdiation with Untypical Spelt Cultivars
3.6. External Validation with Other Wheat Cultivars (Old Wheat Cultivars)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrere, V.; Everstine, K.; Théolier, J.; Godefroy, S. Food Fraud Vulnerability Assessment: Towards a Global Consensus on Procedures to Manage and Mitigate Food Fraud. Trends Food Sci. Technol. 2020, 100, 131–137. [Google Scholar] [CrossRef]
- Marvin, H.J.; Hoenderdaal, W.; Gavai, A.K.; Mu, W.; van den Bulk, L.M.; Liu, N.; Frasso, G.; Ozen, N.; Elliott, C.; Manning, L. Global Media as an Early Warning Tool for Food Fraud; an Assessment of MedISys-FF. Food Control 2022, 137, 108961. [Google Scholar] [CrossRef]
- Johnson, R. Food Fraud and “Economically Motivated Adulteration” of Food and Food Ingredients; Congressional Research Service: Washington, DC, USA, 2018. [Google Scholar]
- Ulberth, F. Tools to Combat Food Fraud–a Gap Analysis. Food Chem. 2020, 330, 127044. [Google Scholar] [CrossRef]
- Robson, K.; Dean, M.; Haughey, S.; Elliott, C. A Comprehensive Review of Food Fraud Terminologies and Food Fraud Mitigation Guides. Food Control 2021, 120, 107516. [Google Scholar] [CrossRef]
- Faller, A.C.; Kesanakurti, P.; Arunachalam, T. Fraud in Grains and Cereals. In Food Fraud; Elsevier: msterdam, The Netherlands, 2021; pp. 281–308. [Google Scholar]
- Liu, H.-Y.; Wadood, S.A.; Xia, Y.; Liu, Y.; Guo, H.; Guo, B.-L.; Gan, R.-Y. Wheat AuthenticatioN: An Overview on Different Techniques and Chemometric Methods. Crit. Rev. Food Sci. Nutr. 2021, 63, 1–24. [Google Scholar] [CrossRef]
- Righetti, L.; Rubert, J.; Galaverna, G.; Folloni, S.; Ranieri, R.; Stranska-Zachariasova, M.; Hajslova, J.; Dall’Asta, C. Characterization and Discrimination of Ancient Grains: A Metabolomics Approach. nt. J. Mol. Sci. 2016, 17, 1217. [Google Scholar] [CrossRef] [Green Version]
- Cavanna, D.; Loffi, C.; Dall’Asta, C.; Suman, M. A Non-Targeted High-Resolution Mass Spectrometry Approach for the Assessment of the Geographical Origin of Durum Wheat. Food Chem. 2020, 317, 126366. [Google Scholar] [CrossRef]
- EU Commision. Commission implementing regulation (EU) 2015/550—Of 24 March 2015—Entering a Name in the Register of Protected Designations of Origin and Protected Geographical Indications [Fränkischer Grünkern (PDO)]. Off. J. Eur. Union 2015. [Google Scholar]
- De Girolamo, A.; Arroyo, M.C.; Cervellieri, S.; Cortese, M.; Pascale, M.; Logrieco, A.F.; Lippolis, V. Detection of Durum Wheat Pasta Adulteration with Common Wheat by Infrared Spectroscopy and Chemometrics: A Case Study. LWT 2020, 127, 109368. [Google Scholar] [CrossRef]
- Von Büren, M.; Stadler, M.; Lüthy, J. Detection of Wheat Adulteration of Spelt Flour and Products by PCR. Eur. Food Res. Technol. 2001, 212, 234–239. [Google Scholar] [CrossRef]
- Bonte, A.; Neuweger, H.; Goesmann, A.; Thonar, C.; Mäder, P.; Langenkämper, G.; Niehaus, K. Metabolite Profiling on Wheat Grain to Enable a Distinction of Samples from Organic and Conventional Farming Systems. J. Sci. Food Agric. 2014, 94, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Faris, J.D. Wheat Domestication: Key to Agricultural Revolutions Past and Future. In Genomics of Plant Genetic Resources; Springer: Berlin/Heidelberg, Germany, 2014; pp. 439–464. [Google Scholar]
- Mayer, F.; Haase, I.; Graubner, A.; Heising, F.; Paschke-Kratzin, A.; Fischer, M. Use of Polymorphisms in the γ-Gliadin Gene of Spelt and Wheat as a Tool for Authenticity Control. J. Agric. Food Chem. 2012, 60, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Kohajdová, Z.; Karovicova, J. Nutritional Value and Baking Application of Spelt Wheat. Acta Sci. Pol. Technol. Aliment. 2008, 7, 5–14. [Google Scholar]
- Muñoz-Insa, A.; Selciano, H.; Zarnkow, M.; Becker, T.; Gastl, M. Malting Process Optimization of Spelt (Triticum Spelta L.) for the Brewing Process. LWT 2013, 50, 99–109. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Kalogiouri, N.; Hrbek, V.; Hajslova, J. Spelt Authenticity Assessment Using a Rapid and Simple Fourier Transform Infrared Spectroscopy (FTIR) Method Combined to Advanced Chemometrics. Eur. Food Res. Technol. 2022. [Google Scholar] [CrossRef]
- Köppel, R.; Guertler, P.; Waiblinger, H.-U. Duplex Droplet Digital PCR (DdPCR) Method for the Quantification of Common Wheat (Triticum Aestivum) in Spelt (Triticum Spelta). Food Control 2021, 130, 108382. [Google Scholar] [CrossRef]
- Campbell, K.G. Spelt: Agronomy, Genetics, and Breeding. Plant Breed. Rev. 2010, 15, 187–213. [Google Scholar]
- Koenig, A.; Konitzer, K.; Wieser, H.; Koehler, P. Classification of Spelt Cultivars Based on Differences in Storage Protein Compositions from Wheat. Food Chem. 2015, 168, 176–182. [Google Scholar] [CrossRef]
- Wieser, H. Comparison of Genuine Spelt with Spelt/Wheat Crossbreeds. Getreidetechnologie 2006, 60, 223. [Google Scholar]
- Abrouk, M.; Athiyannan, N.; Müller, T.; Pailles, Y.; Stritt, C.; Roulin, A.C.; Chu, C.; Liu, S.; Morita, T.; Handa, H. Population Genomics and Haplotype Analysis in Spelt and Bread Wheat Identifies a Gene Regulating Glume Color. Commun. Biol. 2021, 4, 375. [Google Scholar] [CrossRef]
- Das Wertvollste Getreide. Available online: https://www.urdinkel.ch/de/urdinkel/marke (accessed on 21 October 2022).
- Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feed Law, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products, Amending Regulations (EC) No 999/2001, (EC) No 396/2005, (EC) No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU) No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Regulations (EC) No 1/2005 and (EC) No 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC, 2008/119/EC and 2008/120/EC, and Repealing Regulations (EC) No 854/2004 and (EC) No 882/2004 of the European Parliament and of the Council, Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC, 96/93/EC and 97/78/ EC and Council Decision 92/438/EEC (Official Controls Regulation); European Union: Brussels, Belgium, 2017.
- Regulation (EU) no 1169/2011 of the European Parliament and of the Council of 25 Oct 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004; European Union: Brussels, Belgium, 2011.
- Leitsätze des Deutschen Lebensmittelbuchs für Brot und Kleingebäck. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/Lebensmittel-Kennzeichnung/LeitsaetzeBrot.pdf?__blob=publicationFile&v=4 (accessed on 1 November 2022).
- Medina, S.; Pereira, J.A.; Silva, P.; Perestrelo, R.; Câmara, J.S. Food Fingerprints–A Valuable Tool to Monitor Food Authenticity and Safety. Food Chem. 2019, 278, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Holroyd, S.E.; Moore, J.C.; Laurvick, K.; Gendel, S.M.; Xie, Z. Opportunities and Challenges Using Non-Targeted Methods for Food Fraud Detection. J. Agric. Food Chem. 2019, 67, 8425–8430. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.F.; Haughey, S.A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, C.T. What Are the Scientific Challenges in Moving from Targeted to Non-Targeted Methods for Food Fraud Testing and How Can They Be Addressed?–Spectroscopy Case Study. Trends Food Sci. Technol. 2018, 76, 38–55. [Google Scholar] [CrossRef]
- Nichani, K.; Uhlig, S.; Stoyke, M.; Kemmlein, S.; Ulberth, F.; Haase, I.; Döring, M.; Walch, S.G.; Gowik, P. Essential Terminology and Considerations for Validation of Non-Targeted Methods. Food Chem. X 2022, 17, 100538. [Google Scholar] [CrossRef]
- Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Food Identification by High Performance Liquid Chromatography Fingerprinting and Mathematical Processing. Food Res. Int. 2019, 122, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Holewinski, R.J.; Parker, S.J.; Matlock, A.D.; Venkatraman, V.; Eyk, J.E.V. Methods for SWATHTM: Data Independent Acquisition on TripleTOF Mass Spectrometers. In Quantitative Proteomics by Mass Spectrometry; Springer: Berlin/Heidelberg, Germany, 2016; pp. 265–279. [Google Scholar]
- Guo, J.; Huan, T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography–Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92, 8072–8080. [Google Scholar] [CrossRef]
- Jimenez-Carvelo, A.M.; Cuadros-Rodríguez, L. Data Mining/Machine Learning Methods in Foodomics. Curr. Opin. Food Sci. 2021, 37, 76–82. [Google Scholar] [CrossRef]
- Sen, P.; Lamichhane, S.; Mathema, V.B.; McGlinchey, A.; Dickens, A.M.; Khoomrung, S.; Orešič, M. Deep Learning Meets Metabolomics: A Methodological Perspective. Brief. Bioinform. 2021, 22, 1531–1542. [Google Scholar] [CrossRef]
- Rong, Z.; Tan, Q.; Cao, L.; Zhang, L.; Deng, K.; Huang, Y.; Zhu, Z.-J.; Li, Z.; Li, K. NormAE: Deep Adversarial Learning Model to Remove Batch Effects in Liquid Chromatography Mass Spectrometry-Based Metabolomics Data. Anal. Chem. 2020, 92, 5082–5090. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.R. Peak Alignment of Gas Chromatography–Mass Spectrometry Data with Deep Learning. J. Chromatogr. A 2019, 1604, 460476. [Google Scholar] [CrossRef] [Green Version]
- Risum, A.B.; Bro, R. Using Deep Learning to Evaluate Peaks in Chromatographic Data. Talanta 2019, 204, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Kantz, E.D.; Tiwari, S.; Watrous, J.D.; Cheng, S.; Jain, M. Deep Neural Networks for Classification of LC-MS Spectral Peaks. Anal. Chem. 2019, 91, 12407–12413. [Google Scholar] [CrossRef]
- Gloaguen, Y.; Kirwan, J.A.; Beule, D. Deep Learning-Assisted Peak Curation for Large-Scale LC-MS Metabolomics. Anal Chem. 2022, 94, 4930–4937. [Google Scholar] [CrossRef] [PubMed]
- Melnikov, A.D.; Tsentalovich, Y.P.; Yanshole, V.V. Deep Learning for the Precise Peak Detection in High-Resolution LC–MS Data. Anal Chem. 2019, 92, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.N.; Belanger, D.; Adams, R.P.; Sculley, D. Rapid Prediction of Electron–Ionization Mass Spectrometry Using Neural Networks. ACS Cent. Sci. 2019, 5, 700–708. [Google Scholar] [CrossRef]
- Dührkop, K.; Nothias, L.-F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M.A.; Petras, D.; Gerwick, W.H.; Rousu, J.; Dorrestein, P.C. Systematic Classification of Unknown Metabolites Using High-Resolution Fragmentation Mass Spectra. Nat. Biotechnol. 2021, 39, 462–471. [Google Scholar] [CrossRef]
- Kim, H.W.; Wang, M.; Leber, C.A.; Nothias, L.-F.; Reher, R.; Kang, K.B.; Van Der Hooft, J.J.; Dorrestein, P.C.; Gerwick, W.H.; Cottrell, G.W. NPClassifier: A Deep Neural Network-Based Structural Classification Tool for Natural Products. J. Nat. Prod. 2021, 84, 2795–2807. [Google Scholar] [CrossRef]
- Uhlig, S.; Colson, B.; Hettwer, K.; Simon, K.; Uhlig, C.; Wittke, S.; Stoyke, M.; Gowik, P. Valid Machine Learning Algorithms for Multiparameter Methods. Accredit. Qual. Assur. 2019, 24, 271–279. [Google Scholar] [CrossRef]
- Malek, S.; Melgani, F.; Bazi, Y. One-dimensional Convolutional Neural Networks for Spectroscopic Signal Regression. J. Chemom. 2018, 32, e2977. [Google Scholar] [CrossRef]
- Seddiki, K.; Saudemont, P.; Precioso, F.; Ogrinc, N.; Wisztorski, M.; Salzet, M.; Fournier, I.; Droit, A. Cumulative Learning Enables Convolutional Neural Network Representations for Small Mass Spectrometry Data Classification. Nat. Commun. 2020, 11, 5595. [Google Scholar] [CrossRef]
- Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face Recognition: A Convolutional Neural-Network Approach. IEEE Trans. Neural Netw. 1997, 8, 98–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent Advances in Convolutional Neural Networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Huschek, G.; Bönick, J.; Merkel, D.; Huschek, D.; Rawel, H. Authentication of Leguminous-Based Products by Targeted Biomarkers Using High Resolution Time of Flight Mass Spectrometry. LWT 2018, 90, 164–171. [Google Scholar] [CrossRef]
- Bönick, J.; Huschek, G.; Rawel, H.M. Determination of Wheat, Rye and Spelt Authenticity in Bread by Targeted Peptide Biomarkers. J. Food Compost Anal. 2017, 58, 82–91. [Google Scholar] [CrossRef]
- Mialon, N.; Roig, B.; Capodanno, E.; Cadiere, A. Untargeted Metabolomic Approaches in Food Authenticity: A Review That Showcases Biomarkers. Food Chem. 2022, 398, 133856. [Google Scholar] [CrossRef] [PubMed]
- Curry, B.; Rumelhart, D.E. MSnet: A Neural Network Which Classifies Mass Spectra. Tetrahedron Comput. Methodol. 1990, 3, 213–237. [Google Scholar] [CrossRef]
- Doerr, A. DIA Mass Spectrometry. Nat. Methods 2015, 12, 35. [Google Scholar] [CrossRef]
- Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open Source Software for Rapid Proteomics Tools Development. Bioinformatics 2008, 24, 2534–2536. [Google Scholar] [CrossRef] [Green Version]
- Mendez, K.M.; Broadhurst, D.I.; Reinke, S.N. The Application of Artificial Neural Networks in Metabolomics: A Historical Perspective. Metabolomics 2019, 15, 142. [Google Scholar] [CrossRef]
- Creydt, M.; Fischer, M. Food Phenotyping: Recording and Processing of Non-Targeted Liquid Chromatography Mass Spectrometry Data for Verifying Food Authenticity. Molecules 2020, 25, 3972. [Google Scholar] [CrossRef]
- Brereton, R.G. Pattern Recognition in Chemometrics. Chemometr. Intell. Lab. Syst. 2015, 149, 90–96. [Google Scholar] [CrossRef]
- Paul, A.; de Boves Harrington, P. Chemometric Applications in Metabolomic Studies Using Chromatography-Mass Spectrometry. TrAC Trends Anal. Chem. 2021, 135, 116165. [Google Scholar] [CrossRef]
- Huang, Y.; Kangas, L.J.; Rasco, B.A. Applications of Artificial Neural Networks (ANNs) in Food Science. Crit. Rev. Food Sci. Nutr. 2007, 47, 113–126. [Google Scholar] [CrossRef]
- Lei, F.; Liu, X.; Dai, Q.; Ling, B.W.-K. Shallow Convolutional Neural Network for Image Classification. SN Appl. Sci. 2020, 2, 97. [Google Scholar] [CrossRef]
- Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 10 November 2022).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; p. 21. [Google Scholar]
- Guo, D.; Föll, M.C.; Volkmann, V.; Enderle-Ammour, K.; Bronsert, P.; Schilling, O.; Vitek, O. Deep Multiple Instance Learning Classifies Subtissue Locations in Mass Spectrometry Images from Tissue-Level Annotations. Bioinformatics 2020, 36, i300–i308. [Google Scholar] [CrossRef] [PubMed]
- Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 5725-3; Accuracy (Trueness and Precision) of Measurement Methods and Results. Part 3: Intermediate Measures of the Precision of a Standard Measurement Method. International Organization for Standardization: Geneva, Switzerland, 1994.
- Uhlig, S.; Nichani, K.; Colson, B.; Hettwer, K.; Simon, K.; Uhlig, C.; Stoyke, M.; Steinacker, U.; Becker, R.; Gowik, P. Performance Characteristics and Criteria for Non-Targeted Methods. In Proceedings of the Eurachem Workshop, Tartu, Estonia, 20–21 May 2019. [Google Scholar]
- Uhlig, S.; Nichani, K.; Stoyke, M.; Gowik, P. Validation of Binary Non-Targeted Methods: Mathematical Framework and Experimental Designs. bioRxiv 2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nichani, K.; Uhlig, S.; Colson, B.; Hettwer, K.; Simon, K.; Bönick, J.; Uhlig, C.; Kemmlein, S.; Stoyke, M.; Gowik, P.; et al. Development of Non-Targeted Mass Spectrometry Method for Distinguishing Spelt and Wheat. Foods 2023, 12, 141. https://doi.org/10.3390/foods12010141
Nichani K, Uhlig S, Colson B, Hettwer K, Simon K, Bönick J, Uhlig C, Kemmlein S, Stoyke M, Gowik P, et al. Development of Non-Targeted Mass Spectrometry Method for Distinguishing Spelt and Wheat. Foods. 2023; 12(1):141. https://doi.org/10.3390/foods12010141
Chicago/Turabian StyleNichani, Kapil, Steffen Uhlig, Bertrand Colson, Karina Hettwer, Kirsten Simon, Josephine Bönick, Carsten Uhlig, Sabine Kemmlein, Manfred Stoyke, Petra Gowik, and et al. 2023. "Development of Non-Targeted Mass Spectrometry Method for Distinguishing Spelt and Wheat" Foods 12, no. 1: 141. https://doi.org/10.3390/foods12010141