Probiotics in Citrus Fruits Products: Health Benefits and Future Trends for the Production of Functional Foods—A Bibliometric Review
Abstract
:1. Introduction
2. Research Summary and Bibliometrics
3. Bibliometric Analysis
3.1. Evolution of Scientific Publication: Year, Countries, Organizations, and Publication Areas
3.2. An Analysis of the Reference Data
4. Functional Foods
4.1. Beneficial Health Potential of Citrus Fruits
4.2. Challenges of Probiotics in Citrus Fruits
5. Health Benefits of Probiotic Foods
6. Future Trends of Probiotic Functional Foods
7. Study Limitations
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, M.; Tan, C.P.; Liu, Y.; Xu, Y.-J. Foodomics: A New Perspective on Gut Probiotics Nutrition and Health Research. Curr. Opin. Food Sci. 2021, 41, 146–151. [Google Scholar] [CrossRef]
- Novik, G.; Savich, V. Beneficial Microbiota. Probiotics and Pharmaceutical Products in Functional Nutrition and Medicine. Microbes Infect. 2020, 22, 8–18. [Google Scholar] [CrossRef]
- Tang, R.; Yu, H.; Qi, M.; Yuan, X.; Ruan, Z.; Hu, C.; Xiao, M.; Xue, Y.; Yao, Y.; Liu, Q. Biotransformation of Citrus Fruits Phenolic Profiles by Mixed Probiotics in Vitro Anaerobic Fermentation. LWT 2022, 113087. [Google Scholar] [CrossRef]
- Fonseca, H.C.; de Melo, D.S.; Ramos, C.L.; Menezes, A.G.T.; Dias, D.R.; Schwan, R.F. Sensory and Flavor-Aroma Profiles of Passion Fruit Juice Fermented by Potentially Probiotic Lactiplantibacillus Plantarum CCMA 0743 Strain. Food Res. Int. 2021, 110710. [Google Scholar] [CrossRef]
- De Oliveira Ribeiro, A.P.; dos Santos Gomes, F.; dos Santos, K.M.O.; da Matta, V.M.; de Araujo Santiago, M.C.P.; Conte, C.; de Oliveira Costa, S.D.; de Oliveira Ribeiro, L.; de Oliveira Godoy, R.L.; Walter, E.H.M. Development of a Probiotic Non-Fermented Blend Beverage with Juçara Fruit: Effect of the Matrix on Probiotic Viability and Survival to the Gastrointestinal Tract. LWT 2020, 118, 108756. [Google Scholar] [CrossRef]
- Miranda, R.F.; de Paula, M.M.; da Costa, G.M.; Barão, C.E.; da Silva, A.C.R.; Raices, R.S.L.; Gomes, R.G.; Pimentel, T.C. Orange Juice Added with L. Casei: Is There an Impact of the Probiotic Addition Methodology on the Quality Parameters? LWT 2019, 106, 186–193. [Google Scholar] [CrossRef]
- Cristiny de Oliveira Vieira, K.; da Silva Ferreira, C.; Toso Bueno, E.B.; de Moraes, Y.A.; Campagnolo Gonçalves Toledo, A.C.; Nakagaki, W.R.; Pereira, V.C.; Winkelstroter, L.K. Development and Viability of Probiotic Orange Juice Supplemented by Pediococcus Acidilactici CE51. LWT 2020, 130, 109637. [Google Scholar] [CrossRef]
- Her, J.-Y.; Kim, M.S.; Lee, K.-G. Preparation of Probiotic Powder by the Spray Freeze-Drying Method. J. Food Eng. 2015, 150, 70–74. [Google Scholar] [CrossRef]
- Vivek, K.; Mishra, S.; Pradhan, R.C. Characterization of Spray Dried Probiotic Sohiong Fruit Powder with Lactobacillus Plantarum. LWT 2020, 117, 108699. [Google Scholar] [CrossRef]
- Minj, S.; Anand, S. Development of a Spray-Dried Conjugated Whey Protein Hydrolysate Powder with Entrapped Probiotics. J. Dairy Sci. 2021, 105, 11. [Google Scholar] [CrossRef]
- Byl, E.; Bladt, P.; Lebeer, S.; Kiekens, F. Importance of Pressure Plasticity during Compression of Probiotic Tablet Formulations. Eur. J. Pharm. Biopharm. 2019, 145, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, H.; Yan, X.; Zhao, S. Preparation of a Probiotic Rice Tablet: Sensory Evaluation and Antioxidant Activity during Gastrointestinal Digestion. LWT 2020, 124, 108911. [Google Scholar] [CrossRef]
- Klayraung, S.; Viernstein, H.; Okonogi, S. Development of Tablets Containing Probiotics: Effects of Formulation and Processing Parameters on Bacterial Viability. Int. J. Pharm. 2009, 370, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Pandey, P.; Mishra, H.N. Novel Approaches for Co-Encapsulation of Probiotic Bacteria with Bioactive Compounds, Their Health Benefits and Functional Food Product Development: A Review. Trends Food Sci. Technol. 2021, 109, 340–351. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Lević, S.; Petrović, T.; Ivanović, S.; Nedović, V.; Kourkoutas, Y. Encapsulation of Lactobacillus Casei ATCC 393 in Alginate Capsules for Probiotic Fermented Milk Production. LWT 2019, 116, 108501. [Google Scholar] [CrossRef]
- Alehosseini, A.; Gomez del Pulgar, E.-M.; Fabra, M.J.; Gómez-Mascaraque, L.G.; Benítez-Páez, A.; Sarabi-Jamab, M.; Ghorani, B.; Lopez-Rubio, A. Agarose-Based Freeze-Dried Capsules Prepared by the Oil-Induced Biphasic Hydrogel Particle Formation Approach for the Protection of Sensitive Probiotic Bacteria. Food Hydrocoll. 2019, 87, 487–496. [Google Scholar] [CrossRef]
- Deng, Z.; Li, J.; Song, R.; Zhou, B.; Li, B.; Liang, H. Carboxymethylpachymaran/Alginate Gel Entrapping of Natural Pollen Capsules for the Encapsulation, Protection and Delivery of Probiotics with Enhanced Viability. Food Hydrocoll. 2021, 120, 106855. [Google Scholar] [CrossRef]
- Ilango, S.; Antony, U. Probiotic Microorganisms from Non-Dairy Traditional Fermented Foods. Trends Food Sci. Technol. 2021, 118, 617–638. [Google Scholar] [CrossRef]
- Reque, P.M.; Brandelli, A. Encapsulation of Probiotics and Nutraceuticals: Applications in Functional Food Industry. Trends Food Sci. Technol. 2021, 114, 1–10. [Google Scholar] [CrossRef]
- De Melo, A.M.; Almeida, F.L.C.; de Cavalcante, A.M.M.; Ikeda, M.; Barbi, R.C.T.; Costa, B.P.; Ribani, R.H. Garcinia Brasiliensis Fruits and Its By-Products: Antioxidant Activity, Health Effects and Future Food Industry Trends—A Bibliometric Review. Trends Food Sci. Technol. 2021, 112, 325–335. [Google Scholar] [CrossRef]
- Alves, N.N.; de Oliveira Sancho, S.; da Silva, A.R.A.; Desobry, S.; da Costa, J.M.C.; Rodrigues, S. Spouted Bed as an Efficient Processing for Probiotic Orange Juice Drying. Food Res. Int. 2017, 101, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, M.; Shimada, A.; Matsuzaki, A.; Eguchi, A.; Tominaga, M. Chemical Composition and Sensory Properties of Fermented Citrus Juice Using Probiotic Lactic Acid Bacteria. Food Biosci. 2021, 39, 100810. [Google Scholar] [CrossRef]
- Bancalari, E.; Castellone, V.; Bottari, B.; Gatti, M. Wild Lactobacillus Casei Group Strains: Potentiality to Ferment Plant Derived Juices. Foods 2020, 9, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Cagno, R.; Coda, R.; de Angelis, M.; Gobbetti, M. Exploitation of Vegetables and Fruits through Lactic Acid Fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fiocco, D.; Longo, A.; Arena, M.P.; Russo, P.; Spano, G.; Capozzi, V. How Probiotics Face Food Stress: They Get by with a Little Help. Crit. Rev. Food Sci. Nutr. 2020, 60, 1552–1580. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Giri, S.K. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Macnaughtan, W.; Parmenter, C.; Fisk, I.D. Stability of Lactobacillus Rhamnosus GG Incorporated in Edible Films: Impact of Anionic Biopolymers and Whey Protein Concentrate. Food Hydrocoll. 2017, 70, 345–355. [Google Scholar] [CrossRef]
- Mörschbächer, A.P.; Granada, C.E. Mapping the Worldwide Knowledge of Antimicrobial Substances Produced by Lactobacillus spp.: A bibliometric analysis. Biochem. Eng. J. 2022, 180, 108343. [Google Scholar] [CrossRef]
- Rodríguez-Rojas, A.; Arango Ospina, A.; Rodríguez-Vélez, P.; Arana-Florez, R. ¿What Is the New about Food Packaging Material? A Bibliometric Review during 1996–2016. Trends Food Sci. Technol. 2019, 85, 252–261. [Google Scholar] [CrossRef]
- Cooper, I.D. Bibliometrics Basics. J. Med. Libr. Assoc. JMLA 2015, 103, 217–218. [Google Scholar] [CrossRef] [Green Version]
- Wallin, J.A. Bibliometric Methods: Pitfalls and Possibilities. Basic Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, A.; Ponnuchamy, M.; Senthil Kumar, P.; Kapoor, A.; Xiao, L. Progress in the Production of Hydrogen Energy from Food Waste: A Bibliometric Analysis. Int. J. Hydrogen Energy 2021, in press. [Google Scholar] [CrossRef]
- Van Raan, A. Measurement: Interdisciplinary Research and Perspectives For Your Citations Only? Hot Topics in Bibliometric Analysis. Interdiscip. Res. Perspect. 2009, 3, 50–62. [Google Scholar]
- Araújo, A.G.; Pereira Carneiro, A.M.; Palha, R.P. Sustainable Construction Management: A Systematic Review of the Literature with Meta-Analysis. J. Clean. Prod. 2020, 256, 120350. [Google Scholar] [CrossRef]
- Keshava; Ganjihal, G.A.; Gowda, M.P. Acm Transactions on Information Systems (1989–2006): A Bibliometric Study. Inf. Stud. 2008, 14, 223–234. [Google Scholar]
- Batistič, S.; Černe, M.; Vogel, B. Just How Multi-Level Is Leadership Research? A Document Co-Citation Analysis 1980–2013 on Leadership Constructs and Outcomes. Leadersh. Q. 2017, 28, 86–103. [Google Scholar] [CrossRef]
- Nematollahi, A.; Sohrabvandi, S.; Mortazavian, A.M.; Jazaeri, S. Viability of Probiotic Bacteria and Some Chemical and Sensory Characteristics in Cornelian Cherry Juice during Cold Storage. Electron. J. Biotechnol. 2016, 21, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Gebbers, J.-O. Atherosclerosis, Cholesterol, Nutrition, and Statins—A Critical Review. Ger. Med. Sci. GMS E-J. 2007, 5, Doc04. [Google Scholar]
- Lillo-Pérez, S.; Guerra-Valle, M.; Orellana-Palma, P.; Petzold, G. Probiotics in Fruit and Vegetable Matrices: Opportunities for Nondairy Consumers. LWT 2021, 151, 112106. [Google Scholar] [CrossRef]
- Barrera, C.; Burca, C.; Betoret, E.; García-Hernández, J.; Hernández, M.; Betoret, N. Improving Antioxidant Properties and Probiotic Effect of Clementine Juice Inoculated with Lactobacillus Salivarius Spp. Salivarius (CECT 4063) by Trehalose Addition and/or Sublethal Homogenisation. Int. J. Food Sci. Technol. 2019, 54, 2109–2122. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A Core Gut Microbiome in Obese and Lean Twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Xiong, T.; Xie, M. Influence of Probiotic Fermented Fruit and Vegetables on Human Health and the Related Industrial Development Trend. Engineering 2021, 7, 212–218. [Google Scholar] [CrossRef]
- Nualkaekul, S.; Charalampopoulos, D. Survival of Lactobacillus Plantarum in Model Solutions and Fruit Juices. Int. J. Food Microbiol. 2011, 146, 111–117. [Google Scholar] [CrossRef]
- Nualkaekul, S.; Salmeron, I.; Charalampopoulos, D. Investigation of the Factors Influencing the Survival of Bifidobacterium Longum in Model Acidic Solutions and Fruit Juices. Food Chem. 2011, 129, 1037–1044. [Google Scholar] [CrossRef]
- Miranda, R.F.; da Silva, J.P.; Machado, A.R.F.; da Silva, E.C.; de Souza, R.C.; Marcolino, V.A.; Klososki, S.J.; Pimentel, T.C.; Barão, C.E. Impact of the Addition of Lactobacillus Casei and Oligofructose on the Quality Parameters of Orange Juice and Hibiscus Tea Mixed Beverage. J. Food Processing Preserv. 2019, 43, e14249. [Google Scholar] [CrossRef]
- Almada-Érix, C.N.; Almada, C.N.; Souza Pedrosa, G.T.; dos Santos, P.; Schmiele, M.; Clerici, M.T.P.S.; Martinez, J.; Lollo, P.C.; Magnani, M.; Sant’Ana, A.S. Quantifying the Impact of Eight Unit Operations on the Survival of Eight Bacillus Strains with Claimed Probiotic Properties. Food Res. Int. 2021, 142, 110191. [Google Scholar] [CrossRef]
- Garcia, E.F.; de Oliveira Araújo, A.; Luciano, W.A.; de Albuquerque, T.M.R.; de Oliveira Arcanjo, N.M.; Madruga, M.S.; dos Santos Lima, M.; Magnani, M.; Saarela, M.; de Souza, E.L. The Performance of Five Fruit-Derived and Freeze-Dried Potentially Probiotic Lactobacillus Strains in Apple, Orange, and Grape Juices. J. Sci. Food Agric. 2018, 98, 5000–5010. [Google Scholar] [CrossRef]
- Di Nunzio, M.; Betoret, E.; Taccari, A.; Dalla Rosa, M.; Bordoni, A. Impact of Processing on the Nutritional and Functional Value of Mandarin Juice. J. Sci. Food Agric. 2020, 100, 4558–4564. [Google Scholar] [CrossRef]
- Gabriele, M.; Frassinetti, S.; Caltavuturo, L.; Montero, L.; Dinelli, G.; Longo, V.; di Gioia, D.; Pucci, L. Citrus Bergamia Powder: Antioxidant, Antimicrobial and Anti-Inflammatory Properties. J. Funct. Foods 2017, 31, 255–265. [Google Scholar] [CrossRef]
- Uscanga, M.A.; Salvador, A.; del Camacho, M.M.; Martínez-Navarrete, N. Impact of Freeze-drying Shelf Temperature on the Bioactive Compounds, Physical Properties and Sensory Evaluation of a Product Based on Orange Juice. Int. J. Food Sci. Technol. 2021, 56, 5409–5416. [Google Scholar] [CrossRef]
- Mabberley, D.J. Citrus (Rutaceae): A Review of Recent Advances in Etymology, Systematics and Medical Applications. Blumea-Biodivers. Evol. Biogeogr. Plants 2004, 49, 481–498. [Google Scholar] [CrossRef]
- Shakour, Z.T.A.; Fayek, N.M.; Farag, M.A. How Do Biocatalysis and Biotransformation Affect Citrus Dietary Flavonoids Chemistry and Bioactivity? A Review. Crit. Rev. Biotechnol. 2020, 40, 689–714. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Schluesener, H. Health-Promoting Effects of the Citrus Flavanone Hesperidin. Crit. Rev. Food Sci. Nutr. 2017, 57, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential Anti-Inflammatory Effects of Hesperidin from the Genus Citrus. Curr. Med. Chem. 2019, 25, 4929–4945. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Khan, F. A Mechanistic Review of the Anticancer Potential of Hesperidin, a Natural Flavonoid from Citrus Fruits. Nutr. Res. 2021, 92, 21–31. [Google Scholar] [CrossRef]
- Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative Stress and Dietary Phytochemicals: Role in Cancer Chemoprevention and Treatment. Cancer Lett. 2018, 413, 122–134. [Google Scholar] [CrossRef]
- Ali, A.M.; Gabbar, M.A.; Abdel-Twab, S.M.; Fahmy, E.M.; Ebaid, H.; Alhazza, I.M.; Ahmed, O.M. Antidiabetic Potency, Antioxidant Effects, and Mode of Actions of Citrus Reticulata Fruit Peel Hydroethanolic Extract, Hesperidin, and Quercetin in Nicotinamide/Streptozotocin-Induced Wistar Diabetic Rats. Oxidative Med. Cell. Longev. 2020, 2020, 1730492. [Google Scholar] [CrossRef]
- Gómez, B.; Peláez, C.; Martínez-Cuesta, M.C.; Parajó, J.C.; Alonso, J.L.; Requena, T. Emerging Prebiotics Obtained from Lemon and Sugar Beet Byproducts: Evaluation of Their in Vitro Fermentability by Probiotic Bacteria. LWT 2019, 109, 17–25. [Google Scholar] [CrossRef]
- Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a More Comprehensive Concept for Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 303–310. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting Citrus Wastes into Value-Added Products: Economic and Environmently Friendly Approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Coelho, E.M.; da Silva Haas, I.C.; de Azevedo, L.C.; Bastos, D.C.; Fedrigo, I.M.T.; dos Santos Lima, M.; de Mello Castanho Amboni, R.D. Multivariate Chemometric Analysis for the Evaluation of 22 Citrus Fruits Growing in Brazil’s Semi-Arid Region. J. Food Compos. Anal. 2021, 101, 103964. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Russo, N.; Romeo, A.; Carbone, C.; Grimaudo, M.A.; Alvarez-Lorenzo, C.; Randazzo, C.; Musumeci, T.; Caggia, C. Coating Lacticaseibacillus Rhamnosus GG in Alginate Systems: An Emerging Strategy Towards Improved Viability in Orange Juice. AAPS PharmSciTech 2021, 22, 123. [Google Scholar] [CrossRef] [PubMed]
- Olivares, A.; Soto, C.; Caballero, E.; Altamirano, C. Survival of Microencapsulated Lactobacillus Casei (Prepared by Vibration Technology) in Fruit Juice during Cold Storage. Electron. J. Biotechnol. 2019, 42, 42–48. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Arshad, M.U.; Nadeem, M.T.; Saeed, M.; Tufail, T. The Effect of Encapsulation on The Stability of Probiotic Bacteria in Ice Cream and Simulated Gastrointestinal Conditions. Probiotics Antimicrob. Proteins 2019, 11, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Valerio, F.; Volpe, M.G.; Santagata, G.; Boscaino, F.; Barbarisi, C.; di Biase, M.; Bavaro, A.R.; Lonigro, S.L.; Lavermicocca, P. The Viability of Probiotic Lactobacillus Paracasei IMPC2.1 Coating on Apple Slices during Dehydration and Simulated Gastro-Intestinal Digestion. Food Biosci. 2020, 34, 100533. [Google Scholar] [CrossRef]
- Da Silva, T.M.; Sonza Pinto, V.; Soares, V.R.F.; Marotz, D.; Cichoski, A.J.; Queiroz Zepka, L.; Jacob Lopes, E.; de Bona da Silva, C.; de Menezes, C.R. Viability of Microencapsulated Lactobacillus Acidophilus by Complex Coacervation Associated with Enzymatic Crosslinking under Application in Different Fruit Juices. Food Res. Int. 2021, 141, 110190. [Google Scholar] [CrossRef]
- Craparo, E.F.; Drago, S.E.; Giammona, G.; Cavallaro, G. Production of Polymeric Micro- and Nanostructures with Tunable Properties as Pharmaceutical Delivery Systems. Polymer 2020, 200, 122596. [Google Scholar] [CrossRef]
- Nami, Y.; Lornezhad, G.; Kiani, A.; Abdullah, N.; Haghshenas, B. Alginate-Persian Gum-Prebiotics Microencapsulation Impacts on the Survival Rate of Lactococcus Lactis ABRIINW-N19 in Orange Juice. LWT 2020, 124, 109190. [Google Scholar] [CrossRef]
- Chávarri, M.; Marañón, I.; Ares, R.; Ibáñez, F.C.; Marzo, F.; del Villarán, M.C. Microencapsulation of a Probiotic and Prebiotic in Alginate-Chitosan Capsules Improves Survival in Simulated Gastro-Intestinal Conditions. Int. J. Food Microbiol. 2010, 142, 185–189. [Google Scholar] [CrossRef]
- Anselmo, A.C.; McHugh, K.J.; Webster, J.; Langer, R.; Jaklenec, A. Layer-by-Layer Encapsulation of Probiotics for Delivery to the Microbiome. Adv. Mater. 2016, 28, 9486–9490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamano, T.; Iino, H.; Takada, M.; Blum, S.; Rochat, F.; Fukushima, Y. Improvement of the Human Intestinal Flora by Ingestion of the Probiotic Strain Lactobacillus Johnsonii La1. Br. J. Nutr. 2006, 95, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, Y.; Nakamura, F.; Kanzato, H.; Sawada, D.; Hirata, H.; Nishimura, A.; Kajimoto, O.; Fujiwara, S. Clinical Effects of Lactobacillus Acidophilus Strain L-92 on Perennial Allergic Rhinitis: A Double-Blind, Placebo-Controlled Study. J. Dairy Sci. 2005, 88, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Kadooka, Y.; Sato, M.; Ogawa, A.; Miyoshi, M.; Uenishi, H.; Ogawa, H.; Ikuyama, K.; Kagoshima, M.; Tsuchida, T. Effect of Lactobacillus Gasseri SBT2055 in Fermented Milk on Abdominal Adiposity in Adults in a Randomised Controlled Trial. Br. J. Nutr. 2013, 110, 1696–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of Kiwifruit Juice from Two Cultivars by Probiotic Bacteria: Bioactive Phenolics, Antioxidant Activities and Flavor Volatiles. Food Chem. 2022, 373, 131455. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Polk, D.B. Probiotics and Probiotic-Derived Functional Factors—Mechanistic Insights Into Applications for Intestinal Homeostasis. Front. Immunol. 2020, 11, 1428. [Google Scholar] [CrossRef]
- Średnicka, P.; Juszczuk-Kubiak, E.; Wójcicki, M.; Akimowicz, M.; Roszko, M.Ł. Probiotics as a Biological Detoxification Tool of Food Chemical Contamination: A Review. Food Chem. Toxicol. 2021, 153, 112306. [Google Scholar] [CrossRef]
- De Almada, C.N.; Almada, C.N.; Martinez, R.C.R.; Sant’Ana, A.S. Paraprobiotics: Evidences on Their Ability to Modify Biological Responses, Inactivation Methods and Perspectives on Their Application in Foods. Trends Food Sci. Technol. 2016, 58, 96–114. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Brandão, L.R.; de Oliveira, M.P.; da Costa, W.K.A.; Magnani, M. Health Benefits and Technological Effects of Lacticaseibacillus Casei-01: An Overview of the Scientific Literature. Trends Food Sci. Technol. 2021, 114, 722–737. [Google Scholar] [CrossRef]
- Sharon, G.; Sampson, T.R.; Geschwind, D.H.; Mazmanian, S.K. The Central Nervous System and the Gut Microbiome. Cell 2016, 167, 915–932. [Google Scholar] [CrossRef] [Green Version]
- Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The Microbiome and Innate Immunity. Nature 2016, 535, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Sawada, D.; Kuwano, Y.; Tanaka, H.; Rokutan, K. Health Benefits of Lactobacillus Gasseri CP2305 Tablets in Young Adults Exposed to Chronic Stress: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019, 11, 1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Park, E.; Kim, S.; Ha, J.; Oh, H.; Kim, Y.; Lee, Y.; Seo, Y.; Kang, J.; Lee, S.; et al. Alleviation of Periodontal Disease Using Lactobacillus Curvatus SMFM2016-NK. J. Funct. Foods 2021, 83, 104531. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An Evolving Term within the Functional Foods Field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Bron, P.A.; Tomita, S.; van Swam, I.I.; Remus, D.M.; Meijerink, M.; Wels, M.; Okada, S.; Wells, J.M.; Kleerebezem, M. Lactobacillus Plantarum Possesses the Capability for Wall Teichoic Acid Backbone Alditol Switching. Microb. Cell Fact. 2012, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Cicenia, A.; Scirocco, A.; Carabotti, M.; Pallotta, L.; MArignani, M.; Severi, C. Posrtbiotic Activities of Lactobacilli-Derived Factors. Clin. Gastroenterol. 2014, 48, S18–S22. [Google Scholar] [CrossRef]
- Kim, K.W.; Kang, S.-S.; Woo, S.-J.; Park, O.-J.; Ahn, K.B.; Song, K.-D.; Lee, H.-K.; Yun, C.-H.; Han, S.H. Lipoteichoic Acid of Probiotic Lactobacillus Plantarum Attenuates Poly I:C-Induced IL-8 Production in Porcine Intestinal Epithelial Cells. Front. Microbiol. 2017, 8, 1827. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Qiu, L.; Zhang, F.; Xu, X.; Wei, H.; Tao, X. Characterization and Bioactivities of the Exopolysaccharide from a Probiotic Strain of Lactobacillus Plantarum WLPL04. J. Dairy Sci. 2017, 100, 6895–6905. [Google Scholar] [CrossRef]
- Teame, T.; Wang, A.; Xie, M.; Zhang, Z.; Yang, Y.; Ding, Q.; Gao, C.; Olsen, R.E.; Ran, C.; Zhou, Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front. Nutr. 2020, 7, 570344. [Google Scholar] [CrossRef]
- Taverniti, V.; Guglielmetti, S. The Immunomodulatory Properties of Probiotic Microorganisms beyond Their Viability (Ghost Probiotics: Proposal of Paraprobiotic Concept). Genes Nutr. 2011, 6, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.A. The Probiotic Paradox: Live and Dead Cells Are Biological Response Modifiers. Nutr. Res. Rev. 2010, 23, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akter, S.; Park, J.-H.; Jung, H.K. Potential Health-Promoting Benefits of Paraprobiotics, Inactivated Probiotic Cells. J. Microbiol. Biotechnol. 2020, 30, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Matsuguchi, T.; Takagi, A.; Matsuzaki, T.; Nagaoka, M.; Ishikawa, K.; Yokokura, T.; Yoshikai, Y. Lipoteichoic Acids from Lactobacillus Strains Elicit Strong Tumor Necrosis Factor Alpha-Inducing Activities in Macrophages through Toll-Like Receptor 2. Clin. Vaccine Immunol. 2003, 10, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salinas, I.; Meseguer, J.; Esteban, M.Á. Antiproliferative Effects and Apoptosis Induction by Probiotic Cytoplasmic Extracts in Fish Cell Lines. Vet. Microbiol. 2008, 126, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Jijon, H.; Backer, J.; Diaz, H.; Yeung, H.; Thiel, D.; McKaigney, C.; de Simone, C.; Madsen, K. DNA from Probiotic Bacteria Modulates Murine and Human Epithelial and Immune Function. Gastroenterology 2004, 126, 1358–1373. [Google Scholar] [CrossRef]
- Li, N.; Russell, W.M.; Douglas-Escobar, M.; Hauser, N.; Lopez, M.; Neu, J. Live and Heat-Killed Lactobacillus Rhamnosus GG: Effects on Proinflammatory and Anti-Inflammatory Cytokines/Chemokines in Gastrostomy-Fed Infant Rats. Pediatric Res. 2009, 66, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Ueno, N.; Fujiya, M.; Segawa, S.; Nata, T.; Moriichi, K.; Tanabe, H.; Mizukami, Y.; Kobayashi, N.; Ito, K.; Kohgo, Y. Heat-Killed Body of Lactobacillus Brevis SBC8803 Ameliorates Intestinal Injury in a Murine Model of Colitis by Enhancing the Intestinal Barrier Function. Inflamm. Bowel Dis. 2011, 17, 2235–2250. [Google Scholar] [CrossRef]
- Sawada, D.; Sugawara, T.; Ishida, Y.; Aihara, K.; Aoki, Y.; Takehara, I.; Takano, K.; Fujiwara, S. Effect of Continuous Ingestion of a Beverage Prepared with Lactobacillus Gasseri CP2305 Inactivated by Heat Treatment on the Regulation of Intestinal Function. Food Res. Int. 2016, 79, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Merghni, A.; Dallel, I.; Noumi, E.; Kadmi, Y.; Hentati, H.; Tobji, S.; ben Amor, A.; Mastouri, M. Antioxidant and Antiproliferative Potential of Biosurfactants Isolated from Lactobacillus Casei and Their Anti-Biofilm Effect in Oral Staphylococcus Aureus Strains. Microb. Pathog. 2017, 104, 84–89. [Google Scholar] [CrossRef]
- Vemuri, R.; Gundamaraju, R.; Shinde, T.; Perera, A.P.; Basheer, W.; Southam, B.; Gondalia, S.V.; Karpe, A.V.; Beale, D.J.; Tristram, S.; et al. Lactobacillus Acidophilus DDS-1 Modulates Intestinal-Specific Microbiota, Short-Chain Fatty Acid and Immunological Profiles in Aging Mice. Nutrients 2019, 11, 1297. [Google Scholar] [CrossRef] [Green Version]
- Ahn, K.B.; Baik, J.E.; Park, O.-J.; Yun, C.-H.; Han, S.H. Lactobacillus Plantarum Lipoteichoic Acid Inhibits Biofilm Formation of Streptococcus Mutans. PLoS ONE 2018, 13, e0192694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Niu, M.; Song, D.; Song, X.; Zhao, J.; Wu, Y.; Lu, B.; Niu, G. Preparation, Partial Characterization and Biological Activity of Exopolysaccharides Produced from Lactobacillus Fermentum S1. J. Biosci. Bioeng. 2020, 129, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Muhialdin, B.J.; Zawawi, N.; Abdull Razis, A.F.; Bakar, J.; Zarei, M. Antiviral Activity of Fermented Foods and Their Probiotics Bacteria towards Respiratory and Alimentary Tracts Viruses. Food Control 2021, 127, 108140. [Google Scholar] [CrossRef] [PubMed]
Ranking | Name | Number of Publications | Percentage (%) * |
---|---|---|---|
Country | |||
1 | Brazil | 12 | 19.05 |
2 | Spain | 11 | 17.46 |
3 | China | 8 | 12.70 |
4 | United States | 6 | 9.52 |
5 | United Kingdom | 6 | 9.52 |
6 | India | 5 | 7.94 |
7 | Iran | 4 | 6.35 |
8 | Italy | 4 | 6.35 |
9 | Mexico | 4 | 6.35 |
10 | Poland | 3 | 4.76 |
Organizations | |||
1 | University of Reading | 4 | 6.35 |
2 | Alma Mater Studiorum Università di Bologna | 3 | 4.76 |
3 | CSIC-Instituto de Agroquimica y Tecnologia de los Alimentos IATA | 2 | 3.17 |
4 | Jiangnan University | 2 | 3.17 |
5 | Universidade de São Paulo—USP | 2 | 3.17 |
6 | Universidade Federal da Paraíba—UFPB | 2 | 3.17 |
7 | Universitat Politècnica de València | 2 | 3.17 |
8 | University of California, Davis | 2 | 3.17 |
9 | Universidade Federal do Ceará | 2 | 3.17 |
10 | Universidade Estadual de Maringa | 2 | 3.17 |
Publication areas | |||
1 | Agricultural and Biological Sciences | 46 | 73.02 |
2 | Medicine | 11 | 17.46 |
3 | Immunology and Microbiology | 8 | 12.70 |
4 | Nursing | 8 | 12.70 |
5 | Biochemistry, Genetics and Molecular Biology | 7 | 11.11 |
6 | Chemistry | 7 | 11.11 |
7 | Chemical Engineering | 4 | 6.35 |
8 | Pharmacology, Toxicology and Pharmaceutics | 3 | 4.76 |
9 | Engineering | 2 | 3.17 |
Probiotic | Heath Benefits | References |
---|---|---|
L. rhamnosus GG | Anti-inflammatory | [78,96] |
L. brevis SBC8803 | Anti-inflammatory and improved permeability of the epithelial barrier, recovery from intestinal injuries | [97] |
Fermented milk containing L. gasseri CP2305 | Regulation of bowel function in patients with tendencies to constipation | [98] |
L. casei B1 | Anti-oxidative, anti-proliferative, and anti-adhesion activity against S. aureus | [99] |
L. acidophilus DDS-1 | Increased levels of short-chain fatty acids (butyrate, propionate, and acetate) | [100] |
L. plantarum | Antibiofilm activity against S. mutans | [101] |
L. fermentum S1 | Anti-oxidative and anti-biofilm effect against E. coli and S. aureus | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, S.S.; de Oliveira, V.M.; Pasquali, M.A.d.B. Probiotics in Citrus Fruits Products: Health Benefits and Future Trends for the Production of Functional Foods—A Bibliometric Review. Foods 2022, 11, 1299. https://doi.org/10.3390/foods11091299
Monteiro SS, de Oliveira VM, Pasquali MAdB. Probiotics in Citrus Fruits Products: Health Benefits and Future Trends for the Production of Functional Foods—A Bibliometric Review. Foods. 2022; 11(9):1299. https://doi.org/10.3390/foods11091299
Chicago/Turabian StyleMonteiro, Shênia Santos, Verônica Macário de Oliveira, and Matheus Augusto de Bittencourt Pasquali. 2022. "Probiotics in Citrus Fruits Products: Health Benefits and Future Trends for the Production of Functional Foods—A Bibliometric Review" Foods 11, no. 9: 1299. https://doi.org/10.3390/foods11091299
APA StyleMonteiro, S. S., de Oliveira, V. M., & Pasquali, M. A. d. B. (2022). Probiotics in Citrus Fruits Products: Health Benefits and Future Trends for the Production of Functional Foods—A Bibliometric Review. Foods, 11(9), 1299. https://doi.org/10.3390/foods11091299