Larvicidal Efficacy of Ozone and Ultrasound on Angiostrongylus cantonensis (Rat Lungworm) Third-Stage Larvae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gastropod Collection and Larval Preparation
2.2. Ozone Exposure
2.3. Cashido 10 Second Machine Using Faucet Delivery
2.4. Cashido Using Direct Delivery of Ozone Gas
2.5. Enaly OZX-300 Using Direct Gas Delivery
2.6. Ultrasonic Cleaners
2.7. Ozone with Ultrasound
2.8. Propidium Iodide Death Assay
3. Results
3.1. Cashido 10 Second Machine Using Direct Delivery of Ozone Gas through a Transfer Pipet
3.2. Enaly OZX-300 Using Direct Gas Delivery through an Air Stone
3.3. Ultrasonic Cleaners
3.4. Ozone with Ultrasound
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graeff-Teixeira, C.; da Silva, A.C.A.; Yoshimura, K. Update on Eosinophilic Meningoencephalitis and Its Clinical Relevance. Clin. Microbiol. Rev. 2009, 22, 322–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prociv, P.; Turner, M. Neuroangiostrongyliasis: The “Subarachnoid Phase” and Its Implications for Anthelminthic Therapy. Am. J. Trop. Med. Hyg. 2018, 98, 353–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alicata, J.E. Biology and Distribution of the Rat Lungworm, Angiostrongylus cantonensis, and Its Relationship to Eosinophilic Meningoencephalitis and Other Neurological Disorders of Man and Animals. Adv. Parasitol. 1965, 3, 223–248. [Google Scholar] [CrossRef]
- Kliks, M.M.; Palumbo, N.E. Eosinophilic Meningitis beyond the Pacific Basin: The Global Dispersal of a Peridomestic Zoonosis Caused by Angiostrongylus cantonensis, the Nematode Lungworm of Rats. Soc. Sci. Med. 1992, 34, 199–212. [Google Scholar] [CrossRef]
- Chen, H.-T. Un Nouveau Nématode Pulmonaire, Pulmonema cantonensis, Ng, n. Sp., Des Rats de Canton. Ann. Parasitol. Hum. Comp. 1935, 13, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Barratt, J.; Chan, D.; Sandaradura, I.; Malik, R.; Spielman, D.; Lee, R.; Marriott, D.; Harkness, J.; Ellis, J.; Stark, D. Angiostrongylus cantonensis: A Review of Its Distribution, Molecular Biology and Clinical Significance as a Human Pathogen. Parasitology 2016, 143, 1087. [Google Scholar] [CrossRef] [Green Version]
- Alicata, J.E. Parasitic Infections of Man and Animals in Hawaii; University of Hawaii: Honolulu, HI, USA, 1964; Volume 61, pp. 1–138. [Google Scholar]
- Jarvi, S.I.; Quarta, S.; Jacquier, S.; Howe, K.; Bicakci, D.; Dasalla, C.; Lovesy, N.; Snook, K.; McHugh, R.; Niebuhr, C.N. High Prevalence of Angiostrongylus cantonensis (Rat Lungworm) on Eastern Hawai‘i Island: A Closer Look at Life Cycle Traits and Patterns of Infection in Wild Rats (Rattus spp.). PLoS ONE 2017, 12, e0189458. [Google Scholar] [CrossRef] [Green Version]
- Johnston, D.I.; Dixon, M.C.; Elm, J.L.; Calimlim, P.S.; Sciulli, R.H.; Park, S.Y. Review of Cases of Angiostrongyliasis in Hawaii, 2007–2017. Am. J. Trop. Med. Hyg. 2019, 101, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Niebuhr, C.N.; Jarvi, S.I.; Kaluna, L.; Torres Fischer, B.L.; Deane, A.R.; Leinbach, I.L.; Siers, S.R. Occurrence of Rat Lungworm (Angiostrongylus cantonensis) in Invasive Coqui Frogs (Eleutherodactylus coqui) and Other Hosts in Hawaii, USA. J. Wildl. Dis. 2020, 56, 203–207. [Google Scholar] [CrossRef]
- Howe, K.; Kaluna, L.; Lozano, A.; Torres Fischer, B.; Tagami, Y.; McHugh, R.; Jarvi, S. Water Transmission Potential of Angiostrongylus cantonensis: Larval Viability and Effectiveness of Rainwater Catchment Sediment Filters. PLoS ONE 2019, 14, e0209813. [Google Scholar] [CrossRef] [Green Version]
- Alicata, J.E. Effect of Freezing and Boiling on the Infectivity of Third-Stage Larvae of Angiostrongylus cantonensis Present in Land Snails and Freshwater Prawns. J. Parasitol. 1967, 53, 1064–1066. [Google Scholar] [CrossRef] [PubMed]
- Crook, J.R.; Fulton, S.E.; Supanwong, K. The Infectivity of Third Stage Angiostrongylus cantonensis Larvae Shed from Drowned Achatina fúlica Snails and the Effect of Chemical Agents on Infectivity. Trans. R. Soc. Trop. Med. Hyg. 1971, 65, 602–605. [Google Scholar] [CrossRef]
- Zanini, G.M.; Graeff-Teixeira, C. Inactivation of Infective Larvae of Angiostrongylus costaricensis with Short Time Incubations in 1.5% Bleach Solution, Vinegar or Saturated Cooking Salt Solution. Acta Trop. 2001, 78, 17–21. [Google Scholar] [CrossRef]
- Steel, A.; Jacob, J.; Klasner, I.; Howe, K.; Jacquier, S.H.; Pitt, W.C.; Hollingsworth, R.; Jarvi, S.I. In Vitro Comparison of Treatments and Commercially Available Solutions on Mortality of Angiostrongylus cantonensis Third-Stage Larvae. Parasitology 2021, 148, 212–220. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Secondary Direct Food Additives Permitted in Food for Human Consumption. Fed. Regist. 2001, 66, 33829–33830. [Google Scholar]
- Oner, M.E.; Demirci, A. Ozone for Food Decontamination: Theory and Applications. In Handbook of Hygiene Control in the Food Industry; Woodhead Publishing: Sawston, UK, 2016; pp. 491–501. [Google Scholar]
- Bialka, K.L.; Demirci, A. Decontamination of Escherichia Coli O157: H7 and Salmonella Enterica on Blueberries Using Ozone and Pulsed UV-light. J. Food Sci. 2007, 72, M391–M396. [Google Scholar] [CrossRef]
- Achen, M.; Yousef, A.E. Efficacy of Ozone against Escherichia Coli O157: H7 on Apples. J. Food Sci. 2001, 66, 1380–1384. [Google Scholar]
- De Velásquez, M.T.O.; Martínez, J.L.; Monje Ramírez, I.; Rojas-Valencia, M.N. Destruction of Helminth (Ascaris suum) Eggs by Ozone. Ozone Sci. Eng. 2004, 26, 359–366. [Google Scholar] [CrossRef]
- Qiu, J.J.; Westerdahl, B.B.; Pryor, A. Reduction of Root-Knot Nematode, Meloidogyne javanica, and Ozone Mass Transfer in Soil Treated with Ozone. J. Nematol. 2009, 41, 241–246. [Google Scholar]
- Msayleb, N.; Ibrahim, S. Treatment of Nematodes with Ozone Gas: A Sustainable Alternative to Nematicides. Phys. Procedia 2011, 21, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Kos, J.; Brmež, M.; Markić, M.; Sipos, L. The Mortality of Nematodes in Drinking Water in the Presence of Ozone, Chlorine Dioxide, and Chlorine. Ozone Sci. Eng. 2020, 42, 120–127. [Google Scholar] [CrossRef]
- Mahvi, A.H. Application of Ultrasonic Technology for Water and Wastewater Treatment. Iran. J. Public Health 2009, 38, 1–17. [Google Scholar]
- Al-Juboori, R.A.; Yusaf, T.F. Improving the Performance of Ultrasonic Horn Reactor for Deactivating Microorganisms in Water. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2012; Volume 36, p. 12037. [Google Scholar]
- Jiang, Q.; Zhang, M.; Xu, B. Application of Ultrasonic Technology in Postharvested Fruits and Vegetables Storage: A Review. Ultrason. Sonochem. 2020, 69, 105261. [Google Scholar] [CrossRef] [PubMed]
- Burleson, G.R.; Murray, T.M.; Pollard, M. Inactivation of Viruses and Bacteria by Ozone, with and without Sonication. Appl. Microbiol. 1975, 29, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Mahvi, A.H.; Dehghani, M.H.; Kia, E.B. Inactivation of Nematodes by Ultrasonic. J. Med. Sci 2005, 5, 75–77. [Google Scholar]
- Piyasena, P.; Mohareb, E.; McKellar, R.C. Inactivation of Microbes Using Ultrasound: A Review. Int. J. Food Microbiol. 2003, 87, 207–216. [Google Scholar] [CrossRef]
- Liao, X.; Li, J.; Suo, Y.; Chen, S.; Ye, X.; Liu, D.; Ding, T. Multiple Action Sites of Ultrasound on Escherichia Coli and Staphylococcus aureus. Food Sci. Hum. Wellness 2018, 7, 102–109. [Google Scholar] [CrossRef]
- Hollingsworth, R.G.; Kaneta, R.; Sullivan, J.J.; Bishop, H.S.; Qvarnstrom, Y.; Da Silva, A.J.; Robinson, D.G. Distribution of Parmarion Cf. Martensi (Pulmonata: Helicarionidae), a New Semi-Slug Pest on Hawai‘i Island, and Its Potential as a Vector for Human Angiostrongyliasis. Pac. Sci. 2007, 61, 457–467. [Google Scholar]
- Jarvi, S.I.; Farias, M.E.; Howe, K.; Jacquier, S.; Hollingsworth, R.; Pitt, W. Quantitative PCR Estimates Angiostrongylus cantonensis (Rat Lungworm) Infection Levels in Semi-Slugs (Parmarion martensi). Mol. Biochem. Parasitol. 2012, 185, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.R.; Wong, T.M.; Curry, P.A.; Yeung, N.W.; Hayes, K.A.; Cowie, R.H. Modelling the Distribution in Hawaii of Angiostrongylus cantonensis (Rat Lungworm) in Its Gastropod Hosts. Parasitology 2019, 146, 42–49. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Liu, H.-X.; Zhang, C.-W.; Steinmann, P.; Zhou, X.-N.; Utzinger, J. Angiostrongylus cantonensis: Morphological and Behavioral Investigation within the Freshwater Snail Pomacea canaliculata. Parasitol. Res. 2009, 104, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Jarvi, S.I.; Jacob, J.; Sugihara, R.T.; Leinbach, I.L.; Klasner, I.H.; Kaluna, L.M.; Snook, K.A.; Howe, M.K.; Jacquier, S.H.; Lange, I.; et al. Validation of a Death Assay for Angiostrongylus cantonensis Larvae (L3) Using Propidium Iodide in a Rat Model (Rattus norvegicus). Parasitology 2019, 146, 1421–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, S.R.; Mendes, T.A.O.; Bueno, L.L.; de Araújo, J.V.; Bartholomeu, D.C.; Fujiwara, R.T. A New Methodology for Evaluation of Nematode Viability. BioMed Res. Int. 2015, 2015, 879263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Public Health Association Method 4500-O3 B. Indigo Colorimetric Method. In Standard Methods for the Examination of Water and Wastewater; Rice, E.W., Baird, R.B., Eaton, E.D., Clesceri, L.S., Eds.; APHA: Washington, DC, USA, 2012; pp. 4-145–4-147. [Google Scholar]
- Bader, H.; Hoigné, J. Determination of Ozone in Water by the Indigo Method. Water Res. 1981, 15, 449–456. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Greene, A.K.; Seydim, A.C. Use of Ozone in the Food Industry. LWT-Food Sci. Technol. 2004, 37, 453–460. [Google Scholar] [CrossRef]
- Alexopoulos, A.; Plessas, S.; Ceciu, S.; Lazar, V.; Mantzourani, I.; Voidarou, C.; Stavropoulou, E.; Bezirtzoglou, E. Evaluation of Ozone Efficacy on the Reduction of Microbial Population of Fresh Cut Lettuce (Lactuca sativa) and Green Bell Pepper (Capsicum annuum). Food Control. 2013, 30, 491–496. [Google Scholar] [CrossRef]
- Kim, J.G.; Yousef, A.E.; Khadre, M.A. Ozone and Its Current and Future Application in the Food Industry. Adv. Food Nutr. Res. 2003, 45, 167–218. [Google Scholar] [CrossRef]
- Broadwater, W.T.; Hoehn, R.C.; King, P.H. Sensitivity of Three Selected Bacterial Species to Ozone. Appl. Microbiol. 1973, 26, 391–393. [Google Scholar] [CrossRef]
- Fetner, R.H.; Ingols, R.S. A Comparison of the Bactericidal Activity of Ozone and Chlorine against Escherichia Coli at 1°. Microbiology 1956, 15, 381–385. [Google Scholar] [CrossRef] [Green Version]
- OSHA Occupational Safety and Health Standards, Table Z-1 Limits for Air Contaminants, Part Number 1910. Available online: https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9992 (accessed on 15 February 2022).
- Sano, M.; Ishii, A.I.; Kino, H.; Hayashi, M. Experimental Light Infection of Angiostrongylus cantonensis in Rats. J. Trop. Med. Hyg. 1982, 85, 73–75. [Google Scholar]
- Ji, L.; Yiyue, X.; Xujin, H.; Minghui, Z.; Mengying, Z.; Yue, H.; Yanqi, W.; Langui, S.; Xin, Z.; Datao, L.; et al. Study on the Tolerance and Adaptation of Rats to Angiostrongylus cantonensis Infection. Parasitol. Res. 2017, 116, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.R.; Hayes, K.A.; Yeung, N.W.; Cowie, R.H. Diverse Gastropod Hosts of Angiostrongylus cantonensis, the Rat Lungworm, Globally and with a Focus on the Hawaiian Islands. PLoS ONE 2014, 9, e94969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvi, S.I.; Howe, K.; Macomber, P. Angiostrongyliasis or Rat Lungworm Disease: A Perspective From Hawai’i. Curr. Trop. Med. Rep. 2018, 5, 59–66. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steel, A.; Platz, M.S.; Riglos, A.-J.; Garcia, B.J.; Jacob, J.; Jarvi, S.I. Larvicidal Efficacy of Ozone and Ultrasound on Angiostrongylus cantonensis (Rat Lungworm) Third-Stage Larvae. Foods 2022, 11, 953. https://doi.org/10.3390/foods11070953
Steel A, Platz MS, Riglos A-J, Garcia BJ, Jacob J, Jarvi SI. Larvicidal Efficacy of Ozone and Ultrasound on Angiostrongylus cantonensis (Rat Lungworm) Third-Stage Larvae. Foods. 2022; 11(7):953. https://doi.org/10.3390/foods11070953
Chicago/Turabian StyleSteel, Argon, Matthew S. Platz, Alyssa-Jade Riglos, Billie Jean Garcia, John Jacob, and Susan I. Jarvi. 2022. "Larvicidal Efficacy of Ozone and Ultrasound on Angiostrongylus cantonensis (Rat Lungworm) Third-Stage Larvae" Foods 11, no. 7: 953. https://doi.org/10.3390/foods11070953
APA StyleSteel, A., Platz, M. S., Riglos, A.-J., Garcia, B. J., Jacob, J., & Jarvi, S. I. (2022). Larvicidal Efficacy of Ozone and Ultrasound on Angiostrongylus cantonensis (Rat Lungworm) Third-Stage Larvae. Foods, 11(7), 953. https://doi.org/10.3390/foods11070953