A Comparison between the Egg Yolk Flavor of Indigenous 2 Breeds and Commercial Laying Hens Based on Sensory Evaluation, Artificial Sensors, and GC-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples Preparation
2.3. Sensory Evaluation
2.4. Electronic Nose Analysis
2.5. Electronic Tongue Analysis
2.6. Volatile Compound Analysis
2.7. Fatty Acid Analysis
2.8. Texture Profile Analysis
2.9. Statistical Analysis
3. Results
3.1. Sensory Evaluation of Egg Yolk
3.2. Electronic Nose Analysis of Egg Yolk Aroma
3.3. Electronic-Tongue Analysis of Egg Yolk Flavor
3.4. Volatile Compound Analysis of Egg Yolk
3.5. Fatty Acids of Egg Yolk
3.6. Texture Profile Analysis of Egg Yolk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lima, H.J.D.; Souza, L.A.Z. Vitamin A in the diet of laying hens: Enrichment of table eggs to prevent nutritional deficiencies in humans. World’s Poult. Sci. J. 2019, 74, 619–626. [Google Scholar] [CrossRef]
- Maga, J.A. Egg and egg product flavor. J. Agric. Food Chem. 1982, 30, 9–14. [Google Scholar] [CrossRef]
- Goto, T.; Tsudzuki, M. Genetic mapping of quantitative trait loci for egg production and egg quality traits in chickens: A review. J. Poult. Sci. 2017, 54, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.H. Protein and amino acid content in four brands of commercial table eggs in retail markets in relation to human requirements. Animals 2020, 10, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, T.; Shimamoto, S.; Ohtsuka, A.; Ijiri, D. Analyses of free amino acid and taste sensor traits in egg albumen and yolk revealed potential of value-added eggs in chickens. Anim. Sci. J. 2021, 92, e13510. [Google Scholar] [CrossRef] [PubMed]
- Mpenda, F.N.; Schilling, M.A.; Campbell, Z.; Mngumi, E.B.; Buza, J. The genetic diversity of local african chickens: A potential for selection of chickens resistant to viral infections. J. Appl. Poult. Res. 2019, 28, 1–12. [Google Scholar] [CrossRef]
- Gonzalez Ariza, A.; Arando Arbulu, A.; Navas Gonzalez, F.J.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. Discriminant canonical analysis as a validation tool for multivariety native breed egg commercial quality classification. Foods 2021, 10, 632. [Google Scholar] [CrossRef]
- Hoffmann, I. The global plan of action for animal genetic resources and the conservation of poultry genetic resources. World’s Poult. Sci. J. 2019, 65, 286–297. [Google Scholar] [CrossRef]
- Lordelo, M.; Cid, J.; Cordovil, C.; Alves, S.P.; Bessa, R.J.B.; Carolino, I. A comparison between the quality of eggs from indigenous chicken breeds and that from commercial layers. Poult. Sci. 2020, 99, 1768–1776. [Google Scholar] [CrossRef]
- Shi, H.; Ma, X.Y.; Wang, Y.; Peng, D.; Zang, L.; Liu, H.J.; Feng, J. Effects of dietary tibetan medicine “dali” on performance, egg quality, serum cytokine content and antioxidant activity of xueyu white chickens in laying hens during late period of laying. Chin. J. Anim. Nutr. 2021, 12, 6782–6791. [Google Scholar] [CrossRef]
- Qi, M.X.; Ding, K.; Li, L.L.; Zhang, N.N.; Yan, H.X.; Zou, X.T. Effects of different dietary energy and crude protein levels on performance, egg quality and serum biochemical indices of xinyang green shell laying hens during late stage of egg production. Chin. J. Anim. Nutr. 2017, 4, 1159–1166. [Google Scholar] [CrossRef]
- Drewnowski, A. Taste preferences and food intake. Annu. Rev. Nutr. 1997, 17, 237–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.; Low, M.Y.; Zhou, W. Design of experiments and regression modelling in food flavour and sensory analysis: A review. Trends Food Sci. Technol. 2018, 71, 202–215. [Google Scholar] [CrossRef]
- Sasaki, K.; Watanabe, G.; Motoyama, M.; Narita, T.; Kawai, H.; Kobayashi, T.; Fujimura, S.; Kobayashi, N.; Honda, F.; Matsushita, K.; et al. Descriptive sensory traits of cooked eggs laid from hens fed rice grain. J. Poult. Sci. 2019, 56, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Kalus, K.; Konkol, D.; Korczyński, M.; Koziel, J.A.; Opaliński, S. Laying hens biochar diet supplementation—effect on performance, excreta N content, NH3 and VOCs emissions, egg traits and egg consumers acceptance. Agriculture 2020, 10, 237. [Google Scholar] [CrossRef]
- Hayat, Z.; Nasir, M.; Rasul, H. Egg quality and organoleptic evaluation of nutrient enriched designer eggs. Pak. J. Agric. Sci. 2014, 51, 1085–1089. [Google Scholar]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Fusion of artificial senses as a robust approach to food quality assessment. J. Food Eng. 2016, 171, 230–239. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Apetrei, C.; Lozano, J.; Anyogu, A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci. Technol. 2018, 80, 71–92. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment: A review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Sipos, L.; Vegh, R.; Bodor, Z.; Zaukuu, J.Z.; Hitka, G.; Bazar, G.; Kovacs, Z. Classification of bee pollen and prediction of sensory and colorimetric attributes-A sensometric fusion approach by E-Nose, E-Tongue and NIR. Sensors 2020, 20, 6768. [Google Scholar] [CrossRef]
- Hayashi, K.; Yamanaka, M.; Toko, K.; Yamafuji, K. Multichannel taste sensor using lipid membranes. Sens. Actuators B Chem. 1990, 2, 205–213. [Google Scholar] [CrossRef]
- Tahara, Y.; Nakashi, K.; Ji, K.; Ikeda, A.; Toko, K. Development of a portable taste sensor with a lipid/polymer membrane. Sensors 2013, 13, 1076–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherian, G.; Goeger, M.P.; Ahn, D.U. Dietary conjugated linoleic acid with fish oil alters yolk n-3 and trans fatty acid content and volatile compounds in raw, cooked, and irradiated eggs. Poult. Sci. 2002, 81, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Yimenu, S.M.; Kim, J.Y.; Kim, B.S. Prediction of egg freshness during storage using electronic nose. Poult. Sci. 2017, 96, 3733–3746. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.G.; Gao, L.B.; Zhang, H.J.; Wang, J.; Qiu, K.; Qi, G.H.; Wu, S.G. Discriminating eggs from two local breeds based on fatty acid profile and flavor characteristics combined with classification algorithms. Food Sci. Anim. Resour. 2021, 41, 936–949. [Google Scholar] [CrossRef]
- Dong, X.G.; Gao, L.B.; Zhang, H.J.; Wang, J.; Qiu, K.; Qi, G.H.; Wu, S.G. Comparison of sensory qualities in eggs from three breeds based on electronic sensory evaluations. Foods 2021, 10, 1984. [Google Scholar] [CrossRef]
- Aguinaga Bósquez, J.P.; Kovacs, Z.; Gillay, Z.; Bázár, G.; Palkó, C.; Hingyi, H.; Csavajda, É.; Üveges, M.; Jókainé Szatura, Z.; Barbulescu, I.D.; et al. Evaluating the effect of a brewery by-product as feed supplementation on the quality of eggs by means of a human panel and E-Tongue and E-Nose analysis. Chemosensors 2021, 9, 213. [Google Scholar] [CrossRef]
- Smyth, H.; Cozzolino, D. Instrumental methods (spectroscopy, electronic nose, and tongue) as tools to predict taste and aroma in beverages: Advantages and limitations. Chem. Rev. 2013, 113, 1429–1440. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.L.; Arrieta, A.A.; Parra, V.; Bernal, A.; Vegas, A.; Villanueva, S.; Gutierrez-Osuna, R.; de Saja, J.A. Fusion of three sensory modalities for the multimodal characterization of red wines. IEEE Sens. J. 2004, 4, 348–354. [Google Scholar] [CrossRef]
- Ampuero, S.; Bosset, J.O. The electronic nose applied to dairy products: A review. Sens. Actuators B Chem. 2003, 94, 1–12. [Google Scholar] [CrossRef]
- Xiang, X.L.; Jin, G.F.; Gouda, M.; Jin, Y.G.; Ma, M.H. Characterization and classification of volatiles from different breeds of eggs by SPME-GC-MS and chemometrics. Food Res. Int. 2019, 116, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.F.; He, L.C.; Li, C.L.; Zhao, Y.H.; Chen, C.; Zhang, Y.H.; Zhang, J.H.; Ma, M.H. Effect of pulsed pressure-assisted brining on lipid oxidation and volatiles development in por.rk bacon during salting and drying-ripening. LWT Food Sci. Technol. 2015, 64, 1099–1106. [Google Scholar] [CrossRef]
- Huang, L.X.; Liu, H.R.; Zhang, B.; Wu, D. Application of electronic nose with multivariate analysis and sensor selection for botanical origin identification and quality determination of honey. Food Bioprocess. Technol. 2015, 8, 359–370. [Google Scholar] [CrossRef]
- Wang, Q.L.; Jin, G.F.; Jin, Y.G.; Ma, M.H.; Wang, N.; Liu, C.Y.; He, L.Y. Discriminating eggs from different poultry species by fatty acids and volatiles profiling: Comparison of SPME-GC/MS, electronic nose, and principal component analysis method. Eur. J. Lipid Sci. Technol. 2014, 116, 1044–1053. [Google Scholar] [CrossRef]
- Nasiru, M.M.; Umair, M.; Boateng, E.F.; Alnadari, F.; Khan, K.R.; Wang, Z.; Luo, J.; Yan, W.; Zhuang, H.; Majrashi, A.; et al. Characterisation of flavour attributes in egg white protein using HS-GC-IMS combined with E-Nose and E-Tongue: Effect of high-voltage cold plasma treatment time. Molecules 2022, 27, 601. [Google Scholar] [CrossRef] [PubMed]
- Akitomi, H.; Tahara, Y.; Yasuura, M.; Kobayashi, Y.; Ikezaki, H.; Toko, K. Quantification of tastes of amino acids using taste sensors. Sen. Actuators B Chem 2013, 179, 276–281. [Google Scholar] [CrossRef]
- Feng, J.; Long, S.; Zhang, H.J.; Wu, S.G.; Qi, G.H.; Wang, J. Comparative effects of dietary microalgae oil and fish oil on fatty acid composition and sensory quality of table eggs. Poult. Sci. 2020, 99, 1734–1743. [Google Scholar] [CrossRef]
- Zhang, J.H.; Cao, J.; Pei, Z.S.; Wei, P.Y.; Xiang, D.; Cao, X.Y.; Shen, X.R.; Li, C. Volatile flavour components and the mechanisms underlying their production in golden pompano (Trachinotus blochii) fillets subjected to different drying methods: A comparative study using an electronic nose, an electronic tongue and SDE-GC-MS. Food Res. Int. 2019, 123, 217–225. [Google Scholar] [CrossRef]
- Taskaya, L.; Chen, Y.C.; Jaczynski, J. Color improvement by titanium dioxide and its effect on gelation and texture of proteins recovered from whole fish using isoelectric solubilization/precipitation. LWT Food Sci. Technol. 2010, 43, 401–408. [Google Scholar] [CrossRef]
- Terčič, D.; Žlender, B.; Holcman, A. External, internal and sensory qualities of table eggs as influenced by two different production systems. Agroznanje 2012, 13, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Liu, Y.; Wang, X.Y.; Jin, Y.G. Changes in structure and flavor of egg yolk gel induced by lipid migration under heating. Food Hydrocolloid 2020, 98, 105257. [Google Scholar] [CrossRef]
- Anton, M.; Le Denmat, M.; Beaumal, V.; Pilet, P. Filler effects of oil droplets on the rheology of heat-set emulsion gels prepared with egg yolk and egg yolk fractions. Colloid Surf. B 2001, 21, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Deng, J.; Li, X.; Shang, W.; Ning, Z. Research Note: Comparison of the texture, structure, and composition of eggs from local Chinese chickens and a highly selected line of egg-type chickens and analysis of the effects of lipids on texture. Poult. Sci. 2022, 101, 101934. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Zhang, W.; Zheng, S.; An-Qi, Q.; Zhan, G. Study on changes of gel moisture characteristic and texture properties of duck eggs during salting period by low-field nuclear magnetic resonance. Food Mach. 2019, 35, 21–26 + 106. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, E.M.; Gakhar, N.; Ryland, D.; Aliani, M.; Gibson, R.A.; House, J.D. Fatty acid profile and sensory characteristics of table eggs from laying hens fed hempseed and hempseed oil. J. Food Sci. 2012, 77, S153–S160. [Google Scholar] [CrossRef] [PubMed]
- Bejaei, M.; Cheng, K.M. The effect of including full-fat dried black soldier fly larvae in laying hen diet on egg quality and sensory characteristics. J. Insects Food Feed 2020, 6, 305–314. [Google Scholar] [CrossRef]
- Gao, B.; Hu, X.; Li, R.; Zhao, Y.; Tu, Y.; Zhao, Y. Screening of characteristic umami substances in preserved egg yolk based on the electronic tongue and UHPLC-MS/MS. LWT 2021, 152, 112396. [Google Scholar] [CrossRef]
- Takahashi, H. Association between arachidonic acid and chicken meat and egg flavor, and their genetic regulation. J. Poult. Sci. 2018, 55, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hu, Y.Y.; Wang, Y.; Kong, B.H.; Chen, Q. Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and HS-SPME/GC-MS. LWT Food Sci. Technol. 2021, 140, 110764. [Google Scholar] [CrossRef]
- Qi, J.; Liu, D.Y.; Zhou, G.H.; Xu, X.L. Characteristic flavor of traditional soup made by stewing Chinese yellow-feather chickens. J. Food Sci. 2017, 82, 2031–2040. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Cui, H.; Yuan, X.; Liu, L.; Liu, X.; Wang, Y.; Ding, J.; Xiang, H.; Zhang, X.; Liu, J.; et al. Identification of the main aroma compounds in Chinese local chicken high-quality meat. Food Chem. 2021, 359, 129930. [Google Scholar] [CrossRef] [PubMed]
- Van Ruth, S.M.; de Witte, L.; Uriarte, A.R. Volatile flavor analysis and sensory evaluation of custard desserts varying in type and concentration of carboxymethyl cellulose. J. Agric. Food Chem. 2004, 52, 8105–8110. [Google Scholar] [CrossRef] [PubMed]
- Plagemann, I.; Zelena, K.; Krings, U.; Berger, R.G. Volatile flavours in raw egg yolk of hens fed on different diets. J. Sci. Food Agric. 2011, 91, 2061–2065. [Google Scholar] [CrossRef] [PubMed]
Attribute | Standard Products/Amount |
---|---|
Aroma | |
Egg aroma | Blended commercial egg, cooked (CP Group, Beijing, China) |
Ammonia aroma | Ammonia flavor liquor nose (Le Nez du Vin, France) |
Fishy aroma | Raw fresh menhaden fillets (Wumarket, Beijing, China)/15 g |
Flavor | |
Egg flavor | Blended commercial egg, cooked (CP Group, Beijing, China) |
Fishy flavor | Raw fresh menhaden fillets (Wumarket, Beijing, China)/15 g |
Ammonia flavor | Ammonia flavor liquor nose (Le Nez du Vin, France) |
Milky flavor | 1.26% low-fat milk (CP Group, Beijing, China)/5 g |
Sweet flavor | Sucrose/1 g |
Salty flavor | 0.25% salt solution (Wumarket, China National Salt Industry Group, Xinjiang, China)/1 g |
Texture | |
Adhesive dentition | The stickiness felt by the teeth when biting the egg yolk |
Stickiness | The tongue felt sticky from egg yolk |
Moisture | The tongue felt moisty from egg yolk |
Lumpy | The tongue felt the graininess of the egg yolk when gently sipping the egg yolk |
Compactness | The hands and mouth felt compactness of yolk felt |
Hard | Resistance of teeth during occlusion |
Items | Sensors Name | Sensor Characteristics |
---|---|---|
E-nose | ||
1 | W1C | Aromatic |
2 | W5S | Nitrogen oxides |
3 | W3C | Ammonia |
4 | W6S | Hydrogen |
5 | W5C | Alkane |
6 | W1S | Methane |
7 | W1W | Sulfur |
8 | W2S | Alcohol, aromatic |
9 | W2W | Aromatic, sulfur organic |
10 | W3S | High concentrations > 100 ppm |
E-tongue | ||
1 | SRS | Sourness |
3 | STS | Saltiness |
4 | UMS | Umami |
6 | SWS | Sweatiness |
7 | BRS | Sourness |
Attribute | Hy-Line 1 | Xueyu 1 | Xinyang 1 | SEM 2 | Source of Variation (F-Value) | |
---|---|---|---|---|---|---|
Breed | Panelist | |||||
Aroma | ||||||
Egg aroma | 8.73 b | 8.70 b | 10.46 a | 0.144 | 5.55 * | 0.84 |
Ammonia aroma | 1.32 a | 0.99 b | 0.57 b | 0.110 | 5.28 * | 5.99 * |
Fishy aroma | 1.57 | 1.63 | 1.16 | 0.918 | 1.88 | 6.12 * |
Flavor | ||||||
Egg flavor | 8.94 c | 9.47 b | 10.10 a | 1.675 | 3.29 * | 9.38 * |
Fishy flavor | 0.76 | 0.75 | 0.68 | 0.470 | 1.67 | 10.82 * |
Ammonia flavor | 0.65 | 0.73 | 0.51 | 0.425 | 0.62 | 3.70 * |
Milky flavor | 5.54 | 7.65 | 7.61 | 1.537 | 12.83 | 2.80 * |
Sweet flavor | 1.58 | 2.06 | 2.03 | 1.075 | 0.42 | 17.14 * |
Salty flavor | 1.42 c | 2.98 a | 1.94 b | 1.053 | 7.24 * | 1.54 |
Texture | ||||||
Adhesive dentition | 6.30 | 6.66 | 6.62 | 2.003 | 0.61 | 25.10 * |
Stickiness | 6.12 | 5.09 | 5.87 | 1.861 | 1.14 | 2.94 |
Moisture | 3.84 c | 5.64 a | 5.08 b | 1.198 | 6.92 * | 0.53 |
Lumpy | 2.91 | 2.39 | 2.75 | 1.575 | 0.61 | 7.13 * |
Compactness | 6.85 c | 9.53 b | 9.97 a | 1.951 | 29.42 * | 6.62 * |
Hard | 2.13 c | 2.83 b | 3.34 a | 1.245 | 3.96 * | 3.96 * |
Preference | ||||||
Aroma preference | 9.86 | 9.75 | 10.74 | 2.047 | 1.38 | 4.00 * |
Flavor preference | 9.53 b | 10.07 b | 10.81 a | 1.714 | 4.72 * | 9.64 * |
Texture preference | 9.07 | 10.13 | 10.24 | 2.284 | 3.62 | 17.19 * |
Overall preference | 9.36 | 10.30 | 10.79 | 2.225 | 5.22 | 18.07 * |
Aroma Preference | Flavor Preference | Texture Preference | Overall Preference | |
---|---|---|---|---|
Aroma preference | 1.00 | |||
Flavor preference | 0.44 | 1.00 | ||
Texture preference | 0.45 | 0.76 | 1.00 | |
Overall preference | 0.49 * | 0.77 ** | 0.99 ** | 1.00 |
Items | Hy-Line 1 | Xueyu 1 | Xinyang 1 | SEM 2 | p-Value |
---|---|---|---|---|---|
PALM (C16:0) | 74.78 | 70.56 | 78.93 | 1.97 | 0.27 |
PALMO (C16:1) | 11.47 ab | 7.71 b | 13.23 a | 0.83 | 0.01 |
SA (C18:0) | 35.34 | 32.31 | 32.97 | 1.21 | 0.57 |
OA (C18:1 n9) | 7.22 | 6.28 | 9.97 | 0.71 | 0.08 |
LA (C18:2 n6) | 55.08 | 42.6 | 48.6 | 2.67 | 0.16 |
AA (C20:4 n6) | 5.43 ab | 4.5 b | 7.64 a | 0.52 | 0.03 |
ALA (C18:3 n3) | 4.74 | 4.78 | N.D.3 | 0.44 | 0.96 |
DHA (C22:6 n3) | 5.55 a | 4.49 ab | 2.25 b | 0.43 | 0.02 |
Total n-3 PUFA | 10.29 a | 8.48 a | 2.25 b | 0.99 | 0.01 |
Total n-6 PUFA | 60.52 | 47.1 | 56.25 | 2.98 | 0.18 |
Items | Hy-Line 1 | Xueyu 1 | Xinyang 1 | SEM 2 | p-Value |
---|---|---|---|---|---|
Cohesiveness | 0.43 | 0.45 | 0.40 | 0.02 | 0.50 |
Springiness (mm) | 5.20 b | 5.70 a | 3.80 c | 0.16 | <0.01 |
Gumminess (N) | 1.83 ab | 2.07 a | 1.31 b | 0.12 | 0.03 |
Chewiness | 7.76 a | 8.03 a | 4.53 b | 0.45 | <0.01 |
Hardness (N) | 3.87 b | 4.80 a | 3.27 c | 0.17 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.-B.; Obianwuna, U.E.; Zhang, H.-J.; Qiu, K.; Wu, S.-G.; Qi, G.-H.; Wang, J. A Comparison between the Egg Yolk Flavor of Indigenous 2 Breeds and Commercial Laying Hens Based on Sensory Evaluation, Artificial Sensors, and GC-MS. Foods 2022, 11, 4027. https://doi.org/10.3390/foods11244027
Gao L-B, Obianwuna UE, Zhang H-J, Qiu K, Wu S-G, Qi G-H, Wang J. A Comparison between the Egg Yolk Flavor of Indigenous 2 Breeds and Commercial Laying Hens Based on Sensory Evaluation, Artificial Sensors, and GC-MS. Foods. 2022; 11(24):4027. https://doi.org/10.3390/foods11244027
Chicago/Turabian StyleGao, Li-Bing, Uchechukwu Edna Obianwuna, Hai-Jun Zhang, Kai Qiu, Shu-Geng Wu, Guang-Hai Qi, and Jing Wang. 2022. "A Comparison between the Egg Yolk Flavor of Indigenous 2 Breeds and Commercial Laying Hens Based on Sensory Evaluation, Artificial Sensors, and GC-MS" Foods 11, no. 24: 4027. https://doi.org/10.3390/foods11244027
APA StyleGao, L.-B., Obianwuna, U. E., Zhang, H.-J., Qiu, K., Wu, S.-G., Qi, G.-H., & Wang, J. (2022). A Comparison between the Egg Yolk Flavor of Indigenous 2 Breeds and Commercial Laying Hens Based on Sensory Evaluation, Artificial Sensors, and GC-MS. Foods, 11(24), 4027. https://doi.org/10.3390/foods11244027