In-Silico Analysis and Antidiabetic Effect of α-Amylase and α-Glucosidase Inhibitory Peptides from Lupin Protein Hydrolysate: Enzyme-Peptide Interaction Study Using Molecular Docking Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Lupin Protein Hydrolysates (LPH)
2.3. Fractionation of the Hydrolysate Samples
2.4. Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) Analysis
2.5. Determination of α-Amylase Inhibitory Activity
2.6. Determination of α-Glucosidase Inhibitory Activity
2.7. Identification of Peptides Implied in α-Amylase and α-Glucosidase Inhibitory Activities Using Liquid Chromatography-Mass Spectrometry of Quadrupole Time-of-Flight (LC-MS QTOF) and In-Silico Approach
2.8. Molecular Docking
2.9. Statistical Analysis
3. Results and Discussions
3.1. SDS-PAGE Analysis
3.2. Inhibition of the α-Amylase Inhibitory Activity
3.3. Inhibition of the α-Glucosidase Inhibitory Activity
3.4. Identification and Selection of α-Amylase and α-Glucosidase Inhibitory Peptides from Selected Lupin Protein Hydrolysates
3.5. Molecular Interaction of Lupin Protein-Derived α-Glucosidase Inhibitory Peptides with α-Glucosidase
3.6. Molecular Interaction of Lupin Protein-Derived α-Amylase Inhibitory Peptides with α-Amylase
3.7. Mechanism of Molecular Binding and Molecular Docking of Novel Peptides with α-Amylase and α-Glucosidase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IDF. Diabetes Atlas Tenth Edition; IDF: Brussels, Belgium, 2021. [Google Scholar]
- Famuwagun, A.A.; Alashi, A.M.; Gbadamosi, O.S.; Taiwo, K.A.; Oyedele, D.; Adebooye, O.C.; Aluko, R.E. Antioxidant and enzymes inhibitory properties of Amaranth leaf protein hydrolyzates and ultrafiltration peptide fractions. J. Food Biochem. 2021, 45, e13396. [Google Scholar] [CrossRef] [PubMed]
- Patil; Mandal, S.; Tomar, S.K.; Anand, S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nutr. 2015, 54, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Fadimu, G.J.; Gill, H.; Farahnaky, A.; Truong, T. Improving the enzymolysis efficiency of lupin protein by ultrasound pretreatment: Effect on antihypertensive, antidiabetic and antioxidant activities of the hydrolysates. Food Chem. 2022, 383, 132457. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.J.; Karam, S.L.; Wallia, A.; Kang, R.H.; Cooper, A.J.; Lancki, N.; Moran, M.R.; Liss, D.T.; Prospect, T.A.; Ackermann, R.T. Association of second-line Antidiabetic medications with cardiovascular events among insured adults with Type 2 diabetes. JAMA Netw. Open 2018, 1, 186125. [Google Scholar] [CrossRef] [PubMed]
- Nourmohammadi, E.; Mahoonak, A.S. Health implications of bioactive peptides: A review. Int. J. Vitam. Nutr. Res. 2019, 88, 319–343. [Google Scholar] [CrossRef]
- Singh, B.P.; Aluko, R.E.; Hati, S.; Solanki, D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 4593–4606. [Google Scholar] [CrossRef]
- Guo, X.; Shang, W.; Strappe, P.; Zhou, Z.; Blanchard, C. Peptides derived from lupin proteins confer potent protection against oxidative stress. J. Sci. Food Agric. 2018, 98, 5225–5234. [Google Scholar] [CrossRef]
- Kamran, F.; Phillips, M.; Reddy, N. Functional properties of Australian blue lupin (Lupinus angustifolius) protein and biological activities of protein hydrolysates. Legume Sci. 2021, 3, e65. [Google Scholar] [CrossRef]
- Fadimu, G.J.; Farahnaky, A.; Gill, H.; Truong, T. Influence of ultrasonic pretreatment on structural properties and biological activities of lupin protein hydrolysate. Int. J. Food Sci. Technol. 2022, 57, 1729–1738. [Google Scholar] [CrossRef]
- Lammi, C.; Bollati, C.; Lecca, D.; Abbracchio, M.P.; Arnoldi, A. Lupin peptide T9 (GQEQSHQDEGVIVR) modulates the mutant PCSK9D374Y Pathway: In vitro characterization of its dual hypocholesterolemic behavior. Nutrients 2019, 11, 1665. [Google Scholar] [CrossRef]
- Muñoz, E.B.; Luna-Vital, D.A.; Fornasini, M.; Baldeón, M.E.; de Mejia, E.G. Gamma-conglutin peptides from Andean lupin legume (Lupinus mutabilis Sweet) enhanced glucose uptake and reduced gluconeogenesis in vitro. J. Funct. Foods 2018, 45, 339–347. [Google Scholar] [CrossRef]
- Patil, S.P.; Goswami, A.; Kalia, K.; Kate, A.S. Plant-derived bioactive peptides: A treatment to cure diabetes. Int. J. Pept. Res. Ther. 2020, 26, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Fadimu, G.J.; Gill, H.; Farahnaky, A.; Truong, T. Investigating the impact of ultrasound pretreatment on the physicochemical, structural and antioxidant properties of lupin protein hydrolysates. Food Bioproc. Technol. 2021, 14, 2004–2019. [Google Scholar] [CrossRef]
- Laemmli, U. SDS-PAGE Laemmli method. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Wickramaratne, M.N.; Punchihewa, J.; Wickramaratne, D. In-vitro alpha-amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement Altern. Med. 2016, 16, 466. [Google Scholar] [CrossRef]
- Lankatillake, C.; Luo, S.; Flavel, M.; Lenon, G.B.; Gill, H.; Huynh, T.; Dias, D.A. Screening natural product extracts for potential enzyme inhibitors: Protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. Plant Methods 2021, 17, 3. [Google Scholar] [CrossRef]
- Sarah, S.; Faradalila, W.; Salwani, M.; Amin, I.; Karsani, S.; Sazili, A. LC–QTOF-MS identification of porcine-specific peptide in heat treated pork identifies candidate markers for meat species determination. Food Chem. 2016, 199, 157–164. [Google Scholar] [CrossRef]
- Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in the complex. Nucleic Acids Res. 2016, 44, W449–W454. [Google Scholar] [CrossRef]
- Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Honorato, R.V.; Koukos, P.I.; Jiménez-García, B.; Tsaregorodtsev, A.; Verlato, M.; Giachetti, A.; Rosato, A.; Bonvin, A.M. Structural biology in the clouds: The WeNMR-EOSC ecosystem. Front. Mol. Biosci. 2021, 8, 729513. [Google Scholar] [CrossRef]
- Awosika, T.O.; Aluko, R.E. Inhibition of the in-vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. Int. J. Food Sci. Technol. 2019, 54, 2021–2034. [Google Scholar] [CrossRef]
- Aluko, R.E. Food protein-derived peptides: Production, isolation, and purification. In Proteins in Food Processing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 389–412. [Google Scholar]
- Girgih, A.T.; Udenigwe, C.C.; Li, H.; Adebiyi, A.P.; Aluko, R.E. Kinetics of enzyme inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. J. Am. Chem. Soc. 2011, 88, 1767–1774. [Google Scholar] [CrossRef]
- Wei, D.; Fan, W.; Xu, Y. In vitro production and identification of angiotensin-converting enzyme (ACE) inhibitory peptides derived from distilled spent grain prolamin isolate. Foods 2019, 8, 390. [Google Scholar] [CrossRef]
- Trabuco, L.G.; Lise, S.; Petsalaki, E.; Russell, R.B. PepSite: Prediction of peptide-binding sites from protein surfaces. Nucleic Acids Res. 2012, 40, W423–W427. [Google Scholar] [CrossRef] [PubMed]
- Hermans, M.; Kroos, M.; Van Beeumen, J.; Oostra, B.; Reuser, A. Human lysosomal alpha-glucosidase. Characterization of the catalytic site. J. Biol. Chem. 1991, 266, 13507–13512. [Google Scholar] [CrossRef]
- Bruckmann, C.; Repo, H.; Kuokkanen, E.; Xhaard, H.; Heikinheimo, P. Systematic Structure-Activity Study on Potential Chaperone Lead Compounds for Acid α-Glucosidase. ChemMedChem 2012, 7, 1943–1953. [Google Scholar] [CrossRef]
- Kamal, H.; Mudgil, P.; Bhaskar, B.; Fisayo, A.F.; Gan, C.-Y.; Maqsood, S. Amaranth proteins as potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes. J. Cereal Sci. 2021, 101, 103308. [Google Scholar] [CrossRef]
- Roig-Zamboni, V.; Cobucci-Ponzano, B.; Iacono, R.; Ferrara, M.C.; Germany, S.; Bourne, Y.; Parenti, G.; Moracci, M.; Sulzenbacher, G. Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Yang, H.; Liu, L.; Shin, H.-d.; Chen, R.R.; Li, J.; Du, G.; Chen, J. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. J. Biotechnol. 2013, 164, 59–66. [Google Scholar] [CrossRef]
- Yadav, J.K.; Prakash, V. Stabilization of α-amylase, the key enzyme in carbohydrates properties alterations, at low pH. Int. J. Food Prop. 2011, 14, 1182–1196. [Google Scholar] [CrossRef]
- Buisson, G.; Duee, E.; Haser, R.; Payan, F. Three-dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 1987, 6, 3909–3916. [Google Scholar] [CrossRef] [PubMed]
- Siow, H.-L.; Gan, C.-Y. Extraction, identification, and structure-activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). J. Funct. Foods 2016, 22, 1–12. [Google Scholar] [CrossRef]
- Yu, X.; Cai, X.; Li, S.; Luo, L.; Wang, J.; Wang, M.; Zeng, L. Studies on the interactions of theaflavin-3, 3′-digallate with bovine serum albumin: Multi-spectroscopic analysis and molecular docking. Food Chem. 2022, 366, 130422. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Hwang, K.Y.; Oh, K.H.; Kim, Y.H.; Lee, J.Y.; Kim, K. Discovery of novel α-glucosidase inhibitors based on the virtual screening with the homology-modeled protein structure. Bioorg. Med. Chem. 2008, 16, 284–292. [Google Scholar] [CrossRef]
- Siow, H.-L.; Lim, T.S.; Gan, C.-Y. Development of a workflow for screening and identification of α-amylase inhibitory peptides from food source using an integrated Bioinformatics-phage display approach: Case study–Cumin seed. Food Chem. 2017, 214, 67–76. [Google Scholar] [CrossRef]
Sample | IC50 Values (mg/mL) | |
---|---|---|
α-Amylase | α-Glucosidase | |
ACT | 1.66 ± 0.01 e | 1.65 ± 0.02 d |
A1kDa | 4.87 ± 0.48 a | 4.51 ± 0.16 a |
A5kDa | 3.58 ± 0.13 cd | 4.27 ± 0.15 ab |
A10kDa | 3.85 ± 0.13 c | 3.78 ± 0.19 c |
FCT | 1.98 ± 0.01 e | 1.91 ± 0.02 d |
F1kDa | 3.52 ± 0.28 cd | 4.37 ± 0.02 a |
F5kDa | 4.38 ± 0.01 b | 4.49 ± 0.02 a |
F10kDa | 3.19 ± 0.04 d | 4.07 ± 0.04 b |
Peptide Sequence | Peptide Ranker Score | PepSite2 p-Value | Reactive Residues in Peptide | Bound Residues of α-Glucosidase (5NN3) |
---|---|---|---|---|
FP | 0.993916 | 0.0004915 | F1, P2 | Asp282, Trp376 *, Trp481, Met519 *, Phe525, Asp616 * |
RW | 0.978386 | 0.01098 | R1, W2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp518, Asp518 *, Asp616 *, His674 * |
SPRRF | 0.919692 | 0.001218 | S1, P2, R3, R4 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Met519 *, Phe525, Arg600 *, Asp616 *, Phe649 *, His674 * |
PMLL | 0.89733 | 0.004202 | P1, M2, L3, L4 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Asp518 *, Met519 *, Phe525, Asp616 * |
ML | 0.894564 | 0.02483 | M1, L2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Asp616 *, His674 * |
AIPINNPGKL | 0.807084 | 0.003297 | P3, I4, N5, N6, P7, K9 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Met519 *, Phe525, Trp613 *, Asp616 *, Phe649 *, His674 * |
MLLL | 0.756994 | 0.04779 | M1, L2, L3, L4 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Met519 *, Phe525, Asp616 *, Phe649 *, His674 * |
AIPPGIPY | 0.753808 | 0.008538 | P3, P4, G5, I6, P7 | Asp282, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Met519 *, Phe525, Arg600 *, Trp613 *, Asp616 *, Phe649 *, His674 * |
HSDADFIL | 0.683272 | 0.02868 | H1, S2, D3, A4, D5, F6 | Trp376 *, Asp404 *, Ile441 *, Trp481, Asp518 *, Met519 *, Phe525, Asp616 *, Phe649 *, His674 * |
RLL | 0.607206 | 0.02058 | R1, L2, L3 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Asp616 *, Phe649 *, His674 * |
FE | 0.589707 | 0.1065 | F1, E2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Trp613 *, Asp616 *, Phe649 *, His674 * |
LR | 0.569984 | 0.009125 | L1, R2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Asp616 *, Phe649 *, His674 * |
RR | 0.565498 | 0.001149 | R1, R2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Met519 *, Arg600 *, Asp616 *, Phe649 *, His674 * |
LRL | 0.564172 | 0.03196 | L1, R2, L3 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Arg600 *, Trp613 *, Asp616 *, Phe649 *, His674 * |
SVPGCT | 0.501911 | 0.02842 | S1, P3, G4, C5 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Asp518 *, Met519 *, Phe525, Arg600 *, Asp616 *, Phe649 * |
LLPH | 0.501446 | 0.001936 | L1, L2, P3, H4 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Asp518 *, Met519 *, Phe525, Asp616 *, Phe649 *, His674 * |
Peptide Sequence | Peptide Ranker Score | PepSite2 p-Value | Reactive Residues in Peptide | Bound Residues of α-Glucosidase (5NN3) |
---|---|---|---|---|
FP | 0.993916 | 0.0004915 | F1, P2 | Asp282, Trp376 *, Trp481, Met519 *, Phe525, Asp616 * |
ML | 0.894564 | 0.02483 | M1, L2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Asp616 *, His674 * |
PPGIP | 0.838217 | 0.001023 | P1, P2, G3, I4 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Asp518 *, Met519 *, Phe525, Arg600 *, Asp616 *, Phe649 * |
TF | 0.826678 | 0.01348 | T1, F2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Asp518 *, Met519 *, Arg600 *, Asp616 * |
AIPINNPGKL | 0.807084 | 0.003297 | P3, I4, N5, N6, P7, K9 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Met519 *, Phe525, Trp613 *, Asp616 * |
LP | 0.79612 | 0.001344 | L1, P2 | Asp282, Trp376 *, Trp481, Met519 *, Phe525, Asp616 *, Phe649 * |
RPR | 0.722632 | 0.0002172 | R1, P2, R3 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Met519 *, Phe525, Arg600 *, Asp616 * |
LRP | 0.722289 | 0.001416 | L1, R2, P3 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Met519 *, Phe525, Arg600 *, Asp616 * |
FE | 0.589707 | 0.1065 | F1, E2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Trp613 *, Asp616 *, Phe649 *, His674 * |
RPH | 0.582675 | 0.0001519 | R1, P2, H3 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Asp518 *, Met519 *, Phe525, Arg600 *, Asp616 *, Phe649 * |
YL | 0.57536 | 0.1541 | Y1, L2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Asp518 *, Met519 *, Asp616 *, Phe649 * |
LR | 0.569984 | 0.009125 | L1, R2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Asp616 *, Phe649 *, His674 * |
RR | 0.565498 | 0.001149 | R1, R2 | Trp376 *, Asp404 *, Ile441 *, Trp481, Trp516 *, Asp518 *, Met519 *, Arg600 *, Asp616 *, Phe649 *, His674 * |
NVLSGFDPQF | 0.514393 | 0.006611 | N1, L3, D10, P8, Q9, F10 | Asp282, Trp376 *, Asp404 *, Ile441 *, Trp481, Asp518 *, Met519 *, Phe525, Arg600 *, Asp616 *, Trp618 |
Peptide Sequence | Peptide Ranker Score | PepSite2 p-Value | Reactive Residues in Peptide | Bound Residues of α-Amylase (1SMD) |
---|---|---|---|---|
FP | 0.993916 | 0.0001681 | F1, P2 | Trp58 *, Trp59 *, Asp300 * |
RW | 0.978386 | 0.01257 | R1, W2 | His15, Gln41, Trp58 *, Tyr62 *, Arg195 *, Asn298, His299 *, Asp300 *, Arg337 |
SPRRF | 0.919692 | 0.0007243 | P2, R3, R4, F5 | His15, Phe17, Gln41, Val42, Ser43, Pro44, Trp58 *, Trp59 *, Tyr62 *, Asp96 *, His299 *, Asp300 * |
PMLL | 0.89733 | 0.00183 | P1, M2, L3, L4 | Phe17, Glu18, Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 *, Tyr342 |
ML | 0.894564 | 0.02935 | M1, L2 | Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 * |
AIPINNPGKL | 0.807084 | 0.003841 | I2, P3, I4, N5, N6, P7 | Phe17, Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 * |
MLLL | 0.756994 | 0.03077 | M1, L2, L3, L4 | His15, Phe17, Glu18, Gln41, Val42, Ser43, Pro44, Trp58 *, Trp59 *, Tyr62 *, Asp96 *, His299 *, Asp300 *, Tyr342 |
AIPPGIPY | 0.753808 | 0.01494 | I2, P3, P4, P7, Y8 | Phe17, Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 *, His305 * |
HSDADFIL | 0.683272 | 0.0521 | A4, D5, F6, I7, L8 | Phe17, Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 * |
RLL | 0.607206 | 0.022 | R1, L2, L3 | Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 * |
FE | 0.589707 | 0.08928 | F1, E2 | His15, Gln41, Val42, Ser43, Pro44, Tyr62 *, Asp96 *, Arg195 *, His299 *, Arg337 |
LR | 0.569984 | 0.0167 | L1, R2 | Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 * |
RR | 0.565498 | 0.003765 | R1, R2 | Phe17, Trp58 *, Tyr62 *, His299 *, Asp300 * |
LRL | 0.564172 | 0.02945 | L1, R2, L3 | Phe17, Glu18, Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 *, Tyr342 |
SVPGCT | 0.501911 | 0.003133 | V2, P3, G4, C5, T6 | Phe17, Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 *, His305 *, Lys352, Asp356 |
LLPH | 0.501446 | 0.001419 | L1, L2, P3, H4 | Phe17, Glu18, Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 *, Tyr342 |
Peptide Sequence | Peptide Ranker Score | PepSite2 p-Value | Reactive Residues in Peptide | Bound Residues of α-Amylase (1SMD) |
---|---|---|---|---|
FP | 0.993916 | 0.0001681 | F1, P2 | Trp58 *, Trp59 *, Asp300 * |
ML | 0.894564 | 0.02935 | M1, L2 | Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 * |
PPGIP | 0.838217 | 0.001008 | P1, P2, G3, I4 | Trp58 *, Trp59 *, Asp300 *, HIs305 * |
TF | 0.826678 | 0.02906 | T1, F2 | Trp58 *, Trp59 *, Asp300 * |
AIPINNPGKL | 0.807084 | 0.003841 | I2, P3, I4, N5, N6, P7 | Phe17, Trp58 *, Trp59 *, His299 *, Asp300 * |
LP | 0.79612 | 0.0001394 | L1, P2 | Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 * |
RPR | 0.722632 | 0.0001414 | R1, P2, R3 | Phe17, Trp58 *, Trp59 *, Tyr62 *, His299 *, Asp300 * |
LRP | 0.722289 | 0.0003887 | L1, R2, P3 | Phe17, Glu18, Trp58 *, Trp59 *, Tyr62 *, His299 *, Tyr342 |
FE | 0.589707 | 0.08928 | F1, E2 | His15, Gln41, Val42, Ser43, Pro44, Tyr62 *, Asp96 *, Arg195 *, His299 *, Arg337 |
RPH | 0.582675 | 0.0002215 | R1, P2, H3 | Trp58 *, Trp59 *, Tyr62 *, Asp300 * |
YL | 0.57536 | 0.03237 | Y1, L2 | Trp58 *, Trp59 *, His299 *, Asp300 * |
LR | 0.569984 | 0.0167 | L1, R2 | Trp58 *, Trp59 *, His299 *, Asp300 * |
EGDIIAIPPGIP | 0.568358 | |||
RR | 0.565498 | 0.003765 | R1, R2 | Phe17, Trp58 *, Tyr62 *, His299 *, Asp300 * |
NVLSGFDPQF | 0.514393 | 0.01987 | V2, L3, S4, F6, P8, F10 | His15, Gln41, Val42, Ser43, Pro44, Trp58 *, Trp59 *, Tyr62 *, Asp96 * |
Sequence | Binding Affinity (kcal/mol) | Hydrophobicity | Hydrogen Bond | Hydrophobic Interaction |
---|---|---|---|---|
α-glucosidase | ||||
RPR | −6.1 | +11.66 | Asp616 | Ser676, Leu650, Phe649, Leu678, Trp376 * |
LRP | −6.2 | +8.60 | Asp616 | Leu650, Ser676, Trp376 *, Trp481, Asp282, Phe525 |
RR | −6.4 | +11.52 | Asp616, Asp518 | Trp376 *, Leu650, Phe649 *, Trp613 |
SPRRF | −6.6 | +10.41 | Arg411 | Leu677, Ser379, Asp404 *, Asn417, Leu405, Asp419, Met408, Ser410 |
FE | −6.0 | +9.82 | ND | Arg600, Leu650, Phe649 *, Asp616 *, Trp376 *, Trp481, Met519 |
PPGIP | −5.3 | +8.35 | ND | Leu650, Leu678, Trp376 *, Trp481 |
α-amylase | ||||
ML | −6.9 | +5.98 | Asp300 | Asp356, Trp58 *, Trp59 *, Tyr62 *, Asp197, His305 |
LP | −7.0 | +6.79 | Trp59, His101 | Ser163, Leu162, Leu165, Gln63, Tyr62 *, Asp197, Asp300 * |
MLLL | −8.2 | +3.48 | Asp300 | Lys352, Asp356, His305, Ile235, Gly306, His299 *, Glu233, Asp197, Gln63, Tyr62 *, Leu165, Trp58 *, Trp59 * |
SPRRF | −9.1 | +10.41 | His305, Asp356, Tyr151, Gly306, Asp96, His299, Glu233, Asp300, Asp197 | Ser163, Leu162, Leu165, Trp58 *, Trp59 *, Tyr62 *, Arg195 |
AIPPGIPY | −8.4 | +7.02 | Trp59, Ala106 | Asp356, Trp357, Asp353, His305 *, Trp58 *, Ser163, Leu165, Gln63, Gly104, Pro54 |
RPR | −8.2 | +11.66 | Asp300, His305 | Trp59 *, His299 *, Tyr62 *, Glu233, Leu162, Tyr151, Leu165, His201, Ile235, Asp197, Ala198 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadimu, G.J.; Farahnaky, A.; Gill, H.; Olalere, O.A.; Gan, C.-Y.; Truong, T. In-Silico Analysis and Antidiabetic Effect of α-Amylase and α-Glucosidase Inhibitory Peptides from Lupin Protein Hydrolysate: Enzyme-Peptide Interaction Study Using Molecular Docking Approach. Foods 2022, 11, 3375. https://doi.org/10.3390/foods11213375
Fadimu GJ, Farahnaky A, Gill H, Olalere OA, Gan C-Y, Truong T. In-Silico Analysis and Antidiabetic Effect of α-Amylase and α-Glucosidase Inhibitory Peptides from Lupin Protein Hydrolysate: Enzyme-Peptide Interaction Study Using Molecular Docking Approach. Foods. 2022; 11(21):3375. https://doi.org/10.3390/foods11213375
Chicago/Turabian StyleFadimu, Gbemisola J., Asgar Farahnaky, Harsharn Gill, Olusegun A. Olalere, Chee-Yuen Gan, and Tuyen Truong. 2022. "In-Silico Analysis and Antidiabetic Effect of α-Amylase and α-Glucosidase Inhibitory Peptides from Lupin Protein Hydrolysate: Enzyme-Peptide Interaction Study Using Molecular Docking Approach" Foods 11, no. 21: 3375. https://doi.org/10.3390/foods11213375
APA StyleFadimu, G. J., Farahnaky, A., Gill, H., Olalere, O. A., Gan, C.-Y., & Truong, T. (2022). In-Silico Analysis and Antidiabetic Effect of α-Amylase and α-Glucosidase Inhibitory Peptides from Lupin Protein Hydrolysate: Enzyme-Peptide Interaction Study Using Molecular Docking Approach. Foods, 11(21), 3375. https://doi.org/10.3390/foods11213375