Chestnut Lily Beverage (CLB) Processing Using Ultrasound-Assisted Nisin: Microbiota Inactivation and Product Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Juice Preparation
2.2. Preparation of Bacteriocin Solution
2.3. Sterilisation
2.4. Chemical Reagents
2.5. Determination of Enzyme Activity
2.6. Mechanical Analysis of Inactivity
2.7. DPPH Radical Scavenging Assay
2.8. Total Phenolic Content
2.9. Ascorbic Acid
2.10. pH, Total Soluble Solids, and Browning Index
2.11. Microorganisms
2.12. Data Analysis
3. Results and Discussion
3.1. Determination of Enzyme Activity
3.2. Mechanics of Enzyme Inactivation
3.3. DPPH Radical Scavenging Assay
3.4. Changes in the Content of Total Polyphenols Compounds
3.5. Ascorbic Acid
3.6. TSS and pH
3.7. Browning Inhibition Index
3.8. Microorganisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz, A.G.; Cadena, R.S.; Walter, E.; Mortazavian, A.M.; Bolini, H. Sensory, Analysis: Relevance for Prebiotic, Probiotic, and Synbiotic Product Development. Compr. Rev. Food Sci. Food Saf. 2010, 9, 358–373. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Tang, X.; Fan, L. Improvement in physical and thermal stability of cloudy ginkgo beverage during autoclave sterilization: Effects of microcrystalline cellulose and gellan gum. LWT 2021, 135, 110062. [Google Scholar] [CrossRef]
- Bai, R.; Lin, Y.; Jiang, Y. Diverse genotypic variations of photosynthetic capacity, transpiration and antioxidant enzymes of lily hybrids to increasing salinity stress. Sci. Hortic. 2021, 280, 109939. [Google Scholar] [CrossRef]
- Massantini, R.; Moscetti, R.; Frangipane, M.T. Evaluating progress of chestnut quality: A review of recent developments. Trends Food Sci. Technol. 2021, 113, 245–254. [Google Scholar] [CrossRef]
- Anagnostakis, S.L. Fats, protein, carbohydrates and fatty acids in chestnut fruits. ISHS Acta Hortic. 2009, 815, 57–60. [Google Scholar] [CrossRef]
- Santhirasegaram, V.; Razali, Z.; George, D.S.; Somasundram, C. Effects of Thermal and Non-thermal Processing on Phenolic Compounds, Antioxidant Activity and Sensory Attributes of Chokanan Mango (Mangifera indica L.) Juice. Food Bioprocess Technol. 2015, 8, 2256–2267. [Google Scholar] [CrossRef]
- Li, F.; Chen, G.; Zhang, B.; Fu, X. Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents. Food Res. Int. 2017, 100, 19. [Google Scholar] [CrossRef]
- Gomes, W.F.; Tiwari, B.K.; Rodriguez, O.; Brito, E.D.; Narciso Fernandes, F.A.; Rodrigues, S. Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chem. 2017, 218, 261–268. [Google Scholar] [CrossRef]
- Kim, H.J.; Silva, F.V.M. Modeling the inactivation of Neosartorya fischeri ascospores in apple juice by high pressure, power ultrasound and thermal processing. Food Control 2016, 59, 530–537. [Google Scholar]
- Singla, M.; Sit, N. Application of Ultrasound in Combination with Other Technologies in Food Processing: A Review. Ultrason. Sonochemistry 2021, 73, 105506. [Google Scholar] [CrossRef]
- Kadkhodaee, R.; Povey, M. Ultrasonic inactivation of Bacillus alpha-amylase. I. effect of gas content and emitting face of probe. Ultrason. Sonochemistry 2008, 15, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, A.; Soo, M.J.; Farid, M.; Silva, F. Thermosonication for polyphenoloxidase inactivation in fruits: Modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. J. Food Eng. 2015, 165, 133–140. [Google Scholar] [CrossRef]
- Ordonez-Santos, L.E.; Martinez-Giron, J.; Arias-Jaramillo, M.E. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 2017, 233, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Erkaya, T.; Başlar, M.; Şengül, M.; Ertugay, M.F. Effect of thermosonication on physicochemical, microbiological and sensorial characteristics of ayran during storage. Ultrason. Sonochemistry 2015, 23, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Paniagua-Martínez, I.; Mulet, A.; García-Alvarado, M.A.; Benedito, J. Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality. Innov. Food Sci. Emerg. Technol. 2018, 47, 362–370. [Google Scholar] [CrossRef]
- Terefe, N.S.; Matthies, K.; Simons, L.; Versteeg, C. Combined high pressure-mild temperature processing for optimal retention of physical and nutritional quality of strawberries (Fragaria × ananassa). Innov. Food Sci. Emerg. Technol. 2009, 10, 297–307. [Google Scholar] [CrossRef]
- Martinez-Flores, H.E.; Garnica-Romo, M.G.; Bermudez-Aguirre, D.; Pokhrel, P.R.; Barbosa-Canovas, G.V. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage. Food Chem. 2015, 172, 650–656. [Google Scholar] [CrossRef]
- Khanal, S.N.; Anand, S.; Muthukumarappan, K.; Huegli, M. Inactivation of thermoduric aerobic sporeformers in milk by ultrasonication. Food Control 2014, 37, 232–239. [Google Scholar] [CrossRef]
- Adekunte, A.; Valdramidis, V.P.; Tiwari, B.K.; Slone, N.; Cullen, P.J.; Donnell, C.; Scannell, A. Resistance of Cronobacter sakazakii in reconstituted powdered infant formula during ultrasound at controlled temperatures: A quantitative approach on microbial responses. Int. J. Food Microbiol. 2010, 142, 53–59. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Velázquez-Estrada, R.; Roig, A.X.; García-Galindo, H.; Sayago-Ayerdi, S.G.; Montalvo-González, E. Thermosonication: An alternative processing for fruit and vegetable juices. Trends Food Sci. Technol. 2017, 61, 26–37. [Google Scholar] [CrossRef]
- Lan, C.H.; Grégoire, L.; Chaine, A.; Waché, Y. Importance and efficiency of in-depth antimicrobial activity for the control of listeria development with nisin-incorporated sodium caseinate films. Food Control 2010, 21, 1227–1233. [Google Scholar]
- Raso, J.; Maas, P.; Pagán, R.; Sala, F.J. Influence of different factors on the output power transferred into medium by ultrasound. Ultrason. Sonochemistry 1999, 5, 157. [Google Scholar] [CrossRef]
- Marszałek, K.; Kruszewski, B.; Woźniak, Ł.; Skąpska, S. The application of supercritical carbon dioxide for the stabilization of native and commercial polyphenol oxidases and peroxidases in cloudy apple juice (cv. Golden, Delicious). Innov. Food Sci. Emerg. Technol. 2017, 39, 42–48. [Google Scholar] [CrossRef]
- Cao, X.; Cai, C.; Wang, Y.; Zheng, X. The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments. Innov. Food Sci. Emerg. Technol. 2018, 45, 169–178. [Google Scholar] [CrossRef]
- Basak, S.; Ramaswamy, H.S. Ultra high pressure treatment of orange juice: A kinetic study on inactivation of pectin methyl esterase. Food Res. Int. 1996, 29, 601–607. [Google Scholar] [CrossRef]
- Paz, M.; Gullon, P.; Barroso, M.F.; Carvalho, A.P.; Domingues, V.F.; Gomes, A.M.; Becker, H.; Longhinotti, E.; Delerue-Matos, C. Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chem. 2015, 172, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Krishnaswamy, K.; Orsat, V.; Gariépy, Y.; Thangavel, K. Optimization of Microwave-Assisted Extraction of Phenolic Antioxidants from Grape Seeds (Vitis vinifera). Food Bioprocess Technol. 2013, 6, 441–455. [Google Scholar] [CrossRef]
- Ti, L.I.; Qian, L.I.; Jin-Long, X.U.; Liu, C.M.; Wang, Z.Y. Effects of Dynamic, High-pressure Microfluidization, Treatment on Vitamin C the Total Polyphenol Content and the Antioxidant Activity of Pineapple Juice. Chin. J. High Press. Phys. 2013, 27, 936–941. [Google Scholar]
- Meydav, S.; Saguy, I.; Kopelman, I.J. Browning determination in citrus products. Immunol. Lett. 1977, 120, 108–116. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis; Horwitz, W., Latimer, G.W., Jr., Eds.; AOAC International: Rockville, MD, USA, 1984; pp. 152–169. [Google Scholar]
- Chisari, M.; Barbagallo, R.N.; Spagna, G. Characterization of polyphenol oxidase and peroxidase and influence on browning of cold stored strawberry fruit. Agric. Food Chem. 2007, 55, 3469–3476. [Google Scholar] [CrossRef]
- Francesca, T.; Antonella, P.; Giacomo, M.; Pasquale, T.; Monica, M.; Stefano, P.; Cinzia, M. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. Int. J. Mol. Sci. 2017, 18, 377. [Google Scholar]
- Jang, J.H.; Moon, K.D. Inhibition of polyphenol oxidase and peroxidase activities on fresh-cut apple by simultaneous treatment of ultrasound and ascorbic acid. Food Chem. 2011, 124, 444–449. [Google Scholar] [CrossRef]
- Lamminen, M.O. Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J. Membr. Sci. 2004, 237, 213–223. [Google Scholar] [CrossRef]
- Sango, D.M.; Abela, D.; McElhatton, A.; Valdramidis, V.P. Assisted ultrasound applications for the production of safe foods. J. Appl. Microbiology 2014, 116, 1067–1083. [Google Scholar] [CrossRef] [PubMed]
- Khandpur, P.; Gogate, P.R. Understanding the effect of novel approaches based on ultrasound on sensory profile of orange juice. Ultrason. Sonochemistry 2015, 27, 87–95. [Google Scholar] [CrossRef]
- Sobrino-López, A.; Martín-Belloso, O. Use of nisin and other bacteriocins for preservation of dairy products. Int. Dairy J. 2008, 18, 329–343. [Google Scholar] [CrossRef]
- Arauz, L.D.; Jozala, A.F.; Mazzola, P.G.; Penna, V. Nisin biotechnological production and application: A review. Trends Food Sci. Technol. 2009, 20, 146–154. [Google Scholar] [CrossRef]
- Chakraborty, S.; Baier, D.; Knorr, D.; Mishra, H.N. High pressure inactivation of polygalacturonase, pectinmethylesterase and polyphenoloxidase in strawberry puree mixed with sugar. Food Bioprod. Process. 2015, 95, 281–291. [Google Scholar] [CrossRef]
- Robinson, S.P.; Loveys, B.R.; Chacko, E.K. Polyphenol Oxidase Enzymes in the Sap and Skin of Mango Fruit. Funct. Plant Biol. 1993, 20, 99–107. [Google Scholar] [CrossRef]
- De los Angeles Serradell, M.; Rozenfeld, P.A.; Martinez, G.A. Polyphenoloxidase activity from strawberry fruit (Fragaria ananassa, Duch., cv Selva): Characterisation and partial purification. J. Sci. Food Agric. 2000, 80, 1421–1427. [Google Scholar] [CrossRef]
- Taticchi, A.; Esposto, S.; Veneziani, G.; Urbani, S.; Selvaggini, R.; Servili, M. The influence of the malaxation temperature on the activity of polyphenoloxidase and peroxidase and on the phenolic composition of virgin olive oil. Food Chem. 2013, 136, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Sheptovitsky, Y.G.; Brudvig, G.W. Isolation and Characterization of Spinach, P.hotosystem II Membrane-Associated Catalase and Polyphenol Oxidase. Biochemistry 1996, 35, 16255. [Google Scholar] [CrossRef] [PubMed]
- Valero, E.; García-Carmona, F. pH-Dependent Effect of Sodium Chloride on Latent Grape Polyphenol Oxidase. J. Agric. Food Chem. 1998, 46, 2447–2451. [Google Scholar] [CrossRef]
- Heimdal, H.; Larsen, L.M.; Poll, L. Characterization of Polyphenol Oxidase from Photosynthetic and Vascular Lettuce Tissues (Lactuca sativa). J. Agric. Food Chem. 1994, 42, 1428–1433. [Google Scholar] [CrossRef]
- Janovitz-Klapp, A.; Richard, F.; Nicolas, J. Polyphenoloxidase from apple, partial purification and some properties. Phytochemistry 1989, 28, 2903–2907. [Google Scholar] [CrossRef]
- Leonardis, A.D.; Lustrato, G.; Macciola, V.; Ranalli, G. Application of chemical and physical agents in model systems to controlling phenoloxidase enzymes. Eur. Food Res. Technol. 2010, 231, 603–610. [Google Scholar] [CrossRef]
- Gouzi, H.; Depagne, C.; Coradin, T. Kinetics and Thermodynamics of the Thermal Inactivation of Polyphenol Oxidase in an Aqueous Extract from Agaricus bisporus. J. Agric. Food Chem. 2012, 60, 500–506. [Google Scholar] [CrossRef]
- Tsuchido, T.; Katsui, N.; Takeuchi, A.; Takano, M.; Shibasaki, I. Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appl. Environ. Microbiol. 1985, 50, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, A.; Palgan, I.; Noci, F.; Cronin, D.A.; Morgan, D.J.; Whyte, P.; Lyng, J.G. Combinations of selected non-thermal technologies and antimicrobials for microbial inactivation in a buffer system. Food Res. Int. 2012, 47, 100–105. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.A.; Sun, D.W.; Wang, M.S.; Zhang, Z.H. Combined effects of sonication and pulsed electric field on selected quality parameters of grapefruit juice. LWT—Food Sci. Technol. 2015, 62, 890–893. [Google Scholar] [CrossRef]
- Liao, H.; Jiang, L.; Cheng, Y.; Liao, X.; Zhang, R. Application of nisin-assisted thermosonication processing for preservation and quality retention of fresh apple juice. Ultrason. Sonochemistry 2018, 42, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Kamaruddin, N.; Min-Tze, L.; Karim, A.A. Sonication ameliorates Kasturi lime (Citrus microcarpa) juice quality. Ultrason. Sonochemistry 2011, 18, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Roberto, A.; van Ruth, K.S. Characterization and comparison of phenolic composition, antioxidant capacity and instrumental taste profile of juices from different botanical origins. J. Sci. Food Agric. 2015, 95, 1997–2006. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.; Oliveira, V.S.; Gomes, W.F.; Rodrigues, S. Degradation kinetics of vitamin E during ultrasound application and the adjustment in avocado purée by tocopherol acetate addition. LWT—Food Sci. Technol. 2016, 69, 342–347. [Google Scholar] [CrossRef]
- Caminiti, I.M.; Noci, F.; Munoz, A.; Whyte, P.; Morgan, D.J.; Cronin, D.A.; Lyng, J.G. Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chem. 2011, 124, 1387–1392. [Google Scholar] [CrossRef]
- Wang, J.; Vanga, S.K.; Raghavan, V. High-intensity ultrasound processing of kiwifruit juice: Effects on the ascorbic acid, total phenolics, flavonoids and antioxidant capacity. LWT—Food Science Technology 2019, 107, 299–307. [Google Scholar] [CrossRef]
- Mason, T.J. Some neglected or rejected paths in sonochemistry—A very personal view. Ultrason. Sonochemistry 2015, 25, 89–93. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, L.J.; Rupasinghe, H.V. Effect of thermal and non-thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice A mini-review. J. Sci. Food Agric. 2013, 93, 981–986. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Alternatives to conventional thermal treatments in fruit-juice processing. Part 2: Effect on composition, phytochemical content, and physicochemical, rheological, and organoleptic properties of fruit juices. Crit. Rev. Food. Sci. Nutr. 2017, 57, 637–652. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Sunartio, D.; Kentish, S.; Mawson, R.; Simons, L.; Vilkhu, K.; Versteeg, C. Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innov. Food Sci. Emerg. Technol. 2008, 9, 155–160. [Google Scholar] [CrossRef]
- Jin, W.; Wang, J.; Ye, J.; Kranthi, V.S.; Vijaya, R. Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control 2018, 96, 128–136. [Google Scholar]
- Martine, S.; Marie-Claude, R.; Anita, K.; Jack, S.; Marie-Elise, P. Inverse Association between Dietary Intake of Selected Carotenoids and Vitamin C and Risk of Lung Cancer. Front. Oncol. 2017, 7, 23. [Google Scholar]
- Cheng, L.H.; Soh, C.Y.; Liew, S.C.; Teh, F.F. Effects of sonication and carbonation on guava juice quality. Food Chem. 2007, 104, 1396–1401. [Google Scholar] [CrossRef]
- Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’Donnell, C.P. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Bradshaw, M.P.; Barril, C.; Clark, A.C.; Prenzler, P.D.; Scollary, G.R. Ascorbic Acid: A Review of its Chemistry and Reactivity in Relation to a Wine Environment. Crit. Rev. Food Sci. Nutr. 2011, 51, 479–498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhe, Z.; Fang, C.; Hui, Z.; Hu, X. Effect of sonication on eliminating of phorate in apple juice. Ultrason. Sonochemistry 2012, 19, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Muthukumarappan, K.; O’Donnell, C.P.; Cullen, P.J. Effects of sonication on the kinetics of orange juice quality parameters. J. Agric. Food Chem. 2008, 56, 2423. [Google Scholar] [CrossRef]
- Basaran, N.; Quintero-Ramos, A.; Moake, M.M.; Churey, J.J.; Worobo, R.W. Influence of Apple Cultivars on Inactivation of Different Strains of Escherichia coli O157:H7 in Apple Cider by UV Irradiation. Appl. Environ. Microbiol. 2004, 70, 6061–6065. [Google Scholar] [CrossRef] [Green Version]
- Fuerst, E.P.; Anderson, J.V.; Morris, C.F. Delineating the Role of Polyphenol Oxidase in the Darkening of Alkaline Wheat Noodles. Agric. Food Chem. 2006, 54, 2378–2384. [Google Scholar] [CrossRef]
- Bhat, R.; Goh, K.M. Sonication treatment convalesce the overall quality of hand-pressed strawberry juice. Food Chem. 2017, 215, 470–476. [Google Scholar] [CrossRef]
- Butz, P.; Tauscher, B. Emerging technologies: Chemical aspects. Food Res. Int. 2002, 35, 279–284. [Google Scholar] [CrossRef]
- Morey, M.D.; Deshpande, N.S.; Barigou, M. Foam Destabilization by Mechanical and Ultrasonic Vibrations. J. Colloid Interface Sci. 1999, 219, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochemistry 2010, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Gursoy, O.; Yilmaz, Y.; Gokce, O.; Ertan, K. Effect of ultrasound power on physicochemical and rheological properties of yoghurt drink produced with thermosonicated milk. Emir. J. Food Agric. 2016, 28, 1. [Google Scholar] [CrossRef]
- Fuente-Blanco, S.; Sarabia, R.; Acosta-Aparicio, V.M.; Blanco-Blanco, A.; Gallego-Juárez, J. Food drying process by power ultrasound. Ultrason. Sonochemistry 2006, 44, e523–e527. [Google Scholar] [CrossRef] [PubMed]
- Kuwano, K.; Tanaka, N.; Shimizu, T.; Nagatoshi, K.; Nou, S.; Sonomoto, K. Dual antibacterial mechanisms of nisin Z against Gram-positive and Gram-negative bacteria. Intjantimicrobagents 2005, 26, 396–402. [Google Scholar] [CrossRef]
- Raso, J.; Barbosa-Cánovas, G. Nonthermal preservation of foods using combined processing techniques. Crit. Rev. Food Sci. Nutr. 2003, 43, 265–285. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Zeng, X. Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochemistry 2013, 20, 1182–1187. [Google Scholar] [CrossRef]
- Huang, E.; Mittal, G.S.; Griffiths, M.W. Inactivation of Salmonella enteritidis in Liquid Whole Egg using Combination Treatments of Pulsed Electric Field, High Pressure and Ultrasound. Biosyst. Eng. 2006, 94, 403–413. [Google Scholar] [CrossRef]
- Noci, F.; Walkling-Ribeiro, M.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple Juice. J. Food Eng. 2008, 85, 141–146. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, J.I.; Park, J. Effects of a Combined, P.rocess of High-Pressure Carbon Dioxide and High Hydrostatic Pressure on the Quality of Carrot Juice. J. Food Sci. 2002, 67, 1827–1834. [Google Scholar] [CrossRef]
K/(10−2 min−1) | D/min | T/1/2 min | R2 | |
---|---|---|---|---|
US | 1.31 × 10−2 min−1 | 175.5 ± 7.30 | 52.8 ± 2.21 | 0.958 |
NUS | 4.36 × 10−2 min−1 | 52.6 ± 1.51 | 15.9 ± 0.45 | 0.934 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Liu, J.; Han, S.; Li, P.; Luo, D.; Guo, J. Chestnut Lily Beverage (CLB) Processing Using Ultrasound-Assisted Nisin: Microbiota Inactivation and Product Quality. Foods 2022, 11, 3344. https://doi.org/10.3390/foods11213344
Cui Y, Liu J, Han S, Li P, Luo D, Guo J. Chestnut Lily Beverage (CLB) Processing Using Ultrasound-Assisted Nisin: Microbiota Inactivation and Product Quality. Foods. 2022; 11(21):3344. https://doi.org/10.3390/foods11213344
Chicago/Turabian StyleCui, Yao, Jianxue Liu, Sihai Han, Peiyan Li, Denglin Luo, and Jinying Guo. 2022. "Chestnut Lily Beverage (CLB) Processing Using Ultrasound-Assisted Nisin: Microbiota Inactivation and Product Quality" Foods 11, no. 21: 3344. https://doi.org/10.3390/foods11213344
APA StyleCui, Y., Liu, J., Han, S., Li, P., Luo, D., & Guo, J. (2022). Chestnut Lily Beverage (CLB) Processing Using Ultrasound-Assisted Nisin: Microbiota Inactivation and Product Quality. Foods, 11(21), 3344. https://doi.org/10.3390/foods11213344