Ready-to-Eat Fish Cake Processing Methods and the Impacts on Quality and Flavor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Color Measurement
2.3. Texture Profile Analysis
2.4. Scanning Electron Microscopy
2.5. Gas Chromatography–Ion Mobility Spectrometry Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties
3.1.1. Color
3.1.2. Texture Analysis
3.1.3. SEM Analysis
3.2. GC-IMS Analysis
3.2.1. GC-IMS Spectrum Analysis of Flavor Components of Fish Cakes under Different Conditions
3.2.2. Qualitative Analysis of Flavor Components by GC-IMS of Fish Cakes Subjected to Different Processing Conditions
3.2.3. Fingerprint Analysis by GC-IMS of Volatile Components of Fish Cakes under Different Conditions
3.3. PCA and Nearest-Neighbor Distances Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sukri, S.A.M.; Andu, Y.; Harith, Z.T.; Sarijan, S.; Pauzi, M.N.F.; Wei, L.S.; Dawood, M.A.O.; Kari, Z.A. Effect of feed-ing pineapple waste on growth performance, texture quality and flesh colour of nile tilapia (Oreochromis niloticus) finger-lings. Saudi J. Biol. Sci. 2022, 29, 2514–2519. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.T.; Guo, H.; Lu, Z.W.; Zhang, T.; Zhao, R.F.; Tao, N.P.; Wang, X.C.; Zhong, J. Reliability of LipidSearch software identification and its application to assess the effect of dry salting on the long-chain free fatty acid profile of tilapia muscles. Food Res. Int. 2020, 138, 109791. [Google Scholar] [CrossRef]
- Shi, C.P.; Guo, H.; Wu, T.T.; Tao, N.P.; Wang, X.C.; Zhong, J. Effect of three types of thermal processing methods on the lipidomics profile of tilapia fillets by UPLC-Q-Extractive Orbitrap mass spectrometry. Food Chem. 2019, 298, 125029. [Google Scholar] [CrossRef]
- Chiozzi, V.; Agriopoulou, S.; Varzakas, T. Advances, Applications, and Comparison of Thermal (Pasteurization, Steriliza-tion, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. Appl. Sci. 2022, 12, 2202. [Google Scholar] [CrossRef]
- Li, X.; Farid, M. A review on recent development in non-conventional food sterilization technologies. J. Food Eng. 2016, 182, 33–45. [Google Scholar] [CrossRef]
- Chantakun, K.; Benjakul, S. Characteristics and qualities of edible bird’s nest beverage as affected by thermal pasteurization and sterilization. J. Food Sci. Technol. 2022, 59, 4056–4066. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, Y.P.; Chen, Y.Y.; Meng, A.L.; Liu, P.; Ye, K.Y.; Yuan, A.Q. Effect of Different Sterilization Methods on the Microbial and Physicochemical Changes in Prunus mume Juice during Storage. Molecules 2022, 27, 1197. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chen, H.T.; Sun, B.G. Recent progress in food flavor analysis using gas chromatography-ion mobility spec-trometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Feng, D.; Wang, J.; Ji, X.J.; Min, W.X.; Yan, W.J. Analysis of Volatile Organic Compounds by HS-GC-IMS in Powdered Yak Milk Processed under Different Sterilization Conditions. J. Food Qual. 2021, 2021, 5536645. [Google Scholar] [CrossRef]
- Bassey, A.P.; Boateng, E.F.; Zhu, Z.S.; Zhou, T.M.; Nasiru, M.M.; Guo, Y.P.; Dou, H.; Ye, K.P.; Li, C.B.; Zhou, G.H. Volatilome evaluation of modified atmosphere packaged chilled and super-chilled pork loins using electronic nose and HS-GC-IMS integration. Food Packag. Shelf Life 2022, 34, 100953. [Google Scholar] [CrossRef]
- Feng, T.; Sun, J.Q.; Song, S.Q.; Wang, H.T.; Yao, L.Y.; Min, S.; Wang, K.; Chen, D. Geographical differentiation of Molixiang table grapes grown in China based on volatile compounds analysis by HS-GC-IMS coupled with PCA and sensory evaluation of the grapes. Food Chem. X 2022, 15, 100423. [Google Scholar] [CrossRef]
- Song, J.X.; Shao, Y.; Yan, Y.M.; Li, X.H.; Peng, J.; Guo, L. Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA. LWT 2021, 146, 111292. [Google Scholar] [CrossRef]
- Cao, H.W.; Fan, D.M.; Jiao, X.D.; Huang, J.L.; Zhao, J.X.; Yan, B.W.; Zhou, W.G.; Zhang, W.H.; Ye, W.J.; Zhang, H. Importance of thickness in electromagnetic properties and gel characteristics of surimi during microwave heating. J. Food Eng. 2019, 248, 80–88. [Google Scholar] [CrossRef]
- Mi, H.B.; Li, Y.; Wang, C.; Yi, S.M.; Li, X.P.; Li, J.R. The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi. Food Hydrocoll. 2021, 112, 106290. [Google Scholar] [CrossRef]
- Chen, J.X.; Deng, T.Y.; Wang, C.; Mi, H.B.; Yi, S.M.; Li, X.P.; Li, J.R. Effect of hydrocolloids on gel properties and pro-tein secondary structure of silver carp surimi. J. Sci. Food Agric. 2020, 100, 2252–2260. [Google Scholar] [CrossRef]
- Chi, C.H.; Lin, Y.; Miao, L.H.; Liu, B.; Ge, X.P. Effects of dietary supplementation of a mixture of ferulic acid and probiot-ics on the fillet quality of Megalobrama amblycephala fed with oxidized oil. Aquaculture 2022, 549, 737786. [Google Scholar] [CrossRef]
- Subhashree, S.N.; Sunoj, S.; Xue, J.; Bora, G.C. Quantification of browning in apples using colour and textural features by image analysis. Food Qual. Saf. 2017, 1, 221–226. [Google Scholar] [CrossRef]
- Murata, M. Browning and pigmentation in food through the Maillard reaction. Glycoconj. J. 2021, 38, 283–292. [Google Scholar] [CrossRef]
- Matsuda, H.; Llave, Y.; Fukuoka, M.; Sakai, N. Color changes in fish during grilling—Influences of heat transfer and heat-ing medium on browning color. J. Food Eng. 2012, 116, 130–137. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.T.; Pan, N.; Liu, S.J.; Su, Y.C.; Xiao, M.T.; Shi, W.Z.; Liu, Z.Y. The effects of five different drying methods on the quality of semi-dried takifugu obscurus fillets. LWT 2022, 161, 113340. [Google Scholar] [CrossRef]
- Becker, A.; Boulaaba, A.; Pingen, S.; Krischek, C.; Klein, G. Low temperature cooking of pork meat—Physicochemical and sensory aspects. Meat Sci. 2016, 118, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, Y.Z.; Chen, S.; Xu, C.H.; Yu, Y.; Wang, X.C.; Shi, W.Z. Determination of the effects of different high-temperature treatments on texture and aroma characteristics in Alaska pollock surimi. Food Sci. Nutr. 2018, 6, 2079–2091. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiong, Y.L.; Sato, H. Rheological enhancement of pork myofibrillar protein–lipid emulsion composite gels via glucose oxidase oxidation/transglutaminase cross-linking pathway. J. Agric. Food Chem. 2017, 65, 8451–8458. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Wang, X. Changes of protein secondary structures of pollock surimi gels under high-temperature (100 °C and 120 °C) treatment. J. Food Eng. 2015, 171, 159–163. [Google Scholar] [CrossRef]
- Zhang, L.L.; Xue, Y.; Xu, J.; Li, Z.J.; Xue, C.H. Effects of high-temperature treatment (≥100 °C) on Alaska Pollock (Theragra chalcogramma) surimi gels. J. Food Eng. 2013, 115, 115–120. [Google Scholar] [CrossRef]
- Zhang, T.; Xin, X.Q.; Xue, Y.; Zhao, Y.H.; Xue, C.H. Reduction of formaldehyde residues induced by the thermal decom-position of trimethylamine oxide during the processing and storage of jumbo squid (dosidicus gigas). LWT 2018, 97, 676–683. [Google Scholar] [CrossRef]
- Chen, J.H.; Tao, L.N.; Zhang, T.; Zhang, J.J.; Wu, T.T.; Luan, D.L.; Ni, L.; Wang, X.C.; Zhong, J. Effect of four types of thermal processing methods on the aroma profiles of acidity regulator-treated tilapia muscles using e-nose, HS-SPME-GC-MS, and HS-GC-IMS. LWT 2021, 147, 111585. [Google Scholar] [CrossRef]
- Bai, J.; Fan, Y.; Zhu, L.L.; Wang, Y.C.; Hou, H. Characteristic flavor of Antarctic krill (Euphausia superba) and white shrimp (Penaeus vannamei) induced by thermal treatment. Food Chem. 2022, 378, 132074. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.Y.; Xu, H.Y.; Jiang, X.; Sun, T.T.; Luo, Y.X.; Shi, W.Z. Evaluation of aroma characteristics in grass carp mince as affected by different washing processes using an E-nose, HS-SPME-GC-MS, HS-GC-IMS, and sensory analysis. Food Res. Int. 2022, 158, 111584. [Google Scholar] [CrossRef]
- Li, M.Q.; Yang, R.W.; Zhang, H.; Wang, S.L.; Chen, D.; Lin, S.Y. Development of a flavor fingerprint by HS-GC–IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef]
- Xie, Q.S.; Xu, B.C.; Xu, Y.; Yao, Z.; Zhu, B.W.; Li, X.F.; Sun, Y. Effects of different thermal treatment temperatures on volatile flavour compounds of water-boiled salted duck after packaging. LWT 2021, 154, 112625. [Google Scholar] [CrossRef]
- Feng, D.; Wang, J.; Ji, X.J.; Min, W.X.; Yan, W.J. HS-GC-IMS detection of volatile organic compounds in yak milk powder processed by different drying methods. LWT 2021, 141, 110855. [Google Scholar] [CrossRef]
- Li, W.Q.; Chen, Y.P.; Blank, I.; Li, F.Y.; Li, C.B.; Liu, Y. GC×GC-ToF-MS and GC-IMS based volatile profile characteriza-tion of the Chinese dry-cured hams from different regions. Food Res. Int. 2021, 142, 110222. [Google Scholar] [CrossRef] [PubMed]
- Leng, P.; Hu, H.W.; Cui, A.H.; Tang, H.J.; Liu, Y.G. HS-GC-IMS with PCA to analyze volatile flavor compounds of honey peach packaged with different preservation methods during storage. LWT 2021, 149, 111963. [Google Scholar] [CrossRef]
Condition | Hardness | Springiness | Cohesiveness | Chewiness |
---|---|---|---|---|
untreated | 1008.67 ± 55.66 d | 0.95 ± 0.03 a | 0.81 d | 778.61 ± 55.01 d |
drying treatment | 2124.39 ± 255.03 c | 0.92 ± 0.01 a | 0.83 c | 1625.14 ± 203.73 c |
105 °C sterilization | 4147.75 ± 444.90 a | 0.94 ± 0.04 a | 0.84 b | 3284.86 ± 412.35 a |
115 °C sterilization | 3451.19 b | 0.94 a | 0.86 a | 2817.08 b |
121 °C sterilization | 3252.04 ± 203.04 b | 0.93 ± 0.01 a | 0.86 a | 2614.42 ± 171.73 b |
No. | Compounds | CAS# | Formula | MW | RI | RT [s] | DT [ms] | Thresholds (mg/100 mL) | Comment |
---|---|---|---|---|---|---|---|---|---|
1 | n-Nonanal | C124196 | C9H18O | 142.2 | 1103.3 | 766.102 | 1.47903 | 0.01 | |
2 | 1,8-Cineole | C470826 | C10H18O | 154.3 | 1041.7 | 632.512 | 1.30201 | - | Monomer |
3 | 1,8-Cineole | C470826 | C10H18O | 154.3 | 1042.4 | 633.818 | 1.72512 | - | Dimer |
4 | Limonene | C138863 | C10H16 | 136.2 | 1038.8 | 626.856 | 1.21739 | 0.1 | |
5 | Octanal | C124130 | C8H16O | 128.2 | 1012.4 | 577.25 | 1.41819 | 0 | |
6 | 6-Methyl-5-hepten-2-one | C110930 | C8H14O | 126.2 | 994.0 | 544.18 | 1.17436 | 0.68 | |
7 | 2-Pentylfuran | C3777693 | C9H14O | 138.2 | 995.9 | 548.096 | 1.25181 | 0.06 | |
8 | benzaldehyde | C100527 | C7H6O | 106.1 | 978.4 | 512.415 | 1.14425 | 3.5 | Monomer |
9 | benzaldehyde | C100527 | C7H6O | 106.1 | 977.9 | 511.545 | 1.46408 | 3.5 | Dimer |
10 | alpha-Pinene | C80568 | C10H16 | 136.2 | 934.9 | 433.628 | 1.21337 | 0.14 | |
11 | methylpyrazine | C109080 | C5H6N2 | 94.1 | 835.9 | 300.659 | 1.09188 | 600 | |
12 | hexanal | C66251 | C6H12O | 100.2 | 793.2 | 257.954 | 1.26268 | 0.04 | Monomer |
13 | hexanal | C66251 | C6H12O | 100.2 | 791.9 | 256.759 | 1.55567 | 0.04 | Dimer |
14 | 1-pentanol | C71410 | C5H12O | 88.1 | 774.8 | 240.932 | 1.25319 | 40 | Monomer |
15 | 1-pentanol | C71410 | C5H12O | 88.1 | 774.5 | 240.633 | 1.51178 | 40 | Dimer |
16 | 2-methylbutanal | C96173 | C5H10O | 86.1 | 665.9 | 161.822 | 1.17209 | 0.01 | Monomer |
17 | 2-methylbutanal | C96173 | C5H10O | 86.1 | 658.7 | 158.453 | 1.3988 | 0.01 | Dimer |
18 | butanal | C123728 | C4H8O | 72.1 | 601.4 | 133.797 | 1.28837 | 0.02 | |
19 | 2-Butanone | C78933 | C4H8O | 72.1 | 589.1 | 129.049 | 1.24595 | 354 | |
20 | Acetone | C67641 | C3H6O | 58.1 | 509.1 | 101.936 | 1.12887 | 8.32 | |
21 | ethanol | C64175 | C2H6O | 46.1 | 483.5 | 94.547 | 1.14128 | 9500 | |
22 | 2-Hexanone | C591786 | C6H12O | 100.2 | 782.2 | 247.897 | 1.18847 | 5.6 | |
23 | Heptanal | C111717 | C7H14O | 114.2 | 901.1 | 380.762 | 1.34963 | 0.03 | Monomer |
24 | Heptanal | C111717 | C7H14O | 114.2 | 902.7 | 383.137 | 1.69934 | 0.03 | Dimer |
25 | 2-heptanone | C110430 | C7H14O | 114.2 | 891.8 | 367.459 | 1.26607 | 30 | Monomer |
26 | 2-heptanone | C110430 | C7H14O | 114.2 | 891.8 | 367.459 | 1.63126 | 30 | Dimer |
27 | 3-methylbutanol | C123513 | C5H12O | 88.1 | 741.5 | 211.98 | 1.23925 | 0.04 | Monomer |
28 | 3-methylbutanol | C123513 | C5H12O | 88.1 | 742.7 | 212.985 | 1.4887 | 0.04 | Dimer |
29 | ethyl acetate | C141786 | C4H8O2 | 88.1 | 611.8 | 137.98 | 1.09743 | 0.05 | Monomer |
30 | ethyl acetate | C141786 | C4H8O2 | 88.1 | 613.8 | 138.784 | 1.3402 | 0.05 | Dimer |
31 | 2-methylpropanol | C78831 | C4H10O | 74.1 | 634.7 | 147.632 | 1.17418 | 65.05 | Monomer |
32 | 2-methylpropanol | C78831 | C4H10O | 74.1 | 638.4 | 149.242 | 1.36382 | 65.05 | Dimer |
33 | 2-methylbutanol | C137326 | C5H12O | 88.1 | 732.2 | 204.545 | 1.23515 | 0.159 | |
34 | 2-Octanone | C111137 | C8H16O | 128.2 | 994.2 | 544.639 | 1.32285 | 0.5 | Monomer |
35 | 2-Octanone | C111137 | C8H16O | 128.2 | 993.1 | 542.281 | 1.7448 | 0.5 | Dimer |
36 | 2,3-pentanedione | C600146 | C5H8O2 | 100.1 | 692.2 | 175.419 | 1.22603 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Chen, Y.; Li, S.; Shang, S.; Fu, B.; Wang, L.; Dong, X.; Jiang, P. Ready-to-Eat Fish Cake Processing Methods and the Impacts on Quality and Flavor. Foods 2022, 11, 3321. https://doi.org/10.3390/foods11213321
Jiang C, Chen Y, Li S, Shang S, Fu B, Wang L, Dong X, Jiang P. Ready-to-Eat Fish Cake Processing Methods and the Impacts on Quality and Flavor. Foods. 2022; 11(21):3321. https://doi.org/10.3390/foods11213321
Chicago/Turabian StyleJiang, Caiyan, Yao Chen, Shuang Li, Shan Shang, Baoshang Fu, Lina Wang, Xiuping Dong, and Pengfei Jiang. 2022. "Ready-to-Eat Fish Cake Processing Methods and the Impacts on Quality and Flavor" Foods 11, no. 21: 3321. https://doi.org/10.3390/foods11213321
APA StyleJiang, C., Chen, Y., Li, S., Shang, S., Fu, B., Wang, L., Dong, X., & Jiang, P. (2022). Ready-to-Eat Fish Cake Processing Methods and the Impacts on Quality and Flavor. Foods, 11(21), 3321. https://doi.org/10.3390/foods11213321