Element Content in Different Wheat Flours and Bread Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Bread Baking Procedure
2.3. Determination of Elements Content
2.3.1. Sample Preparation
2.3.2. Analysis of Elements in ICP-MS
2.3.3. Statistical Analysis
3. Results and Discussion
3.1. Flour Element Content
3.2. Bread Element Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Çetin-Babaoğlu, H.; Arslan-Tontul, S.; Akın, N. Effect of Immature Wheat Flour on Nutritional and Technological Quality of Sourdough Bread. J. Cereal Sci. 2020, 94, 103000. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Hussain, R.; Kubow, S.; Sadiq, F.A.; Huang, W.; Imran, M. Sourdough Bread: A Contemporary Cereal Fermented Product. J. Food Process. Preserv. 2019, 43, e13883. [Google Scholar] [CrossRef]
- De Boni, A.; Pasqualone, A.; Roma, R.; Acciani, C. Traditions, Health and Environment as Bread Purchase Drivers: A Choice Experiment on High-Quality Artisanal Italian Bread. J. Clean. Prod. 2019, 221, 249–260. [Google Scholar] [CrossRef]
- Dewettinck, K.; Van Bockstaele, F.; Kühne, B.; Van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional Value of Bread: Influence of Processing, Food Interaction and Consumer Perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Arzani, A.; Ashraf, M. Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Awika, J.M. Major Cereal Grains Production and Use around the World. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; Awika, J.M., Piironen, V., Bean, S., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- García-Gómez, B.; Fernández-Canto, N.; Vázquez-Odériz, M.L.; Quiroga-García, M.; Muñoz-Ferreiro, N.; Romero-Rodríguez, M.Á. Sensory Descriptive Analysis and Hedonic Consumer Test for Galician Type Breads. Food Control 2022, 134, 108765. [Google Scholar] [CrossRef]
- Bo, S.; Seletto, M.; Choc, A.; Ponzo, V.; Lezo, A.; Demagistris, A.; Evangelista, A.; Ciccone, G.; Bertolino, M.; Cassader, M.; et al. The Acute Impact of the Intake of Four Types of Bread on Satiety and Blood Concentrations of Glucose, Insulin, Free Fatty Acids, Triglyceride and Acylated Ghrelin. A Randomized Controlled Cross-over Trial. Food Res. Int. 2017, 92, 40–47. [Google Scholar] [CrossRef]
- Erba, D.; Hidalgo, A.; Bresciani, J.; Brandolini, A. Environmental and Genotypic Influences on Trace Element and Mineral Concentrations in Whole Meal Flour of Einkorn (Triticum Monococcum L. Subsp. Monococcum). J. Cereal Sci. 2011, 54, 250–254. [Google Scholar] [CrossRef]
- Yaver, E.; Bilgiçli, N. Effects of Different Dephytinisation Methods on Chemical Properties of Commercial and Traditional Breads Prepared from Composite Flour. Food Chem. 2019, 276, 77–83. [Google Scholar] [CrossRef]
- Zhao, F.J.; Su, Y.H.; Dunham, S.J.; Rakszegi, M.; Bedo, Z.; McGrath, S.P.; Shewry, P.R. Variation in Mineral Micronutrient Concentrations in Grain of Wheat Lines of Diverse Origin. J. Cereal Sci. 2009, 49, 290–295. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The Essential Metals for Humans: A Brief Overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Matallana-González, M.C.; Callejo, M.J.; Carrillo, J.M.; Morales, P.; Fernández-Ruiz, V. Durum and Bread Wheat Flours. Preliminary Mineral Characterization and Its Potential Health Claims. Agronomy 2021, 11, 108. [Google Scholar] [CrossRef]
- European Union. Commission Implementing Regulation (EU) 2019/2182 of 16 December 2019 Enter a Name in the Register of Protected Designations of Origin and Protected Geographical Indications ‘Pan Galego’/‘Pan Gallego’ (PGI). Off. J. Eur. Union 2019, 330, 42. [Google Scholar]
- Chavan, R.S.; Chavan, S.R. Sourdough Technology-A Traditional Way for Wholesome Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2011, 10, 169–182. [Google Scholar] [CrossRef]
- Torrieri, E.; Pepe, O.; Ventorino, V.; Masi, P.; Cavella, S. Effect of Sourdough at Different Concentrations on Quality and Shelf Life of Bread. LWT—Food Sci. Technol. 2014, 56, 508–516. [Google Scholar] [CrossRef]
- Fekri, A.; Torbati, M.; Yari Khosrowshahi, A.; Bagherpour Shamloo, H.; Azadmard-Damirchi, S. Functional Effects of Phytate-Degrading, Probiotic Lactic Acid Bacteria and Yeast Strains Isolated from Iranian Traditional Sourdough on the Technological and Nutritional Properties of Whole Wheat Bread. Food Chem. 2020, 306, 125620. [Google Scholar] [CrossRef]
- Fernández-Peláez, J.; Paesani, C.; Gómez, M. Sourdough Technology as a Tool for the Development of Healthier Grain-Based Products: An Update. Agronomy 2020, 10, 1962. [Google Scholar] [CrossRef]
- Nuobariene, L.; Cizeikiene, D.; Gradzeviciute, E.; Hansen, Å.S.; Rasmussen, S.K.; Juodeikiene, G.; Vogensen, F.K. Phytase-Active Lactic Acid Bacteria from Sourdoughs: Isolation and Identification. LWT 2015, 63, 466–772. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel Insights on the Functional/Nutritional Features of the Sourdough Fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef]
- Lappi, J.; Selinheimo, E.; Schwab, U.; Katina, K.; Lehtinen, P.; Mykkänen, H.; Kolehmainen, M.; Poutanen, K. Sourdough Fermentation of Wholemeal Wheat Bread Increases Solubility of Arabinoxylan and Protein and Decreases Postprandial Glucose and Insulin Responses. J. Cereal Sci. 2010, 51, 152–158. [Google Scholar] [CrossRef]
- Chawla, S.; Nagal, S. Sourdough in Bread-Making: An Ancient Technology to Solve Modern Issues. Int. J. Ind. Biotechnol. Biomater. 2015, 1, 1–10. [Google Scholar]
- Latimer, G. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Mair, P.; Wilcox, R. Robust Statistical Methods in R Using the WRS2 Package. Behav. Res. Methods 2020, 52, 464–488. [Google Scholar] [CrossRef] [PubMed]
- Husson, F.; Lê, S.; Pagès, J. Exploratory Multivariate Analysis by Example Using R; Chapman & Hall: London, UK, 2011; Volume 15. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Rodríguez, L.H.; Morales, D.A.; Rodríguez, E.R.; Romero, C.D. Minerals and Trace Elements in a Collection of Wheat Landraces from the Canary Islands. J. Food Compos. Anal. 2011, 24, 1081–1090. [Google Scholar] [CrossRef]
- Anjum, F.M.; Butt, M.S.; Ahmad, N.; Ahmad, I. Phytate and Mineral Content in Different Milling Fractions of Some Pakistani Spring Wheats. Int. J. Food Sci. Technol. 2002, 37, 13–17. [Google Scholar] [CrossRef]
- Eagling, T.; Neal, A.L.; McGrath, S.P.; Fairweather-Tait, S.; Shewry, P.R.; Zhao, F.J. Distribution and Speciation of Iron and Zinc in Grain of Two Wheat Genotypes. J. Agric. Food Chem. 2014, 62, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Vignola, M.B.; Moiraghi, M.; Salvucci, E.; Baroni, V.; Pérez, G.T. Whole Meal and White Flour from Argentine Wheat Genotypes: Mineral and Arabinoxylan Differences. J. Cereal Sci. 2016, 71, 217–223. [Google Scholar] [CrossRef]
- Ertl, K.; Goessler, W. Grains, Whole Flour, White Flour, and Some Final Goods: An Elemental Comparison. Eur. Food Res. Technol. 2018, 244, 2065–2075. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chatzidimitriou, E.; Wood, L.; Hasanalieva, G.; Markelou, E.; Iversen, P.O.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of Wheat Species (Triticum Aestivum vs. T. Spelta), Farming System (Organic vs. Conventional) and Flour Type (Wholegrain vs. White) on Composition of Wheat Flour—Results of a Retail Survey in the UK and Germany—2. Antioxidant Activity, and Phenoli. Pakistan J. Food Sci. 2020, 20, 54–61. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Y.; Chen, X.; Sun, Q.; Zhang, F.; Römheld, V.; Zou, C. Influence of Long-Term Nitrogen Fertilization on Micronutrient Density in Grain of Winter Wheat (Triticum Aestivum L.). J. Cereal Sci. 2010, 51, 165–170. [Google Scholar] [CrossRef]
- Karaman, K.; Sagdic, O.; Durak, M.Z. Use of Phytase Active Yeasts and Lactic Acid Bacteria Isolated from Sourdough in the Production of Whole Wheat Bread. LWT—Food Sci. Technol. 2018, 91, 557–567. [Google Scholar] [CrossRef]
- Yildirim, R.M.; Arici, M. Effect of the Fermentation Temperature on the Degradation of Phytic Acid in Whole-Wheat Sourdough Bread. LWT—Food Sci. Technol. 2019, 112, 108224. [Google Scholar] [CrossRef]
- Helou, C.; Gadonna-Widehem, P.; Robert, N.; Branlard, G.; Thebault, J.; Librere, S.; Jacquot, S.; Mardon, J.; Piquet-Pissaloux, A.; Chapron, S.; et al. The Impact of Raw Materials and Baking Conditions on Maillard Reaction Products, Thiamine, Folate, Phytic Acid and Minerals in White Bread. Food Funct. 2016, 7, 2498–2507. [Google Scholar] [CrossRef] [PubMed]
- Torrinha, Á.; Oliveira, M.; Marinho, S.; Paíga, P.; Delerue-Matos, C.; Morais, S. Mineral Content of Various Portuguese Breads: Characterization, Dietary Intake, and Discriminant Analysis. Molecules 2019, 24, 2787. [Google Scholar] [CrossRef] [Green Version]
- Wolters, M.G.E.; Schreuder, H.A.W.; Van Den Heuvel, G.; Van Lonkhuijsen, H.J.; Hermus, R.J.J.; Voragen, A.G.J. A Continuous in Vitro Method for Estimation of the Bioavailability of Minerals and Trace Elements in Foods: Application to Breads Varying in Phytic Acid Content. Br. J. Nutr. 1993, 69, 849–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daglioglu, O.; Tuncel, B. Macro and Micro Mineral Contents of Turkish Bread Types. Kurzbeitrag 1999, 1, 61–62. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Zaricka, E.; Kwiecień, M.; Kwiatkowska, K.; Baranowska-Wójcik, E.; Danek-Majewska, A. Can Cereal Products Be an Essential Source of Ca, Mg and K in the Deficient Diets of Poles? Biol. Trace Elem. Res. 2020, 195, 317–322. [Google Scholar] [CrossRef]
Flour | Bread * | |||
---|---|---|---|---|
Fermentation Time (h) | Leavening Agent | |||
Yeast | Sourdough | Mixed Leavening | ||
100% refined Castilla variety (FC) | 2 | BC2Y | BC2S | BC2M |
12 | BC12Y | BC12S | BC12M | |
100% refined ‘Caaveiro’ variety (FCv) | 2 | BCv2Y | BCv2S | BCv2M |
12 | BCv12Y | BCv12S | BCv12M | |
75% FC + 25% FCv refined mixed flour (FM) | 2 | BM2Y | BM2S | BM2M |
12 | BM12Y | BWM12S | BWM12M | |
75% FC + 25% FCv wholemeal mixed flour (FWM) | 2 | BWM2Y | BWM2S | BWM2M |
12 | BWM12Y | BWM12S | BWM12M |
FWM (Mixed Wholegrain Flour) Mean (Standard Error) | FCv (‘Caaveiro’ Flour) Mean (Standard Error) | FM (Mixed Refined Flour) Mean (Standard Error) | FC (Castilla Flour) Mean (Standard Error) | |
---|---|---|---|---|
P (mg/100 g) | 494.8 a (16.3) | 302.2 b (5.2) | 209.0 c (0.4) | 174.1 d (0.7) |
K (mg/100 g) | 419.2 a (11.4) | 191.4 b (3.0) | 159.3 c (0.4) | 146.8 d (0.8) |
Mg (mg/100 g) | 123.1 a (4.4) | 61.5 b (0.9) | 46.2 c (0.1) | 39.6 d (0.3) |
Ca (mg/100 g) | 73.0 a (2.7) | 36.0 c (0.5) | 38.1 b (0.2) | 38.4 b (0.2) |
Mn (mg/100 g) | 9.2 a (0.4) | 4.9 b (0.1) | 2.3 c (0.0) | 1.4 d (0.0) |
Zn (mg/100 g) | 6.9 a (0.3) | 5.2 b (0.1) | 2.7 c (0.0) | 1.3 d (0.0) |
Fe (mg/100 g) | 6.2 a (0.1) | 3.1 abc (0.9) | 3.0 b (0.0) | 2.1 c (0.0) |
Na (mg/100 g) | 3.4 a (0.0) | 1.5 b (0.1) | 1.3 c (0.0) | 1.3 b (0.0) |
Cu (µg/100 g) | 880.8 b (27.5) | 1076.3 a (5.0) | 410.9 c (0.9) | 254.9 d (2.0) |
Se (µg/100 g) | 9.1 b (0.3) | 10.3 b (0.4) | 14.4 a (0.5) | 15.8 a (0.3) |
Element | Mean in Category | SD in Category | v−Test | p−Value |
---|---|---|---|---|
Cluster 1. Wholegrain breads (BWM breads) | ||||
Mn (mg/100 g) | 4.8 | 0.3 | 4.4 | 0.0000 |
Ca (mg/100 g) | 41.7 | 5.7 | 4.3 | 0.0000 |
Zn (mg/100 g) | 3.6 | 0.2 | 4.0 | 0.0001 |
Mg (mg/100 g) | 79.7 | 19.0 | 4.0 | 0.0001 |
Fe (mg/100 g) | 3.9 | 0.5 | 3.9 | 0.0001 |
K (mg/100 g) | 297.6 | 99.3 | 3.5 | 0.0004 |
P (mg/100 g) | 345.6 | 106.1 | 3.2 | 0.0015 |
Cu (µg/100 g) | 484.8 | 36.0 | 2.3 | 0.0221 |
Se (µg/100 g) | 5.0 | 0.3 | −3.0 | 0.0025 |
Cluster 2. ‘Caaveiro’ breads (BCv breads) | ||||
Cu (µg/100 g) | 525.5 | 49.1 | 3.0 | 0.0026 |
Ca (mg/100 g) | 22.7 | 2.6 | −2.0 | 0.0444 |
Se (µg/100 g) | 5.6 | 0.7 | −2.1 | 0.0321 |
Cluster 3. Refined breads (BM and BC breads) | ||||
Se (µg/100 g) | 8.8 | 0.7 | 4.5 | 0.0000 |
Ca (mg/100 g) | 25.3 | 2.4 | −2.0 | 0.0478 |
K (mg/100 g) | 134.7 | 41.3 | −2.4 | 0.0184 |
P (mg/100 g) | 169.9 | 47.3 | −2.8 | 0.0053 |
Mg (mg/100 g) | 34.0 | 7.7 | −2.3 | 0.0032 |
Mn (mg/100 g) | 1.1 | 0.2 | −3.9 | 0.0001 |
Fe (mg/100 g) | 1.6 | 0.3 | −4.0 | 0.0001 |
Zn (mg/100 g) | 1.0 | 0.2 | −4.0 | 0.0000 |
Cu (µg/100 g) | 208.5 | 41.4 | −4.6 | 0.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Canto, M.N.; García-Gómez, M.B.; Boado-Crego, S.; Vázquez-Odériz, M.L.; Muñoz-Ferreiro, M.N.; Lombardero-Fernández, M.; Pereira-Lorenzo, S.; Romero-Rodríguez, M.Á. Element Content in Different Wheat Flours and Bread Varieties. Foods 2022, 11, 3176. https://doi.org/10.3390/foods11203176
Fernández-Canto MN, García-Gómez MB, Boado-Crego S, Vázquez-Odériz ML, Muñoz-Ferreiro MN, Lombardero-Fernández M, Pereira-Lorenzo S, Romero-Rodríguez MÁ. Element Content in Different Wheat Flours and Bread Varieties. Foods. 2022; 11(20):3176. https://doi.org/10.3390/foods11203176
Chicago/Turabian StyleFernández-Canto, María Nerea, María Belén García-Gómez, Sonia Boado-Crego, María Lourdes Vázquez-Odériz, María Nieves Muñoz-Ferreiro, Matilde Lombardero-Fernández, Santiago Pereira-Lorenzo, and María Ángeles Romero-Rodríguez. 2022. "Element Content in Different Wheat Flours and Bread Varieties" Foods 11, no. 20: 3176. https://doi.org/10.3390/foods11203176
APA StyleFernández-Canto, M. N., García-Gómez, M. B., Boado-Crego, S., Vázquez-Odériz, M. L., Muñoz-Ferreiro, M. N., Lombardero-Fernández, M., Pereira-Lorenzo, S., & Romero-Rodríguez, M. Á. (2022). Element Content in Different Wheat Flours and Bread Varieties. Foods, 11(20), 3176. https://doi.org/10.3390/foods11203176