Comparison of Phytochemical Profile and In Vitro Bioactivity of Beverages Based on the Unprocessed and Extruded Sesame (Sesamum indicum L.) Seed Byproduct
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Preparation of Optimized Extruded Sesame Flour
2.3. Preparation of the Beverages
2.4. Sensory Evaluation of the Beverages
2.5. Extraction and Quantification of Phytochemicals from the Beverages
2.6. Determination of the Antioxidant, Hypoglycemic and Antidiabetic Activities
2.7. Statistical Analysis
3. Results and Discussion
3.1. Sensory Analysis of Beverage
3.2. Changes in Phytochemicals Profile Caused by the Extrusion Process
3.3. Total Phytochemical Content of UB10 and EB10
3.4. Biological Activities
3.5. Association between Phytochemicals Content and Biological Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kapoor, S.; Parmar, S.S.; Yadav, M.; Chaudhary, D.; Sainger, M.; Jaiwal, R.; Jaiwal, P.K. Agrobacterium Protocols; Wang, K., Ed.; Springer: New York, NY, USA, 2015; Volume 2, pp. 37–45. [Google Scholar]
- Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Attia, H. Quality characteristics of sesame seeds and by-products. Food Chem. 2006, 103, 641–650. [Google Scholar] [CrossRef]
- Jimoh, W.A.; Fagbenro, O.; Adeparusi, E. Effect of processing on some minerals, anti-nutrients and nutritional composition of sesame (Sesamum indicum) seed meals. Electron. J. Environ. Agric. Food Chem. 2011, 10, 1858–1864. [Google Scholar]
- Toros, H.; Guzmán-Alvarez, R. Reduction of Antinutritional Factors of Three Varieties of Sesame (Sesamum Indicum L.) Seeds When Applying Heat-Alkaline Treatments. Acta Sci. Nutr. Health 2022, 6, 59–68. [Google Scholar] [CrossRef]
- Olagunju, A.I.; Ifesan, B.O.T. Changes in nutrient and antinutritional contents of sesame seeds during fermentation. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2407–2410. [Google Scholar]
- Akusu, O.; Kiin-Kabari, D.; Isah, E. Anti-nutrients, bioaccessibility and mineral balance of cookies produced from processed sesame seed flour blends. Int. J. Food Sci. Nutr. Eng. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Félix-Medina, J.V.; Gutiérrez-Dorado, R.; López-Valenzuela, J.A.; López-Ángulo, G.; Quintero-Soto, M.F.; Perales-Sánchez, J.X.K.; Montes-Ávila, J. Nutritional, antioxidant and phytochemical characterization of healthy ready-to-eat expanded snack produced from maize/common bean mixture by extrusion. LWT 2021, 142, 111053. [Google Scholar] [CrossRef]
- Warra, A. Sesame (Sesamum indicum L.) Seed Oil Methods of Extraction and its Prospects in Cosmetic Industry: A Review. Bayero J. Pure Appl. Sci. 2011, 4, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, S.K.; Kar, J.; Sahu, D. Advances in Plant Breeding Strategies: Industrial and Food Crops; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 6, pp. 577–635. [Google Scholar]
- Orruño, E.; Morgan, M. Purification and characterisation of the 7S globulin storage protein from sesame (Sesamum indicum L.). Food Chem. 2007, 100, 926–934. [Google Scholar] [CrossRef]
- Rao, S.R.; Raju, M.; Panda, A.; Poonam, N.; Sunder, G.S.; Sharma, R. Utilisation of sesame (Sesamum indicum) seed meal in broiler chicken diets. Br. Poult. Sci. 2008, 49, 81–85. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Sun, Q.; Song, G.; Huang, J. Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res. Int. 2019, 116, 707–716. [Google Scholar] [CrossRef]
- Nagar, P.; Agrawal, M.; Agrawal, K. Sesame (Sesamum indicum L.) seed as a functional food: A review. Pharma Innov. J. 2022, 11, 893–896. [Google Scholar]
- Rochín-Medina, J.J.; Milán-Carrillo, J.; Gutiérrez-Dorado, R.; Cuevas-Rodríguez, E.O.; Mora-Rochín, S.; Valdez-Ortiz, A.; Delgado-Vargas, F.; Reyes-Moreno, C. Bebida funcional de valor nutricional/nutracéutico alto elaborada a partir de una mezcla de granos integrales (maíz + garbanzo) extrudidos. Rev. Iberoam. De Cienc. 2015, 2, 51–65. [Google Scholar]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Shen, S.; Fang, Z. Cereal grain-based functional beverages: From cereal grain bioactive phytochemicals to beverage processing technologies, health benefits and product features. Crit. Rev. Food Sci. Nutr. 2022, 62, 2404–2431. [Google Scholar] [CrossRef]
- Garduño-Félix, K.G.; Ramirez, K.; Salazar-Salas, N.Y.; Amabilis-Sosa, L.E.; Rochín-Medina, J.J. Phenolic profile in black sesame sprouts biostimulated with Bacillus clausii. J. Food Meas. Charact. 2021, 15, 5418–5426. [Google Scholar] [CrossRef]
- Morsy, M.K.; Sami, R.; Algarni, E.; Al-Mushhin, A.A.M.; Benajiba, N.; Almasoudi, A.; Almasoudi, A.G.; Mekawi, E. Phytochemical Profile and Antioxidant Activity of Sesame Seed (Sesamum indicum) By-Products for Stability and Shelf Life Improvement of Refined Olive Oil. Antioxidants 2022, 11, 338. [Google Scholar] [CrossRef]
- Amutha, K.; Godavari, A. In-vitro-antidiabetic activity of n-butanol extract of Sesamum inducum. Asian J. Pharm. Clin. Res. 2016, 9, 60–62. [Google Scholar]
- Visavadiya, N.P.; Soni, B.; Dalwadi, N. Free radical scavenging and antiatherogenic activities of Sesamum indicum seed extracts in chemical and biological model systems. Food Chem. Toxicol. 2009, 47, 2507–2515. [Google Scholar] [CrossRef]
- Elhanafi, L.; Benkhadda, Z.B.; Rais, C.; Houhou, M.; Lebtar, S.; Channo, A.; Greche, H. Biochemical Composition, Antioxidant Power and Antiinflammatory of Dehulled Sesamum indicum Seeds and Its Coat Fraction. Jordan J. Biol. Sci. 2020, 13, 289–294. [Google Scholar]
- Rizki, H.; Kzaiber, F.; Elharfi, M.; Nablousi, A.; Ennahli, S.; Hanine, H. Assessment of antioxidant capacity of 16 cultivars of sesame (Sesamum indicum L.) from different areas. Int. J. Sci. Res. 2015, 18, 379–385. [Google Scholar]
- Chen, Y.; Lin, H.; Lin, M.; Lin, P.; Chen, J. Effects of thermal preparation and in vitro digestion on lignan profiles and antioxidant activity in defatted-sesame meal. Food Chem. Toxicol. 2019, 128, 89–96. [Google Scholar] [CrossRef]
- Park, S.-H.; Park, H.-J.; Kim, J.-Y.; Lee, S.-H.; Jang, J.S.; Lee, M.H. Mixed seeds juice with high antioxidant capacity and digestive enzyme activity and its application. Food Sci. Biotechnol. 2017, 26, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Argüelles-López, O.D.; Reyes-Moreno, C.; Gutiérrez-Dorado, R.R.; Osuna, M.F.S.; López-Cervantes, J.; Cuevas-Rodríguez, E.O.; Milán-Carrillo, J.; Perales-Sánchez, J.X.K. Functional beverages elaborated from amaranth and chia flours processed by germination and extrusion. Biotecnia 2018, 20, 135–145. [Google Scholar] [CrossRef]
- Ruiz-Armenta, X.A.; Ruiz-Armenta, J.E.; Espinoza-Moreno, R.J.; Gutiérrez-Dorado, R.; Aguilar-Palazuelos, E.; Zazueta-Morales, J.d.J.; Gómez-Favela, M.A. Use of sesame by-product and optimized extrusion to obtain a functional flour with improved techno-functional, nutritional and antioxidant properties. Acta Univ. 2022, 32, 1–20. [Google Scholar] [CrossRef]
- Cardello, A.V.; Schutz, H.G. Research note numerical scale-point locations for constructing the lam (labeled affective magnitude) scale. J. Sens. Stud. 2004, 19, 341–346. [Google Scholar] [CrossRef]
- Quintero-Soto, M.F.; Saracho-Peña, A.G.; Chavez-Ontiveros, J.; Garzon-Tiznado, J.A.; Pineda-Hidalgo, K.V.; Delgado-Vargas, F.; Lopez-Valenzuela, J.A. Phenolic profiles and their contribution to the antioxidant activity of selected chickpea genotypes from Mexico and ICRISAT collections. Plant Foods Hum Nutr. 2018, 73, 122–129. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; pp. 152–178. [Google Scholar]
- Xu, B.; Chang, S. A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents. J. Food Sci. 2007, 72, S159–S166. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Mas, A.L.; Brigante, F.I.; Salvucci, E.; Ribotta, P.; Martinez, M.L.; Wunderlin, D.A.; Baroni, M.V. Novel cookie formulation with defatted sesame flour: Evaluation of its technological and sensory properties. Changes in phenolic profile, antioxidant activity, and gut microbiota after simulated gastrointestinal digestion. Food Chem. 2022, 389, 133122. [Google Scholar] [CrossRef]
- Dossou, S.S.K.; Xu, F.; You, J.; Zhou, R.; Li, D.; Wang, L. Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities. Food Res. Int. 2021, 151, 110850. [Google Scholar] [CrossRef]
- El-Roby, A.M.; Hammad, K.S.M.; Galal, S.M. Enhancing oxidative stability of sunflower oil with sesame (Sesamum indicum) coat ultrasonic extract rich in polyphenols. J. Food Process. Preserv. 2020, 44, e14564. [Google Scholar] [CrossRef]
- De Magalhães, B.E.A.; Santana, D.D.A.; Silva, I.M.D.J.; Minho, L.A.C.; Gomes, M.; Almeida, J.R.G.D.S.; dos Santos, W.N.L. Determination of phenolic composition of oilseed whole flours by HPLC-DAD with evaluation using chemometric analyses. Microchem. J. 2020, 155, 104683. [Google Scholar] [CrossRef]
- Golon, A.; Kropf, C.; Vockenroth, I.; Kuhnert, N. An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry. Foods 2014, 3, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Bruhns, P.; Kanzler, C.; Degenhardt, A.G.; Koch, T.J.; Kroh, L.W. Basic Structure of Melanoidins Formed in the Maillard Reaction of 3-Deoxyglucosone and γ-Aminobutyric Acid. J. Agric. Food Chem. 2019, 67, 5197–5203. [Google Scholar] [CrossRef]
- Civolani, C.; Barghini, P.; Roncetti, A.R.; Ruzzi, M.; Schiesser, A. Bioconversion of Ferulic Acid into Vanillic Acid by Means of a Vanillate-Negative Mutant of Pseudomonas fluorescens Strain BF13. Appl. Environ. Microbiol. 2000, 66, 2311–2317. [Google Scholar] [CrossRef] [Green Version]
- Ortega, E.; Coello-Oliemans, C.; Ornelas-Cravioto, A.; Santacruz, A.; Becerra-Moreno, A.; Jacobo-Velázquez, D.A. Phytochemical characterization of sesame bran: An unexploited by-product rich in bioactive compounds. CyTA-J. Food 2018, 16, 814–821. [Google Scholar] [CrossRef]
- Andary, C.; Wylde, R.; Laffite, C.; Privat, G.; Winternitz, F. Structures of verbascoside and orobanchoside, caffeic acid sugar esters from Orobanche rapum-genistae. Phytochemistry 1982, 21, 1123–1127. [Google Scholar] [CrossRef]
- Esposito, F.; Arlotti, G.; Bonifati, A.M.; Napolitano, A.; Vitale, D.; Fogliano, V. Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Int. 2005, 38, 1167–1173. [Google Scholar] [CrossRef]
- Espinoza-Moreno, R.J.; Reyes-Moreno, C.; Milán-Carrillo, J.; López-Valenzuela, J.A.; Paredes-López, O.; Gutiérrez-Dorado, R. Healthy Ready-to-Eat Expanded Snack with High Nutritional and Antioxidant Value Produced from Whole Amarantin Transgenic Maize and Black Common Bean. Plant Foods Hum Nutr. 2016, 71, 218–224. [Google Scholar] [CrossRef]
- Félix-Medina, J.V.; Montes-Ávila, J.; Reyes-Moreno, C.; Perales-Sánchez, J.X.K.; Gómez-Favela, M.A.; Aguilar-Palazuelos, E.; Gutiérrez-Dorado, R. Second-generation snacks with high nutritional and antioxidant value produced by an optimized extrusion process from corn/common bean flours mixtures. LWT 2020, 124, 109172. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Kermani, S.G.; Saeidi, G.; Sabzalian, M.R.; Gianinetti, A. Drought stress influenced sesamin and sesamolin content and polyphenolic components in sesame (Sesamum indicum L.) populations with contrasting seed coat colors. Food Chem. 2019, 289, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhou, L.; Li, T.; Brennan, C.; Fu, X.; Liu, R.H. Phenolic content, antioxidant and antiproliferative activities of six varieties of white sesame seeds (Sesamum indicum L.). RSC Adv. 2017, 7, 5751–5758. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Castro, A.P.; Rochín-Medina, J.J.; Ramírez, K.; Tovar, J.; Sáyago-Ayerdi, S.G. In Vitro Intestinal Bioaccessibility and Colonic Biotransformation of Polyphenols from Mini Bell Peppers (Capsicum annuum L.). Plant Foods Hum. Nutr. 2022, 77, 77–82. [Google Scholar] [CrossRef]
- Cárdenas-Castro, A.P.; Zamora-Gasga, V.M.; Alvarez-Parrilla, E.; Ruíz-Valdiviezo, V.M.; Venema, K.; Sáyago-Ayerdi, S.G. In vitro gastrointestinal digestion and colonic fermentation of tomato (Solanum lycopersicum L.) and husk tomato (Physalis ixocarpa Brot.): Phenolic compounds released and bioconverted by gut microbiota. Food Chem. 2021, 360, 130051. [Google Scholar] [CrossRef]
- Ordoñez-Díaz, J.L.; Moreno-Ortega, A.; Roldán-Guerra, F.J.; Ortíz-Somovilla, V.; Moreno-Rojas, J.M.; Pereira-Caro, G. In vitro gastrointestinal digestion and colonic catabolism of mango (Mangifera indica L.) pulp polyphenols. Foods 2020, 9, 1836. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, H.; Lin, M.; Zheng, Y.; Chen, J. Effect of roasting and in vitro digestion on phenolic profiles and antioxidant activity of water-soluble extracts from sesame. Food Chem. Toxicol. 2020, 139, 111239. [Google Scholar] [CrossRef]
- Hernández-Maldonado, L.M.; Blancas-Benítez, F.J.; Zamora-Gasga, V.M.; Cárdenas-Castro, A.P.; Tovar, J.; Sáyago-Ayerdi, S.G. In Vitro Gastrointestinal Digestion and Colonic Fermentation of High Dietary Fiber and Antioxidant-Rich Mango (Mangifera indica L.) “Ataulfo”-Based Fruit Bars. Nutrients 2019, 11, 1564. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.; Gośliński, M.; Kłębukowska, L. Antioxidant and Antimicrobial Properties of Selected Fruit Juices. Plant Foods Hum. Nutr. 2022, 77, 427–435. [Google Scholar] [CrossRef]
- BehnamNik, A.; Vazifedoost, M. Optimizing the formulation of the functional beverage from the co-crystalized powder of Securigera securidaca seed extract. J. Food Sci. Technol. 2020, 57, 2443–2451. [Google Scholar] [CrossRef]
- Bonesi, M.; Saab, A.M.; Tenuta, M.C.; Leporini, M.; Saab, M.J.; Loizzo, M.R.; Tundis, R. Screening of traditional Lebanese medicinal plants as antioxidants and inhibitors of key enzymes linked to type 2 diabetes. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2020, 154, 656–662. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Alqahtani, Y.S.; Alyami, B.A.; Alqarni, A.O.; Alqahl, S.A.; Ullah, F.; Sadiq, A.; Zeb, A.; Ghufran, M.; Kuraev, A.; et al. HPLC-DAD phenolics analysis, α-glucosidase, α-amylase inhibitory, molecular docking and nutritional profiles of Persicaria hydropiper L. BMC Complement. Med. Ther. 2022, 22, 26. [Google Scholar] [CrossRef]
- Ekayanti, M.; Sauriasari, R.; Elya, B. Dipeptidyl peptidase IV Inhibitory Activity of Fraction from White Tea Ethanolic Extract (Camellia sinensis (L.) Kuntze) ex vivo. Pharmacogn. J. 2017, 10, 190–193. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.S.; Saputri, F.C.; Mun’Im, A. Inhibition of Dipeptidyl Peptidase 4 (DPP IV) Activity by Some Indonesia Edible Plants. Pharmacogn. J. 2019, 11, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Abdel Motaal, A.; Salem, H.H.; Almaghaslah, D.; Alsayari, A.; Bin Muhsinah, A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Shati, A.A.; El-Askary, H. Flavonol Glycosides: In Vitro Inhibition of DPPIV, Aldose Reductase and Combating Oxidative Stress are Potential Mechanisms for Mediating the Antidiabetic Activity of Cleome droserifolia. Molecules 2020, 25, 5864. [Google Scholar] [CrossRef]
# | [M-H]- | Main Fragment | Metabolite | Class | UB10 1 | EB10 1 | LOD | LOQ | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | 337.11 | 191.05 | 3-O-p-Coumaroylquinic acid | Phenolic acid | 12.25 ± 0.29 a (1.53 ± 0.04 a) | 13.00 ± 1.27 a (1.62 ± 0.16 a) | 0.0117 | 0.0355 | [33] |
2 | 167.09 | 108.06 | Vanillic acid | Phenolic acid | ND | 72.11 ± 11.93 (0.90 ± 0.15) | 0.0048 | 0.0144 | [33] |
3 | 179.15 | 135.20 | Caffeic acid | Phenolic acid | 1.81 ± 0.12 (0.23 ± 0.01) | ND | 0.0020 | 0.0060 | [17,33] |
4 | 353.05 | 191.01 | Chlorogenic acid | Phenolic acid | 25.03 ± 2.22 a (3.13 ± 0.28 a) | 24.82 ± 2.15 a (3.10 ± 0.27 a) | 0.0416 | 0.1259 | [33] |
5 | 197.05 | 123.00 | Syringic acid | Phenolic acid | 12.03 ± 1.12 a (1.50 ± 0.14 a) | 13.22 ± 0.07 a (1.65 ± 0.01 a) | 0.0034 | 0.0103 | [16,17] |
6 | 623.18 | 461.15 | Acteoside | Phenolic acid | ND | 1.03 ± 0.09 (0.13 ± 0.01) | 0.0020 | 0.0060 | [33] |
7 | 193.05 | 175.02 | Ferulic Acid | Phenolic acid | 179.23 ± 4.71 a (22.40 ± 0.59 a) | 41.76 ± 8.03 b (5.22 ± 1.01 b) | 0.0090 | 0.0274 | [17,33] |
8 | 299.01 | 284.03 | Diosmetin | Flavonoid | 39.25 ± 3.53 a (4.90 ± 0.44 a) | 40.58 ± 3.97 a (5.07 ± 0.50 a) | 0.0057 | 0.0173 | [33] |
9 | 461.12 | 315.10 | Verbasoside | Phenolic acid | 0.47 ± 0.05 a (0.05 ± 0.01 a) | 0.52 ± 0.04 a (0.06 ± 0.01 a) | 0.0020 | 0.0060 | [33] |
10 | 624.01 | 317.06 | 6-Methylquercetin-3-O-Rutinoside | Flavonoid | 17.75 ± 1.85 a (2.22 ± 0.23 a) | 17.07 ± 1.08 a (2.13 ± 0.20 a) | 0.0003 | 0.0011 | [33] |
11 | 621.18 | 162.00 | Crenatoside | Phenolic acid | 0.67 ± 0.02 a (0.08 ± 0.01 a) | 0.66 ± 0.07 a (0.08 ± 0.01 a) | 0.0020 | 0.0060 | [33] |
12 | 463.12 | 300.05 | Quercetin-3-O-glucoside | Flavonoid | 36.10 ± 0.16 a (4.51 ± 0.02 a) | 36.94 ± 1.44 a (4.62 ± 0.18 a) | 0.0020 | 0.0061 | [33] |
13 | 780.24 | 647.12 | Aspartic acid + 4(hexoside) | Melanoidin | ND | NQ | - | - | [36] |
14 | 493.18 | 385.05 | 2(3-Deoxyglucosone) + 2(γ-aminobutyric acid) | Melanoidin | ND | NQ | - | - | [37] |
15 | 447.15 | 285.08 | Luteolin-7-O-glucoside | Flavonoid | 18.42 ± 0.48 (2.30 ± 0.06) | ND | 0.0024 | 0.0071 | [33] |
16 | 477.11 | 315.18 | Isorhamnetin-7-O-glucoside | Flavonoid | 679.41 ± 27.96 a (84.93 ± 3.50 a) | 683.71 ± 27.85 a (85.49 ± 3.48 a) | 0.0779 | 0.2362 | [33] |
17 | 327.09 | 294.02 | Salvigenin | Flavonoid | 159.40 ± 7.86 a (19.92 ± 0.98 a) | 169.68 ± 0.62 a (21.21 ± 1.20 a) | 0.0057 | 0.0173 | [33] |
18 | 435.13 | 166.65 | Phlorizin | Flavonoid | 88.60 ± 0.75 a (11.07 ± 0.75 a) | 79.27 ± 5.00 a (9.90 ± 0.63 a) | 0.0024 | 0.0071 | [33] |
19 | 300.09 | 179.01 | Quercetin | Flavonoid | ND | 867.57 ± 63.89 (108.45 ± 7.99) | 0.0020 | 0.0061 | [17,27] |
20 | 285.04 | 151.00 | Luteolin | Flavonoid | ND | 26.61 ± 1.38 (3.33 ± 0.17) | 0.0024 | 0.0071 | [33] |
21 | 430.95 | 269.22 | Genistein-7-O-galactoside | Flavonoid | 9.47 ± 0.98 a (1.18 ± 0.12 a) | 9.11 ± 1.34 a (1.14 ± 0.17 a) | 0.0058 | 0.0175 | [33] |
22 | 269.22 | 153.02 | Apigenin | Flavonoid | 15.76 ± 1.05 a (1.97 ± 0.13 a) | 16.64 ± 1.49 a (2.08 ± 0.19 a) | 0.0058 | 0.0175 | [16] |
23 | 315.11 | 300.05 | Isorhamnetin | Flavonoid | 1559.41 ± 35.77 (95.45 ± 2.17) | ND | 0.0779 | 0.2362 | [27] |
24 | 894.38 | 683.25 | Arginine + sucrose derived compound | Melanoidin | ND | NQ | - | - | [36] |
Feature | UB10 | EB10 | Commercial |
---|---|---|---|
Phenolic Compounds | |||
(mg GAE/100 g dw) | 114.19 ± 5.67 a | 123.15 ± 7.50 a | 90.15 ± 5.32 b |
(mg GAE/100 mL beverage) | 14.90 ± 0.71 a | 15.97 ± 1.00 a | 5.11 ± 0.22 b |
Flavonoids | |||
(mg QE/100 g dw) | 43.80 ± 3.75 a | 47.90 ± 1.60 a | 30.25 ± 2.75 b |
(mg QE/100 mL beverage) | 5.37 ± 0.47 a | 5.85 ± 0.30 a | 2.22 ± 0.90 b |
Feature | UB10 | EB10 | Commercial | Positive Control * |
---|---|---|---|---|
Antioxidant activity (AA) | ||||
ABTS | ||||
(µmol TE/100 g dw) | 1668.61 ± 69.91 b | 2010.98 ± 57.85 a | 660.99 ± 15.89 c | |
(µmol TE/100 mL beverage) | 208.57 ± 8.73 b | 251.30 ± 7.21 a | 120.00 ± 9.12 c | |
IC50 (mg/mL extract) | 0.24 ± 0.02 b | 0.19 ± 0.01 c | 0.52 ± 0.02 a | 0.03 ± 0.00 |
DPPH | ||||
(µmol TE/100 g dw) | 744.92 ± 30.52 b | 1770.65 ± 37.73 a | 450.12 ± 12.77 c | |
(µmol TE/100mL beverage) | 93.12 ± 3.81 b | 221.27 ± 4.68 a | 55.01 ± 5.28 c | |
IC50 (mg/mL extract) | 0.31 ± 0.01 b | 0.21 ± 0.01 c | 0.92 ± 0.03 a | 0.02 ± 0.00 |
Hypoglycemic activity | ||||
Inhibition of α-amylase IC50 (mg/mL extract) | 2.29 ± 0.03 b | 1.01 ± 0.01 c | 7.21 ± 0.15 a | 0.06 ± 0.00 |
% of inhibition of/100 mL beverage | 52.32 ± 0.61 b | 95.75 ± 0.40 a | 12.13 ± 0.34 c | |
Inhibition of α-glucosidase IC50 (mg/mL extract) | 0.47 ± 0.01 b | 0.17 ± 0.01 c | 3.11 ± 0.21 a | 3.98 ± 0.09 |
% of inhibition of/100 mL beverage | >100 | >100 | 28.20 ± 2.00 | |
Antidiabetic activity | ||||
DPP4 inhibition IC50 (mg/mL extract) | 0.30 ± 0.01 b | 0.11 ± 0.01 c | 0.81 ± 0.01 a | 0.01 ± 0.00 |
% of inhibition of/100 mL beverage | >100 | >100 | 81.25 ± 0.75 |
CQA | VA | CaA | ChA | SA | Act | FA | Diosm | Verb | MQR | Cren | QG | M13 | M14 | LutG | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CQA | 1 | ||||||||||||||
VA | NS | 1 | |||||||||||||
CaA | NS | −0.985 *** | 1 | ||||||||||||
ChA | NS | NS | NS | 1 | |||||||||||
SA | NS | 0.765 ** | −0.801 ** | NS | 1 | ||||||||||
Act | NS | 0.997 *** | −0.994 *** | NS | 0.774 ** | 1 | |||||||||
FA | NS | −0.977 *** | 0.995 *** | NS | −0.764 ** | −0.989 *** | 1 | ||||||||
Diosm | NS | NS | NS | NS | NS | NS | NS | 1 | |||||||
Verb | NS | NS | −0.652 * | NS | NS | 0.640 * | −0.661 * | NS | 1 | ||||||
MQR | NS | NS | NS | NS | NS | NS | NS | NS | NS | 1 | |||||
Cren | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | 1 | ||||
QG | 0.871 ** | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.751 * | 1 | |||
M13 | NS | 0.999 *** | −0.990 *** | NS | 0.770 ** | 0.999 *** | −0.983 *** | NS | NS | NS | NS | NS | 1 | ||
M14 | NS | 0.991 *** | −0.997 *** | NS | 0.779 ** | 0.997 *** | −0.996 *** | NS | NS | NS | NS | NS | 0.994 *** | 1 | |
LutG | NS | −0.987 *** | 0.999 *** | NS | −0.796 ** | −0.996 *** | 0.997 *** | NS | −0.645 * | NS | NS | NS | −0.991 *** | −0.998 *** | 1 |
IsoG | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Salv | NS | 0.756 *** | −0.701 * | NS | 0.775 ** | 0.721 * | −0.647 * | NS | NS | −0.771 ** | NS | 0.752 * | 0.743 * | 0.709 * | −0.690 * |
Phl | NS | −0.744 ** | 0.791 ** | NS | −0.830 ** | −0.783 ** | 0.807 ** | NS | NS | 0.702 * | NS | NS | −0.780 ** | −0.811 ** | 0.804 ** |
Quer | NS | 0.979 *** | −0.996 *** | NS | 0.781 ** | 0.990 *** | −0.999 *** | NS | 0.636 * | NS | NS | NS | 0.985 *** | 0.998 *** | −0.997 *** |
Lut | NS | 0.994 *** | −0.997 *** | NS | 0.778 ** | 0.999 *** | −0.994 *** | NS | 0.647 * | NS | NS | NS | 0.997 *** | 0.999 *** | −0.998 *** |
GenG | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | −0.755 * | NS | NS | NS | NS |
Apig | NS | NS | NS | NS | NS | NS | NS | NS | 0.712 * | NS | NS | NS | NS | NS | NS |
Isorh | NS | −0.987 *** | 0.999 *** | NS | −0.794 ** | −0.996 *** | 0.997 *** | NS | 0.645 * | NS | NS | NS | −0.991 *** | −0.998 *** | 0.999 *** |
M24 | NS | 0.992 *** | −0.997 *** | NS | 0.778 ** | 0.999 *** | −0.995 *** | NS | 0.658 * | NS | NS | NS | 0.996 *** | 0.997 *** | −0.999 *** |
ABTS | NS | 0.958 *** | −0.951 *** | NS | 0.873 *** | 0.958 *** | −0.931 *** | NS | NS | NS | NS | NS | 0.958 *** | 0.945 *** | 0.953 *** |
DPPH | NS | 0.985 *** | −0.996 *** | NS | 0.779 ** | 0.994 *** | −0.997 *** | NS | 0.651 * | NS | NS | NS | NS | 0.997 *** | 0.998 *** |
TPC | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
TF | NS | 0.706 * | −0.672 * | NS | NS | 0.700 * | −0.686 * | NS | NS | NS | NS | NS | 0.704 * | 0.696 * | −0.690 * |
AAM | NS | 0.987 *** | −0.997 *** | NS | 0.785 ** | 0.996 *** | −0.997 *** | NS | 0.644 * | NS | NS | NS | 0.992 *** | 0.998 *** | −0.999 *** |
AG | NS | 0.987 *** | −0.999 *** | NS | 0.778 ** | 0.996 *** | −0.997 *** | NS | 0.663 * | NS | NS | NS | 0.992 *** | 0.998 *** | −0.999 *** |
DPP4 | NS | 0.992 *** | −0.998 *** | NS | 0.772 ** | 0.998 *** | −0.996 *** | NS | 0.654 * | NS | NS | NS | 0.995 *** | 0.999 *** | −0.999 *** |
IsoG | Salv | Phl | Quer | Lut | GenG | Apig | Isorh | M24 | ABTS | DPH | TPC | TF | AAM | AG | |
CQA | |||||||||||||||
VA | |||||||||||||||
CaA | |||||||||||||||
ChA | |||||||||||||||
SA | |||||||||||||||
Act | |||||||||||||||
FA | |||||||||||||||
Diosm | |||||||||||||||
Verb | |||||||||||||||
MQR | |||||||||||||||
Cren | |||||||||||||||
QG | |||||||||||||||
M13 | |||||||||||||||
M14 | |||||||||||||||
LutG | |||||||||||||||
IsoG | 1 | ||||||||||||||
Salv | NS | 1 | |||||||||||||
Phl | NS | −0.664 * | 1 | ||||||||||||
Quer | NS | 0.676 * | −0.819 ** | 1 | |||||||||||
Lut | NS | NS | −0.791 ** | 0.995 | 1 | ||||||||||
GenG | NS | NS | NS | NS | NS | 1 | |||||||||
Apig | NS | NS | NS | NS | NS | −0.927 *** | 1 | ||||||||
Isorh | NS | −0.688 * | 0.806 ** | −0.998 *** | −0.998 *** | NS | NS | 1 | |||||||
M24 | NS | 0.694 * | −0.786 ** | 0.994 *** | 0.999 *** | NS | NS | −0.999 *** | 1 | ||||||
ABTS | NS | 0.764 ** | −0.793 ** | 0.934 *** | 0.954 *** | NS | NS | −0.953 *** | 0.955 *** | 1 | |||||
DPPH | NS | 0.680 * | −0.801 ** | 0.996 *** | 0.997 *** | NS | NS | −0.998 *** | 0.997 *** | 0.943 *** | 1 | ||||
TPC | NS | NS | −0.715 * | NS | NS | NS | NS | NS | NS | NS | NS | 1 | |||
TF | NS | NS | −0.735 * | 0.685 * | 0.696 * | NS | NS | −0.693 * | 0.693 * | 0.719 * | 0.661 * | 0.764 ** | 1 | ||
AAM | NS | 0.680 * | −0.809 ** | 0.997 *** | 0.998 *** | NS | NS | 1 | 0.999 *** | 0.953 *** | 0.998 *** | NS | 0.703 * | 1 | |
AG | NS | 0.687 * | −0.788 ** | 0.997 *** | 0.999 *** | NS | NS | −0.999 *** | 0.999 *** | 0.946 *** | 0.988 *** | NS | 0.679* | 0.998 *** | 1 |
DPP4 | NS | 0.698 * | −0.789 ** | 0.996 *** | 0.999 *** | NS | NS | −0.999 *** | 0.999 *** | 0.948 *** | 0.997 *** | NS | 0.689* | 0.998 *** | 0.999 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintero-Soto, M.F.; Espinoza-Moreno, R.J.; Félix-Medina, J.V.; Salas-López, F.; López-Carrera, C.F.; Argüelles-López, O.D.; Vazquez-Ontiveros, M.E.; Gómez-Favela, M.A. Comparison of Phytochemical Profile and In Vitro Bioactivity of Beverages Based on the Unprocessed and Extruded Sesame (Sesamum indicum L.) Seed Byproduct. Foods 2022, 11, 3175. https://doi.org/10.3390/foods11203175
Quintero-Soto MF, Espinoza-Moreno RJ, Félix-Medina JV, Salas-López F, López-Carrera CF, Argüelles-López OD, Vazquez-Ontiveros ME, Gómez-Favela MA. Comparison of Phytochemical Profile and In Vitro Bioactivity of Beverages Based on the Unprocessed and Extruded Sesame (Sesamum indicum L.) Seed Byproduct. Foods. 2022; 11(20):3175. https://doi.org/10.3390/foods11203175
Chicago/Turabian StyleQuintero-Soto, María Fernanda, Ramona Julieta Espinoza-Moreno, Jennifer Vianey Félix-Medina, Fernando Salas-López, Cruz Fernando López-Carrera, Oscar Daniel Argüelles-López, Martha Elena Vazquez-Ontiveros, and Mario Armando Gómez-Favela. 2022. "Comparison of Phytochemical Profile and In Vitro Bioactivity of Beverages Based on the Unprocessed and Extruded Sesame (Sesamum indicum L.) Seed Byproduct" Foods 11, no. 20: 3175. https://doi.org/10.3390/foods11203175
APA StyleQuintero-Soto, M. F., Espinoza-Moreno, R. J., Félix-Medina, J. V., Salas-López, F., López-Carrera, C. F., Argüelles-López, O. D., Vazquez-Ontiveros, M. E., & Gómez-Favela, M. A. (2022). Comparison of Phytochemical Profile and In Vitro Bioactivity of Beverages Based on the Unprocessed and Extruded Sesame (Sesamum indicum L.) Seed Byproduct. Foods, 11(20), 3175. https://doi.org/10.3390/foods11203175