Element Content in Different Wheat Flours and Bread Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Bread Baking Procedure
2.3. Determination of Elements Content
2.3.1. Sample Preparation
2.3.2. Analysis of Elements in ICP-MS
2.3.3. Statistical Analysis
3. Results and Discussion
3.1. Flour Element Content
3.2. Bread Element Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Çetin-Babaoğlu, H.; Arslan-Tontul, S.; Akın, N. Effect of Immature Wheat Flour on Nutritional and Technological Quality of Sourdough Bread. J. Cereal Sci. 2020, 94, 103000. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Hussain, R.; Kubow, S.; Sadiq, F.A.; Huang, W.; Imran, M. Sourdough Bread: A Contemporary Cereal Fermented Product. J. Food Process. Preserv. 2019, 43, e13883. [Google Scholar] [CrossRef]
- De Boni, A.; Pasqualone, A.; Roma, R.; Acciani, C. Traditions, Health and Environment as Bread Purchase Drivers: A Choice Experiment on High-Quality Artisanal Italian Bread. J. Clean. Prod. 2019, 221, 249–260. [Google Scholar] [CrossRef]
- Dewettinck, K.; Van Bockstaele, F.; Kühne, B.; Van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional Value of Bread: Influence of Processing, Food Interaction and Consumer Perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Arzani, A.; Ashraf, M. Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef]
- Awika, J.M. Major Cereal Grains Production and Use around the World. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; Awika, J.M., Piironen, V., Bean, S., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- García-Gómez, B.; Fernández-Canto, N.; Vázquez-Odériz, M.L.; Quiroga-García, M.; Muñoz-Ferreiro, N.; Romero-Rodríguez, M.Á. Sensory Descriptive Analysis and Hedonic Consumer Test for Galician Type Breads. Food Control 2022, 134, 108765. [Google Scholar] [CrossRef]
- Bo, S.; Seletto, M.; Choc, A.; Ponzo, V.; Lezo, A.; Demagistris, A.; Evangelista, A.; Ciccone, G.; Bertolino, M.; Cassader, M.; et al. The Acute Impact of the Intake of Four Types of Bread on Satiety and Blood Concentrations of Glucose, Insulin, Free Fatty Acids, Triglyceride and Acylated Ghrelin. A Randomized Controlled Cross-over Trial. Food Res. Int. 2017, 92, 40–47. [Google Scholar] [CrossRef]
- Erba, D.; Hidalgo, A.; Bresciani, J.; Brandolini, A. Environmental and Genotypic Influences on Trace Element and Mineral Concentrations in Whole Meal Flour of Einkorn (Triticum Monococcum L. Subsp. Monococcum). J. Cereal Sci. 2011, 54, 250–254. [Google Scholar] [CrossRef]
- Yaver, E.; Bilgiçli, N. Effects of Different Dephytinisation Methods on Chemical Properties of Commercial and Traditional Breads Prepared from Composite Flour. Food Chem. 2019, 276, 77–83. [Google Scholar] [CrossRef]
- Zhao, F.J.; Su, Y.H.; Dunham, S.J.; Rakszegi, M.; Bedo, Z.; McGrath, S.P.; Shewry, P.R. Variation in Mineral Micronutrient Concentrations in Grain of Wheat Lines of Diverse Origin. J. Cereal Sci. 2009, 49, 290–295. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The Essential Metals for Humans: A Brief Overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Matallana-González, M.C.; Callejo, M.J.; Carrillo, J.M.; Morales, P.; Fernández-Ruiz, V. Durum and Bread Wheat Flours. Preliminary Mineral Characterization and Its Potential Health Claims. Agronomy 2021, 11, 108. [Google Scholar] [CrossRef]
- European Union. Commission Implementing Regulation (EU) 2019/2182 of 16 December 2019 Enter a Name in the Register of Protected Designations of Origin and Protected Geographical Indications ‘Pan Galego’/‘Pan Gallego’ (PGI). Off. J. Eur. Union 2019, 330, 42. [Google Scholar]
- Chavan, R.S.; Chavan, S.R. Sourdough Technology-A Traditional Way for Wholesome Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2011, 10, 169–182. [Google Scholar] [CrossRef]
- Torrieri, E.; Pepe, O.; Ventorino, V.; Masi, P.; Cavella, S. Effect of Sourdough at Different Concentrations on Quality and Shelf Life of Bread. LWT—Food Sci. Technol. 2014, 56, 508–516. [Google Scholar] [CrossRef]
- Fekri, A.; Torbati, M.; Yari Khosrowshahi, A.; Bagherpour Shamloo, H.; Azadmard-Damirchi, S. Functional Effects of Phytate-Degrading, Probiotic Lactic Acid Bacteria and Yeast Strains Isolated from Iranian Traditional Sourdough on the Technological and Nutritional Properties of Whole Wheat Bread. Food Chem. 2020, 306, 125620. [Google Scholar] [CrossRef]
- Fernández-Peláez, J.; Paesani, C.; Gómez, M. Sourdough Technology as a Tool for the Development of Healthier Grain-Based Products: An Update. Agronomy 2020, 10, 1962. [Google Scholar] [CrossRef]
- Nuobariene, L.; Cizeikiene, D.; Gradzeviciute, E.; Hansen, Å.S.; Rasmussen, S.K.; Juodeikiene, G.; Vogensen, F.K. Phytase-Active Lactic Acid Bacteria from Sourdoughs: Isolation and Identification. LWT 2015, 63, 466–772. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel Insights on the Functional/Nutritional Features of the Sourdough Fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef]
- Lappi, J.; Selinheimo, E.; Schwab, U.; Katina, K.; Lehtinen, P.; Mykkänen, H.; Kolehmainen, M.; Poutanen, K. Sourdough Fermentation of Wholemeal Wheat Bread Increases Solubility of Arabinoxylan and Protein and Decreases Postprandial Glucose and Insulin Responses. J. Cereal Sci. 2010, 51, 152–158. [Google Scholar] [CrossRef]
- Chawla, S.; Nagal, S. Sourdough in Bread-Making: An Ancient Technology to Solve Modern Issues. Int. J. Ind. Biotechnol. Biomater. 2015, 1, 1–10. [Google Scholar]
- Latimer, G. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Mair, P.; Wilcox, R. Robust Statistical Methods in R Using the WRS2 Package. Behav. Res. Methods 2020, 52, 464–488. [Google Scholar] [CrossRef] [PubMed]
- Husson, F.; Lê, S.; Pagès, J. Exploratory Multivariate Analysis by Example Using R; Chapman & Hall: London, UK, 2011; Volume 15. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Rodríguez, L.H.; Morales, D.A.; Rodríguez, E.R.; Romero, C.D. Minerals and Trace Elements in a Collection of Wheat Landraces from the Canary Islands. J. Food Compos. Anal. 2011, 24, 1081–1090. [Google Scholar] [CrossRef]
- Anjum, F.M.; Butt, M.S.; Ahmad, N.; Ahmad, I. Phytate and Mineral Content in Different Milling Fractions of Some Pakistani Spring Wheats. Int. J. Food Sci. Technol. 2002, 37, 13–17. [Google Scholar] [CrossRef]
- Eagling, T.; Neal, A.L.; McGrath, S.P.; Fairweather-Tait, S.; Shewry, P.R.; Zhao, F.J. Distribution and Speciation of Iron and Zinc in Grain of Two Wheat Genotypes. J. Agric. Food Chem. 2014, 62, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Vignola, M.B.; Moiraghi, M.; Salvucci, E.; Baroni, V.; Pérez, G.T. Whole Meal and White Flour from Argentine Wheat Genotypes: Mineral and Arabinoxylan Differences. J. Cereal Sci. 2016, 71, 217–223. [Google Scholar] [CrossRef]
- Ertl, K.; Goessler, W. Grains, Whole Flour, White Flour, and Some Final Goods: An Elemental Comparison. Eur. Food Res. Technol. 2018, 244, 2065–2075. [Google Scholar] [CrossRef]
- Wang, J.; Chatzidimitriou, E.; Wood, L.; Hasanalieva, G.; Markelou, E.; Iversen, P.O.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of Wheat Species (Triticum Aestivum vs. T. Spelta), Farming System (Organic vs. Conventional) and Flour Type (Wholegrain vs. White) on Composition of Wheat Flour—Results of a Retail Survey in the UK and Germany—2. Antioxidant Activity, and Phenoli. Pakistan J. Food Sci. 2020, 20, 54–61. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Y.; Chen, X.; Sun, Q.; Zhang, F.; Römheld, V.; Zou, C. Influence of Long-Term Nitrogen Fertilization on Micronutrient Density in Grain of Winter Wheat (Triticum Aestivum L.). J. Cereal Sci. 2010, 51, 165–170. [Google Scholar] [CrossRef]
- Karaman, K.; Sagdic, O.; Durak, M.Z. Use of Phytase Active Yeasts and Lactic Acid Bacteria Isolated from Sourdough in the Production of Whole Wheat Bread. LWT—Food Sci. Technol. 2018, 91, 557–567. [Google Scholar] [CrossRef]
- Yildirim, R.M.; Arici, M. Effect of the Fermentation Temperature on the Degradation of Phytic Acid in Whole-Wheat Sourdough Bread. LWT—Food Sci. Technol. 2019, 112, 108224. [Google Scholar] [CrossRef]
- Helou, C.; Gadonna-Widehem, P.; Robert, N.; Branlard, G.; Thebault, J.; Librere, S.; Jacquot, S.; Mardon, J.; Piquet-Pissaloux, A.; Chapron, S.; et al. The Impact of Raw Materials and Baking Conditions on Maillard Reaction Products, Thiamine, Folate, Phytic Acid and Minerals in White Bread. Food Funct. 2016, 7, 2498–2507. [Google Scholar] [CrossRef] [PubMed]
- Torrinha, Á.; Oliveira, M.; Marinho, S.; Paíga, P.; Delerue-Matos, C.; Morais, S. Mineral Content of Various Portuguese Breads: Characterization, Dietary Intake, and Discriminant Analysis. Molecules 2019, 24, 2787. [Google Scholar] [CrossRef]
- Wolters, M.G.E.; Schreuder, H.A.W.; Van Den Heuvel, G.; Van Lonkhuijsen, H.J.; Hermus, R.J.J.; Voragen, A.G.J. A Continuous in Vitro Method for Estimation of the Bioavailability of Minerals and Trace Elements in Foods: Application to Breads Varying in Phytic Acid Content. Br. J. Nutr. 1993, 69, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Daglioglu, O.; Tuncel, B. Macro and Micro Mineral Contents of Turkish Bread Types. Kurzbeitrag 1999, 1, 61–62. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Zaricka, E.; Kwiecień, M.; Kwiatkowska, K.; Baranowska-Wójcik, E.; Danek-Majewska, A. Can Cereal Products Be an Essential Source of Ca, Mg and K in the Deficient Diets of Poles? Biol. Trace Elem. Res. 2020, 195, 317–322. [Google Scholar] [CrossRef]



| Flour | Bread * | |||
|---|---|---|---|---|
| Fermentation Time (h) | Leavening Agent | |||
| Yeast | Sourdough | Mixed Leavening | ||
| 100% refined Castilla variety (FC) | 2 | BC2Y | BC2S | BC2M |
| 12 | BC12Y | BC12S | BC12M | |
| 100% refined ‘Caaveiro’ variety (FCv) | 2 | BCv2Y | BCv2S | BCv2M |
| 12 | BCv12Y | BCv12S | BCv12M | |
| 75% FC + 25% FCv refined mixed flour (FM) | 2 | BM2Y | BM2S | BM2M |
| 12 | BM12Y | BWM12S | BWM12M | |
| 75% FC + 25% FCv wholemeal mixed flour (FWM) | 2 | BWM2Y | BWM2S | BWM2M |
| 12 | BWM12Y | BWM12S | BWM12M | |
| FWM (Mixed Wholegrain Flour) Mean (Standard Error) | FCv (‘Caaveiro’ Flour) Mean (Standard Error) | FM (Mixed Refined Flour) Mean (Standard Error) | FC (Castilla Flour) Mean (Standard Error) | |
|---|---|---|---|---|
| P (mg/100 g) | 494.8 a (16.3) | 302.2 b (5.2) | 209.0 c (0.4) | 174.1 d (0.7) |
| K (mg/100 g) | 419.2 a (11.4) | 191.4 b (3.0) | 159.3 c (0.4) | 146.8 d (0.8) |
| Mg (mg/100 g) | 123.1 a (4.4) | 61.5 b (0.9) | 46.2 c (0.1) | 39.6 d (0.3) |
| Ca (mg/100 g) | 73.0 a (2.7) | 36.0 c (0.5) | 38.1 b (0.2) | 38.4 b (0.2) |
| Mn (mg/100 g) | 9.2 a (0.4) | 4.9 b (0.1) | 2.3 c (0.0) | 1.4 d (0.0) |
| Zn (mg/100 g) | 6.9 a (0.3) | 5.2 b (0.1) | 2.7 c (0.0) | 1.3 d (0.0) |
| Fe (mg/100 g) | 6.2 a (0.1) | 3.1 abc (0.9) | 3.0 b (0.0) | 2.1 c (0.0) |
| Na (mg/100 g) | 3.4 a (0.0) | 1.5 b (0.1) | 1.3 c (0.0) | 1.3 b (0.0) |
| Cu (µg/100 g) | 880.8 b (27.5) | 1076.3 a (5.0) | 410.9 c (0.9) | 254.9 d (2.0) |
| Se (µg/100 g) | 9.1 b (0.3) | 10.3 b (0.4) | 14.4 a (0.5) | 15.8 a (0.3) |
| Element | Mean in Category | SD in Category | v−Test | p−Value |
|---|---|---|---|---|
| Cluster 1. Wholegrain breads (BWM breads) | ||||
| Mn (mg/100 g) | 4.8 | 0.3 | 4.4 | 0.0000 |
| Ca (mg/100 g) | 41.7 | 5.7 | 4.3 | 0.0000 |
| Zn (mg/100 g) | 3.6 | 0.2 | 4.0 | 0.0001 |
| Mg (mg/100 g) | 79.7 | 19.0 | 4.0 | 0.0001 |
| Fe (mg/100 g) | 3.9 | 0.5 | 3.9 | 0.0001 |
| K (mg/100 g) | 297.6 | 99.3 | 3.5 | 0.0004 |
| P (mg/100 g) | 345.6 | 106.1 | 3.2 | 0.0015 |
| Cu (µg/100 g) | 484.8 | 36.0 | 2.3 | 0.0221 |
| Se (µg/100 g) | 5.0 | 0.3 | −3.0 | 0.0025 |
| Cluster 2. ‘Caaveiro’ breads (BCv breads) | ||||
| Cu (µg/100 g) | 525.5 | 49.1 | 3.0 | 0.0026 |
| Ca (mg/100 g) | 22.7 | 2.6 | −2.0 | 0.0444 |
| Se (µg/100 g) | 5.6 | 0.7 | −2.1 | 0.0321 |
| Cluster 3. Refined breads (BM and BC breads) | ||||
| Se (µg/100 g) | 8.8 | 0.7 | 4.5 | 0.0000 |
| Ca (mg/100 g) | 25.3 | 2.4 | −2.0 | 0.0478 |
| K (mg/100 g) | 134.7 | 41.3 | −2.4 | 0.0184 |
| P (mg/100 g) | 169.9 | 47.3 | −2.8 | 0.0053 |
| Mg (mg/100 g) | 34.0 | 7.7 | −2.3 | 0.0032 |
| Mn (mg/100 g) | 1.1 | 0.2 | −3.9 | 0.0001 |
| Fe (mg/100 g) | 1.6 | 0.3 | −4.0 | 0.0001 |
| Zn (mg/100 g) | 1.0 | 0.2 | −4.0 | 0.0000 |
| Cu (µg/100 g) | 208.5 | 41.4 | −4.6 | 0.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Canto, M.N.; García-Gómez, M.B.; Boado-Crego, S.; Vázquez-Odériz, M.L.; Muñoz-Ferreiro, M.N.; Lombardero-Fernández, M.; Pereira-Lorenzo, S.; Romero-Rodríguez, M.Á. Element Content in Different Wheat Flours and Bread Varieties. Foods 2022, 11, 3176. https://doi.org/10.3390/foods11203176
Fernández-Canto MN, García-Gómez MB, Boado-Crego S, Vázquez-Odériz ML, Muñoz-Ferreiro MN, Lombardero-Fernández M, Pereira-Lorenzo S, Romero-Rodríguez MÁ. Element Content in Different Wheat Flours and Bread Varieties. Foods. 2022; 11(20):3176. https://doi.org/10.3390/foods11203176
Chicago/Turabian StyleFernández-Canto, María Nerea, María Belén García-Gómez, Sonia Boado-Crego, María Lourdes Vázquez-Odériz, María Nieves Muñoz-Ferreiro, Matilde Lombardero-Fernández, Santiago Pereira-Lorenzo, and María Ángeles Romero-Rodríguez. 2022. "Element Content in Different Wheat Flours and Bread Varieties" Foods 11, no. 20: 3176. https://doi.org/10.3390/foods11203176
APA StyleFernández-Canto, M. N., García-Gómez, M. B., Boado-Crego, S., Vázquez-Odériz, M. L., Muñoz-Ferreiro, M. N., Lombardero-Fernández, M., Pereira-Lorenzo, S., & Romero-Rodríguez, M. Á. (2022). Element Content in Different Wheat Flours and Bread Varieties. Foods, 11(20), 3176. https://doi.org/10.3390/foods11203176

