Recovery of Antioxidants from Tomato Seed Industrial Wastes by Microwave-Assisted and Ultrasound-Assisted Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Reagents
2.2. Microwave-Assisted Extraction (MAE)
2.3. Ultrasound-Assisted Extraction (UAE)
2.4. Experimental Designs
2.5. Scanning Electron Microscopy (SEM) Analysis
2.6. Characterization of Tomato Seed Extracts (TSE)
2.6.1. Extraction Yield
2.6.2. Total Phenolic Content (TPC)
2.6.3. Antioxidant Activity
2.6.4. Phenolic Profile by HPLC-DAD-MS
2.6.5. Fourier-Transform Infrared Spectroscopy (FTIR)
2.6.6. Thermal Properties
2.7. Statistical Analysis
3. Results
3.1. Microwave-Assisted Extraction (MAE) Optimization
0.00005AC + 0.00027AD − 0.00008B2 + 0.00001BC + 0.00007BD − 0.00012C2 + 0.00002CD + 3.7037−7D2
0.00005AC + 0.00047AD − 0.00003B2 + 0.00011BC + 0.00008BD − 0.00022C2 + 0.00003CD − 0.00003D2
3.2. Ultrasound-Assisted Extraction (UAE) Optimization
0.00145B2 − 0.00018BC − 0.00002C2
0.00036B2 + 0.00006BC − 0.00001C2
3.3. Comparison between UAE and MAE Extracts
3.3.1. Morphological Characterization by SEM
3.3.2. Extraction Yield
3.3.3. FTIR
3.3.4. Total Phenolic Content and Antioxidant Activity
3.3.5. Main Phenolics Analyzed by HPLC-DAD-MS
3.3.6. Thermal Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Baiano, A. Recovery of biomolecules from food wastes—A review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santana-Méridas, O.; González-Coloma, A.; Sánchez-Vioque, R. Agricultural residues as a source of bioactive natural products. Phytochem. Rev. 2012, 11, 447–466. [Google Scholar] [CrossRef]
- Fritsch, C.; Staebler, A.; Happel, A.; Márquez, M.A.C.; Aguiló-Aguayo, I.; Abadias, M.; Gallur, M.; Cigognini, I.M.; Montanari, A.; López, M.J.; et al. Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A review. Sustainability 2017, 9, 1492. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hills, C.D.; Tripathi, N.; Singh, R.S.; Carey, P.J.; Lowry, F. Valorisation of agricultural biomass-ash with CO2. Sci. Rep. 2020, 10, 13801. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. current situation and global perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Djaković, S.; Bosiljkov, T.; Halambek, J.; Zorić, Z.; Dragović-Uzelac, V.; Petrović, M.; Rimac Brnčić, S. Valorisation of tomato peel waste as a sustainable source for pectin, polyphenols and fatty acids recovery using sequential extraction. Waste Biomass Valorizat. 2020, 11, 4593–4611. [Google Scholar] [CrossRef]
- Bakić, M.T.; Pedisić, S.; Zorić, Z.; Dragović-Uzelac, V.; Grassino, A.N. Effect of microwave-assisted extraction on polyphenols recovery from tomato peel waste. Acta Chim. Slov. 2019, 66, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Szabo, K.; Cătoi, A.F.; Vodnar, D.C. Bioactive compounds extracted from tomato processing by-products as a source of valuable nutrients. Plant Foods Hum. Nutr. 2018, 73, 268–277. [Google Scholar] [CrossRef]
- Strati, I.F.; Oreopoulou, V. Recovery of carotenoids from tomato processing by-products—A review. Food Res. Int. 2014, 65, 311–321. [Google Scholar] [CrossRef]
- Valdés, A.; Vidal, L.; Beltrán, A.; Canals, A.; Garrigós, M.C. Microwave-assisted extraction of phenolic compounds from almond skin byproducts (Prunus amygdalus): A multivariate analysis approach. J. Agric. Food Chem. 2015, 63, 5395–5402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellinas, A.C.; Jiménez, A.; Garrigós, M.C. Optimization of microwave-assisted extraction of cocoa bean shell waste and evaluation of its antioxidant, physicochemical and functional properties. LWT 2020, 127, 109361. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Mellinas, C.; Garrigos, M.C.C.; Balart, R.; Torres-Giner, S. Optimization of microwave-assisted extraction of phenolic compounds with antioxidant activity from carob pods. Food Anal. Methods 2019, 12, 2480–2490. [Google Scholar] [CrossRef]
- Ranic, M.; Nikolic, M.; Pavlovic, M.; Buntic, A.; Siler-Marinkovic, S.; Dimitrijevic-Brankovic, S. Optimization of microwave-assisted extraction of natural antioxidants from spent espresso coffee grounds by response surface methodology. J. Clean. Prod. 2014, 80, 69–79. [Google Scholar] [CrossRef]
- Sood, A.; Gupta, M. Extraction process optimization for bioactive compounds in pomegranate peel. Food Biosci. 2015, 12, 100–106. [Google Scholar] [CrossRef]
- Tocmo, R.; Pena-Fronteras, J.; Calumba, K.F.; Mendoza, M.; Johnson, J.J.; Pena-Fronteras, J.; Calumba, K.F.; Mendoza, M.; Johnson, J.J. Valorization of pomelo (Citrus grandis osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1969–2012. [Google Scholar] [CrossRef]
- Burgos, N.; Valdés, A.; Jiménez, A. valorization of agricultural wastes for the production of protein-based biopolymers. J. Renew. Mater. 2016, 4, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Valdés, A.; Mellinas, A.C.; Ramos, M.; Burgos, N.; Jiménez, A.; Garrigós, M.C. Use of herbs, spices and their bioactive compounds in active food packaging. RSC Adv. 2015, 5, 40324–40335. [Google Scholar] [CrossRef] [Green Version]
- Valdés, A.; Mellinas, C.; Ramos, M.; Garrigós, M.C.; Jiménez, A. Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front. Chem. 2014, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 2014, 35, 42–51. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Pyriochou, V.; Peristeraki, A.; Karathanos, V.T. Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT Food Sci. Technol. 2012, 49, 213–216. [Google Scholar] [CrossRef]
- Coelho, M.; Pereira, R.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. Extraction of tomato by-products’ bioactive compounds using ohmic technology. Food Bioprod. Process. 2019, 117, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Minoggio, M.; Bramati, L.; Simonetti, P.; Gardana, C.; Iemoli, L.; Santangelo, E.; Mauri, P.L.; Spigno, P.; Soressi, G.P.; Pietta, P.G. Polyphenol pattern and antioxidant activity of different tomato lines and cultivars. Ann. Nutr. Metab. 2003, 47, 64–69. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P. Antioxidant activity in different fractions of tomatoes. Food Res. Int. 2005, 38, 487–494. [Google Scholar] [CrossRef]
- Botineştean, C.; Gruia, A.T.; Jianu, I. Utilization of seeds from tomato processing wastes as raw material for oil production. J. Mater. Cycles Waste Manag. 2014, 17, 118–124. [Google Scholar] [CrossRef]
- Gharbi, S.; Renda, G.; La Barbera, L.; Amri, M.; Messina, C.M.; Santulli, A. Tunisian tomato by-products, as a potential source of natural bioactive compounds. Nat. Prod. Res. 2017, 31, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Mechmeche, M.; Kachouri, F.; Chouabi, M.; Ksontini, H.; Setti, K.; Hamdi, M. Optimization of extraction parameters of protein isolate from tomato seed using response surface methodology. Food Anal. Methods 2017, 10, 809–819. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Grassino, A.N.; Halambek, J.; Djaković, S.; Rimac Brnčić, S.; Dent, M.; Grabarić, Z. Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocoll. 2016, 52, 265–274. [Google Scholar] [CrossRef]
- Grassino, A.N.; Brnčić, M.; Vikić-Topić, D.; Roca, S.; Dent, M.; Brnčić, S.R. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chem. 2016, 198, 93–100. [Google Scholar] [CrossRef]
- MacHmudah, S.; Zakaria; Winardi, S.; Sasaki, M.; Goto, M.; Kusumoto, N.; Hayakawa, K. Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J. Food Eng. 2012, 108, 290–296. [Google Scholar] [CrossRef]
- Eller, F.J.; Moser, J.K.; Kenar, J.A.; Taylor, S.L. Extraction and analysis of tomato seed oil. JAOCS, J. Am. Oil Chem. Soc. 2010, 87, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Järvinen, R.; Nieminen, N. Cuticular and suberin polymers of edible plants. Analysis by Gas Chromatografic-Mass Spectrometric and Solid State Spectroscopic Methods. University of Turku: Turku, Finland, 2010; ISBN 9789512944064. [Google Scholar]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef] [PubMed]
- Talmaciu, A.I.; Volf, I.; Popa, V.I. A Comparative analysis of the ‘green’ techniques applied for polyphenols extraction from bioresources. Chem. Biodivers. 2015, 12, 1635–1651. [Google Scholar] [CrossRef]
- Di Donato, P.; Taurisano, V.; Tommonaro, G.; Pasquale, V.; Jiménez, J.M.S.; de Pascual-Teresa, S.; Poli, A.; Nicolaus, B. Biological properties of polyphenols extracts from agro industry’s wastes. Waste Biomass Valorizat. 2018, 9, 1567–1578. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Scaglia, B.; D’Incecco, P.; Squillace, P.; Dell’Orto, M.; De Nisi, P.; Pellegrino, L.; Botto, A.; Cavicchi, C.; Adani, F. Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate. J. Clean. Prod. 2020, 243, 118650. [Google Scholar] [CrossRef]
- Szabo, K.; Dulf, F.V.; Teleky, B.E.; Eleni, P.; Boukouvalas, C.; Krokida, M.; Kapsalis, N.; Rusu, A.V.; Socol, C.T.; Vodnar, D.C. Evaluation of the bioactive compounds found in tomato seed oil and tomato peels influenced by industrial heat treatments. Foods 2021, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Ninčević Grassino, A.; Ostojić, J.; Miletić, V.; Djaković, S.; Bosiljkov, T.; Zorić, Z.; Ježek, D.; Rimac Brnčić, S.; Brnčić, M. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innov. Food Sci. Emerg. Technol. 2020, 64, 102424. [Google Scholar] [CrossRef]
- Grassino, A.N.; Pedisić, S.; Dragović-Uzelac, V.; Karlović, S.; Ježek, D.; Bosiljkov, T. Insight into high-hydrostatic pressure extraction of polyphenols from tomato peel waste. Mater. Veg. 2020, 75, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Andres, A.I.; Petron, M.J.; Delgado-Adamez, J.; Lopez, M.; Timon, M. Effect of tomato pomace extracts on the shelf-life of modified atmosphere-packaged lamb meat. J. Food Process. Preserv. 2017, 41, e13018. [Google Scholar] [CrossRef]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016, 18, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Savatović, S.M.; Ćetković, G.S.; Čanadanović-Brunet, J.M.; Djilas, S.M. Utilisation of tomato waste as a source of polyphenolic antioxidants. Acta Period. Technol. 2010, 41, 187–194. [Google Scholar] [CrossRef]
- Liu, J.L.; Li, L.Y.; He, G.H. Optimization of microwave-assisted extraction conditions for five major bioactive compounds from flos sophorae immaturus (cultivars of sophora japonica l.) using response surface methodology. Molecules 2016, 21, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus Communis L. Leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Wu, T.; Liu, R.; Loewen, S.; Tsao, R. Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem. 2012, 130, 928–936. [Google Scholar] [CrossRef]
- Szabo, K.; Diaconeasa, Z.; Cătoi, A.F.; Vodnar, D.C. Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities. Antioxidants 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Đurović, S.; Nikolić, B.; Luković, N.; Jovanović, J.; Stefanović, A.; Šekuljica, N.; Mijin, D.; Knežević-Jugović, Z. The impact of high-power ultrasound and microwave on the phenolic acid profile and antioxidant activity of the extract from yellow soybean seeds. Ind. Crops. Prod. 2018, 122, 223–231. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Wang, H.; Huo, S. Evaluation of Extraction Technologies and optimization of microwave and ultrasonic assisted consecutive extraction of phenolic antioxidants from winery byproducts. J. Food Process Eng. 2019, 42, e13064. [Google Scholar] [CrossRef]
- Azaroual, L.; Liazid, A.; El Mansouri, F.; Brigui, J.; Ruíz-Rodriguez, A.; Barbero, G.F.; Palma, M. Optimization of the microwave-assisted extraction of simple phenolic compounds from grape skins and seeds. Agronomy 2021, 11, 1527. [Google Scholar] [CrossRef]
- Álvarez, A.; Terreros, S.; Cocero, M.J.; Mato, R.B. Microwave pretreatment for the extraction of anthocyanins from saffron flowers: Assessment of product quality. Antioxidants 2021, 10, 1054. [Google Scholar] [CrossRef] [PubMed]
- Daud, N.M.; Putra, N.R.; Jamaludin, R.; Md Norodin, N.S.; Sarkawi, N.S.; Hamzah, M.H.S.; Mohd Nasir, H.; Abang Zaidel, D.N.; Che Yunus, M.A.; Md Salleh, L. Valorisation of plant seed as natural bioactive compounds by various extraction methods: A review. Trends Food Sci. Technol. 2022, 119, 201–214. [Google Scholar] [CrossRef]
- Madia, V.N.; De Vita, D.; Ialongo, D.; Tudino, V.; De Leo, A.; Scipione, L.; Di Santo, R.; Costi, R.; Messore, A.; De Vita, D.; et al. Recent advances in recovery of lycopene from tomato waste: A potent antioxidant with endless benefits. Molecules 2021, 26, 4495. [Google Scholar] [CrossRef]
- Pinela, J.; Prieto, M.A.; Carvalho, A.M.; Barreiro, M.F.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study. Sep. Purif. Technol. 2016, 164, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Szabo, K.; Dulf, F.V.; Diaconeasa, Z.; Vodnar, D.C. Antimicrobial and antioxidant properties of tomato processing byproducts and their correlation with the biochemical composition. LWT 2019, 116, 108558. [Google Scholar] [CrossRef]
- Calvo, M.M.; Dado, D.; Santa-María, G. Influence of extraction with ethanol or ethyl acetate on the yield of lycopene, β-carotene, phytoene and phytofluene from tomato peel powder. Eur. Food Res. Technol. 2007, 224, 567–571. [Google Scholar] [CrossRef]
- Rodríguez Seoane, P.; Flórez-Fernández, N.; Conde Piñeiro, E.; Domínguez González, H. Microwave-assisted water extraction. In Water Extr. Bioact. Compd.; Dominguez-González, H., González-Muñoz, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 163–198. [Google Scholar] [CrossRef]
- Orsat, V.; Routray, W. Microwave-assisted extraction of flavonoids in water. Extraction of Bioactive Compounds: From Plants to Drug Development; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 221–244. ISBN 9780128096154. [Google Scholar]
- Ferreira, I.J.B.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M. Green emerging extraction technologies to obtain high-quality vegetable oils from nuts: A review. Innov. Food Sci. Emerg. Technol. 2022, 76, 102931. [Google Scholar] [CrossRef]
- Adeyemi, I.; Meribout, M.; Khezzar, L. Recent developments, challenges, and prospects of ultrasound-assisted oil technologies. Ultrason. Sonochem. 2022, 82, 105902. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Sengar, A.S.; Rawson, A.; Muthiah, M.; Kalakandan, S.K. Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrason. Sonochem. 2020, 61, 104812. [Google Scholar] [CrossRef] [PubMed]
- El-Malah, M.H.; Hassanein, M.M.M.; Areif, M.H.; Al-Amrousi, E.F. Utilization of egyptian tomato waste as a potential source of natural antioxidants using solvents, microwave and ultrasound extraction methods. Am. J. Food Technol. 2015, 10, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Rahimpour, S.; Taghian Dinani, S. Lycopene extraction from tomato processing waste using ultrasound and cell-wall degrading enzymes. J. Food Meas. Charact. 2018, 12, 2394–2403. [Google Scholar] [CrossRef]
- Perea-Domínguez, X.P.; Hernández-Gastelum, L.Z.; Olivas-Olguin, H.R.; Espinosa-Alonso, L.G.; Valdez-Morales, M.; Medina-Godoy, S. Phenolic composition of tomato varieties and an industrial tomato by-product: Free, conjugated and bound phenolics and antioxidant activity. J. Food Sci. Technol. 2018, 55, 3453–3461. [Google Scholar] [CrossRef] [PubMed]
- Añibarro-Ortega, M.; Pinela, J.; Ćirić, A.; Martins, V.; Rocha, F.; Soković, M.D.; Barata, A.M.; Carvalho, A.M.; Barros, L.; Ferreira, I.C.F.R. Valorisation of table tomato crop by-products: Phenolic profiles and in vitro antioxidant and antimicrobial activities. Food Bioprod. Process. 2020, 124, 307–319. [Google Scholar] [CrossRef]
- Chada, P.S.N.; Santos, P.H.; Rodrigues, L.G.G.; Goulart, G.A.S.; Azevedo dos Santos, J.D.; Maraschin, M.; Lanza, M. Non-conventional techniques for the extraction of antioxidant compounds and lycopene from industrial tomato pomace (Solanum lycopersicum L.) using spouted bed drying as a pre-treatment. Food Chem. X 2022, 13, 100237. [Google Scholar] [CrossRef]
- Panagiotopoulou, M.; Papadaki, S.; Missirli, T.; Thanassoulia, I.; Krokida, M. Exploring the valorisation potential of tomato cultivation by-products in the frame of circular economy. Waste Biomass Valorizat. 2022, 1, 1–16. [Google Scholar] [CrossRef]
- Canteri, M.H.G.; Renard, C.M.G.C.; Le Bourvellec, C.; Bureau, S. ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydr. Polym. 2019, 212, 186–196. [Google Scholar] [CrossRef]
- Mechmeche, M.; Ksontini, H.; Hamdi, M.; Kachouri, F. Production of bioactive peptides in tomato seed protein isolate fermented by water kefir culture: Optimization of the fermentation conditions. Int. J. Pept. Res. Ther. 2019, 25, 137–150. [Google Scholar] [CrossRef]
- Mekarun, J.; Watthanaphanit, A. In-situ plasma treatment of tomato and rice seeds in-liquid to promote seed germination and seedling growth. Plasma Process. Polym. 2022, 19, e202100238. [Google Scholar] [CrossRef]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.L.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M.G. Comparative study of chemical, biochemical characteristic and atr-ftir analysis of seeds, oil and flour of the edible fedora cultivar hemp (Cannabis sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef] [Green Version]
- Hayat, J.; Akodad, M.; Moumen, A.; Baghour, M.; Skalli, A.; Ezrari, S.; Belmalha, S. Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of northeast of Morocco. Heliyon 2020, 6, e05609. [Google Scholar] [CrossRef] [PubMed]
- Lasunon, P.; Phonkerd, N.; Tettawong, P.; Sengkhamparn, N. Effect of microwave-assisted extraction on bioactive compounds from industrial tomato waste and its antioxidant activity. Food Res. 2021, 5, 468–474. [Google Scholar] [CrossRef]
- Abbassi, N.; Ait Talhajt, S.; Fadel, S.; Ahra, M. Tomato pomace valorization by oil and bioactive compounds extraction: Case of Souss-Massa region. Am. J. Innov. Res. Appl. Sci. 2021, 12, 211–216. [Google Scholar]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. mechanisms, techniques, combinations, protocols and applications. a review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Nayak, B.; Dahmoune, F.; Moussi, K.; Remini, H.; Dairi, S.; Aoun, O.; Khodir, M. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chem. 2015, 187, 507–516. [Google Scholar] [CrossRef]
- Moon, J.-K.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Ind. Crops Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Govea-Salas, M.; Pintado, M.E.; Aguilar, C.N. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind. Crops Prod. 2020, 154, 112623. [Google Scholar] [CrossRef]
- Pinela, J.; Prieto, M.A.; Barreiro, M.F.; Carvalho, A.M.; Oliveira, M.B.P.P.; Vázquez, J.A.; Ferreira, I.C.F.R. Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology. Food Bioprod. Process. 2016, 98, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Kehili, M.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Carotenoids-rich fatty fractions extraction from tomato industrial by-products, peels and seeds, using supercritical CO2 green technology. In Recent advances in Environmental Science from the Euro-Mediterranean and Sorrounding Regions. EMCEI 2017; Kallel, A., Ksibi, M., Ben Dhia, H., Khélifi, N., Eds.; Springer: Cham, Switzerland, 2017; pp. 1183–1185. [Google Scholar] [CrossRef]
- Durante, M.; Montefusco, A.; Marrese, P.P.; Soccio, M.; Pastore, D.; Piro, G.; Mita, G.; Lenucci, M.S. Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. J. Food Compos. Anal. 2017, 63, 65–72. [Google Scholar] [CrossRef]
- Ben Farhat, M.; Jordán, M.J.; Chaouch-Hamada, R.; Landoulsi, A.; Sotomayor, J.A. Changes in phenolic profiling and antioxidant capacity of Salvia aegyptiaca L. by-products during three phenological stages. LWT Food Sci. Technol. 2015, 63, 791–797. [Google Scholar] [CrossRef]
- Farhadi, N.; Babaei, K.; Farsaraei, S.; Moghaddam, M.; Ghasemi Pirbalouti, A. Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Ind. Crops Prod. 2020, 152, 112570. [Google Scholar] [CrossRef]
- García-Valverde, V.; Navarro-González, I.; García-Alonso, J.; Periago, M.J. Antioxidant bioactive compounds in selected industrial processing and fresh consumption tomato cultivars. Food Bioprocess Technol. 2013, 6, 391–402. [Google Scholar] [CrossRef]
- Burgos, N.; Tolaguera, D.; Fiori, S.; Jiménez, A. Synthesis and characterization of lactic acid oligomers: Evaluation of performance as poly(lactic acid) plasticizers. J. Polym. Environ. 2014, 22, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Viswanath, V.; Leo, V.V.; Sabna Prabha, S.; Prabhakumari, C.; Potty, V.P.; Jisha, M.S. Thermal properties of tannin extracted from Anacardium occidentale L. using TGA and FT-IR spectroscopy. Nat. Prod. Res. 2015, 30, 223–227. [Google Scholar] [CrossRef]
- Solaberrieta, I.; Jiménez, A.; Garrigós, M.C. Valorisation of Aloe vera skin by-products to obtain bioactive compounds by microwave-assisted extraction: Antioxidant activity and chemical composition. Antioxidants. 2022, 11, 1058. [Google Scholar] [CrossRef]
- Gullón, B.; Eibes, G.; Moreira, M.T.; Herrera, R.; Labidi, J.; Gullón, P. Yerba mate waste: A sustainable resource of antioxidant compounds. Ind. Crops Prod. 2018, 113, 398–405. [Google Scholar] [CrossRef]
Experimental Design | Responses | |||||
---|---|---|---|---|---|---|
Run | t (min) | T (°C) | EtOH (%) | V (mL) | TPC (mg GAE g TS−1) | DPPH (mg TE g TS−1) |
1 | 15 | 60 | 80 | 65 | 1.30 ± 0.03 | 1.17 ± 0.01 |
2 | 15 | 40 | 60 | 65 | 1.35 ± 0.01 | 1.12 ± 0.04 |
3 | 15 | 80 | 60 | 65 | 1.50 ± 0.04 | 1.20 ± 0.01 |
4 | 10 | 60 | 60 | 65 | 1.43 ± 0.04 | 1.14 ± 0.03 |
5 | 10 | 60 | 80 | 80 | 1.28 ± 0.03 | 1.12 ± 0.03 |
6 | 10 | 60 | 40 | 50 | 1.52 ± 0.01 | 1.04 ± 0.14 |
7 | 10 | 60 | 60 | 65 | 1.47 ± 0.01 | 1.14 ± 0.04 |
8 | 10 | 40 | 60 | 80 | 1.27 ± 0.03 | 1.05 ± 0.01 |
9 | 10 | 60 | 40 | 80 | 1.49 ± 0.02 | 0.95 ± 0.04 |
10 | 15 | 60 | 60 | 50 | 1.39 ± 0.04 | 1.09 ± 0.03 |
11 | 10 | 40 | 80 | 65 | 1.09 ± 0.02 | 0.96 ± 0.03 |
12 | 10 | 80 | 60 | 50 | 1.52 ± 0.05 | 1.16 ± 0.04 |
13 | 15 | 60 | 40 | 65 | 1.55 ± 0.04 | 1.00 ± 0.04 |
14 | 5 | 60 | 60 | 80 | 1.46 ± 0.02 | 1.13 ± 0.05 |
15 | 10 | 80 | 60 | 80 | 1.59 ± 0.03 | 1.26 ± 0.01 |
16 | 5 | 60 | 80 | 65 | 1.25 ± 0.01 | 1.11 ± 0.03 |
17 | 10 | 60 | 60 | 65 | 1.44 ± 0.03 | 1.16 ± 0.01 |
18 | 10 | 60 | 60 | 65 | 1.41 ± 0.03 | 1.14 ± 0.01 |
19 | 10 | 80 | 80 | 65 | 1.39 ± 0.02 | 1.23 ± 0.06 |
20 | 10 | 40 | 60 | 50 | 1.28 ± 0.04 | 1.05 ± 0.01 |
21 | 5 | 60 | 60 | 50 | 1.41 ± 0.03 | 1.14 ± 0.01 |
22 | 10 | 40 | 40 | 65 | 1.34 ± 0.06 | 0.97 ± 0.08 |
23 | 15 | 60 | 60 | 80 | 1.52 ± 0.02 | 1.22 ± 0.02 |
24 | 5 | 60 | 40 | 65 | 1.52 ± 0.04 | 0.96 ± 0.02 |
25 | 10 | 80 | 40 | 65 | 1.62 ± 0.03 | 1.06 ± 0.03 |
26 | 10 | 60 | 60 | 65 | 1.47 ± 0.02 | 1.20 ± 0.01 |
27 | 5 | 40 | 60 | 65 | 1.27 ± 0.01 | 1.05 ± 0.01 |
28 | 5 | 80 | 60 | 65 | 1.53 ± 0.03 | 1.24 ± 0.01 |
29 | 10 | 60 | 80 | 50 | 1.29 ± 0.02 | 1.18 ± 0.13 |
Experimental Design | Responses | ||||
---|---|---|---|---|---|
Run | EtOH (%) | t (min) | A (%) | TPC (mg GAE g TS−1) | DPPH (mg TE g TS−1) |
1 | 60 | 10 | 70 | 1.44 ± 0.02 | 1.19 ± 0.02 |
2 | 60 | 10 | 70 | 1.53 ± 0.03 | 1.23 ± 0.01 |
3 | 60 | 10 | 70 | 1.55 ± 0.01 | 1.27 ± 0.01 |
4 | 80 | 15 | 70 | 1.37 ± 0.02 | 1.17 ± 0.01 |
5 | 60 | 10 | 70 | 1.49 ± 0.01 | 1.30 ± 0.01 |
6 | 40 | 10 | 40 | 1.36 ± 0.00 | 0.99 ± 0.01 |
7 | 40 | 15 | 70 | 1.54 ± 0.01 | 1.11 ± 0.01 |
8 | 80 | 10 | 100 | 1.31 ± 0.02 | 1.25 ± 0.01 |
9 | 80 | 5 | 70 | 1.15 ± 0.01 | 1.10 ± 0.01 |
10 | 60 | 15 | 40 | 1.48 ± 0.03 | 1.23 ± 0.01 |
11 | 80 | 10 | 40 | 1.31 ± 0.01 | 1.24 ± 0.00 |
12 | 60 | 10 | 70 | 1.51 ± 0.03 | 1.28 ± 0.01 |
13 | 60 | 5 | 100 | 1.46 ± 0.02 | 1.23 ± 0.03 |
14 | 40 | 10 | 100 | 1.45 ± 0.01 | 0.99 ± 0.01 |
15 | 60 | 5 | 40 | 1.35 ± 0.01 | 1.19 ± 0.01 |
16 | 40 | 5 | 70 | 1.32 ± 0.01 | 1.09 ± 0.00 |
17 | 60 | 15 | 100 | 1.49 ± 0.02 | 1.30 ± 0.01 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
TPC | |||||
A | 0.0024 | 1 | 0.0024 | 3.54 | 0.1330 |
B | 0.2002 | 1 | 0.2002 | 294.42 | 0.0001 *** |
C | 0.1728 | 1 | 0.1728 | 254.12 | 0.0001 *** |
D | 0.0033 | 1 | 0.0033 | 4.90 | 0.0912 |
AA | 0.0001 | 1 | 0.0001 | 0.14 | 0.7271 |
AB | 0.0030 | 1 | 0.0030 | 4.45 | 0.1026 |
AC | 0.0001 | 1 | 0.0001 | 0.15 | 0.7209 |
AD | 0.0016 | 1 | 0.0016 | 2.35 | 0.1998 |
BB | 0.0074 | 1 | 0.0074 | 10.81 | 0.0303 * |
BC | 0.0001 | 1 | 0.0001 | 0.15 | 0.7209 |
BD | 0.0016 | 1 | 0.0016 | 2.35 | 0.1998 |
CC | 0.0146 | 1 | 0.0146 | 21.45 | 0.0098 ** |
CD | 0.0001 | 1 | 0.0001 | 0.15 | 0.7209 |
DD | 4.5045 × 10 −8 | 1 | 4.5045 × 10 −8 | 0.00 | 0.9939 |
Lack-of-fit | 0.0116 | 10 | 0.0012 | 1.71 | 0.3180 |
Pure error | 0.0027 | 4 | 0.0007 | ||
Total (corr.) | 0.4211 | 28 | |||
R2 | 0.9659 | ||||
Adj R2 | 0.9317 | ||||
CV (%) | 4.89 | ||||
DPPH | |||||
A | 0.0024 | 1 | 0.0024 | 3.54 | 0.1330 |
B | 0.0752 | 1 | 0.0752 | 110.60 | 0.0005 *** |
C | 0.0520 | 1 | 0.0520 | 76.48 | 0.0009 *** |
D | 0.0004 | 1 | 0.0004 | 0.60 | 0.4817 |
AA | 0.0001 | 1 | 0.0001 | 0.03 | 0.8726 |
AB | 0.0030 | 1 | 0.0030 | 4.45 | 0.1026 |
AC | 0.0001 | 1 | 0.0001 | 0.15 | 0.7209 |
AD | 0.0049 | 1 | 0.0049 | 7.21 | 0.0550 |
BB | 0.0009 | 1 | 0.0009 | 1.32 | 0.3151 |
BC | 0.0081 | 1 | 0.0081 | 11.91 | 0.0260 * |
BD | 0.0025 | 1 | 0.0025 | 3.68 | 0.1277 |
CC | 0.0488 | 1 | 0.0488 | 71.79 | 0.0011 ** |
CD | 0.0002 | 1 | 0.0002 | 0.33 | 0.5959 |
DD | 0.0003 | 1 | 0.0003 | 0.43 | 0.5458 |
Lack-of-fit | 0.0184 | 10 | 0.0018 | 2.70 | 0.1754 |
Pure error | 0.0027 | 4 | 0.0007 | ||
Total (corr.) | 0.2206 | 28 | |||
R2 | 0.9044 | ||||
Adj R2 | 0.8088 | ||||
CV (%) | 7.25 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
TPC | |||||
A | 0.0370 | 1 | 0.0370 | 23.37 | 0.0084 ** |
B | 0.0450 | 1 | 0.0450 | 28.41 | 0.0060 ** |
C | 0.0048 | 1 | 0.0048 | 3.07 | 0.1544 |
AA | 0.0642 | 1 | 0.0642 | 40.52 | 0.0031 ** |
AB | 0.0000 | 1 | 0.0000 | 0.00 | 0.9721 |
AC | 0.0021 | 1 | 0.0021 | 1.33 | 0.3127 |
BB | 0.0055 | 1 | 0.0055 | 3.50 | 0.1349 |
BC | 0.0029 | 1 | 0.0029 | 1.83 | 0.2471 |
CC | 0.0019 | 1 | 0.0019 | 1.19 | 0.3364 |
Lack-of-fit | 0.0123 | 3 | 0.0041 | 2.58 | 0.1908 |
Pure error | 0.0063 | 4 | 0.0016 | ||
Total (corr.) | 0.1862 | 16 | |||
R2 | 0.9001 | ||||
Adj R2 | 0.7715 | ||||
CV % | 4.98 | ||||
DPPH | |||||
A | 0.041 | 1 | 0.041 | 21.75 | 0.0096 ** |
B | 0.0049 | 1 | 0.0049 | 2.60 | 0.1823 |
C | 0.0024 | 1 | 0.0024 | 1.27 | 0.3220 |
AA | 0.0690 | 1 | 0.0690 | 36.77 | 0.0037 ** |
AB | 0.0006 | 1 | 0.0006 | 0.34 | 0.5900 |
AC | 0.0001 | 1 | 0.0001 | 0.04 | 0.8468 |
BB | 0.0003 | 1 | 0.0003 | 0.18 | 0.6958 |
BC | 0.0003 | 1 | 0.0003 | 0.17 | 0.6977 |
CC | 0.0003 | 1 | 0.0003 | 0.15 | 0.7192 |
Lack-of-fit | 0.0253 | 3 | 0.0084 | 4.49 | 0.0905 |
Pure error | 0.0075 | 4 | 0.0019 | ||
Total (corr.) | 0.1531 | 16 | |||
R2 | 0.7858 | ||||
Adj R2 | 0.5103 | ||||
CV % | 8.07 |
Response | MAE | UAE |
---|---|---|
TPC (mg GAE g TS−1) | 1.72 ± 0.04 A | 1.61 ± 0.03 B |
DPPH (mg TE g TS−1) | 1.46 ± 0.03 A | 1.25 ± 0.01 B |
FRAP (mg TE g TS−1) | 2.29 ± 0.04 A | 1.86 ± 0.01 B |
ABTS (mg TE g TS−1) | 2.71 ± 0.02 A | 2.23 ± 0.01 B |
Compound | [M-H]- (m/z) | RT (min) | R2 | LOD (mg kg−1) | LOQ (mg kg−1) | RSD (%) | MAE (mg 100 g TS−1) | UAE (mg 100 g TS−1) |
---|---|---|---|---|---|---|---|---|
Chlorogenic acid | 353 | 3.6 | 0.9984 | 0.18 | 0.61 | 2.9 | 1.11 ± 0.35 A | 0.58 ± 0.06 B |
Rutin | 609 | 7.7 | 0.9993 | 0.09 | 0.29 | 6.2 | 1.38 ± 0.02 A | 0.75 ± 0.09 B |
Naringenin | 271 | 17.1 | 0.9992 | 0.04 | 0.15 | 2.5 | 2.99 ± 0.11 A | 1.93 ± 0.07 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solaberrieta, I.; Mellinas, C.; Jiménez, A.; Garrigós, M.C. Recovery of Antioxidants from Tomato Seed Industrial Wastes by Microwave-Assisted and Ultrasound-Assisted Extraction. Foods 2022, 11, 3068. https://doi.org/10.3390/foods11193068
Solaberrieta I, Mellinas C, Jiménez A, Garrigós MC. Recovery of Antioxidants from Tomato Seed Industrial Wastes by Microwave-Assisted and Ultrasound-Assisted Extraction. Foods. 2022; 11(19):3068. https://doi.org/10.3390/foods11193068
Chicago/Turabian StyleSolaberrieta, Ignacio, Cristina Mellinas, Alfonso Jiménez, and María Carmen Garrigós. 2022. "Recovery of Antioxidants from Tomato Seed Industrial Wastes by Microwave-Assisted and Ultrasound-Assisted Extraction" Foods 11, no. 19: 3068. https://doi.org/10.3390/foods11193068
APA StyleSolaberrieta, I., Mellinas, C., Jiménez, A., & Garrigós, M. C. (2022). Recovery of Antioxidants from Tomato Seed Industrial Wastes by Microwave-Assisted and Ultrasound-Assisted Extraction. Foods, 11(19), 3068. https://doi.org/10.3390/foods11193068