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Abstract: The vast and ever-growing amount of agricultural and food wastes has become a major
concern throughout the whole world. Therefore, strategies for their processing and value-added
reuse are needed to enable a sustainable utilization of feedstocks and reduce the environmental
burden. By-products of potato, tomato, cereals and olive arise in significant amounts in European
countries and are consequently of high relevance. Due to their composition with various beneficial
ingredients, the waste products can be valorized by different techniques leading to economic and
environmental advantages. This paper focuses on the waste generation during industrial processing
of potato, tomato, cereals and olives within the European Union and reviews state-of-the-art
technologies for their valorization. Furthermore, current applications, future perspectives and
challenges are discussed.

Keywords: agricultural waste; food waste; valorization technologies; food additives; packaging
materials; bio-fertilizers; potato; tomato; olive; cereals

1. Introduction

Within the European Union, approximately 700 million tons of agricultural wastes are generated
annually [1]. The total food loss produced by households, food industry, restaurants or during the
distribution chain without agricultural food waste (which arises due to damage or spillage during
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harvest) accounts for about 89 billion tons in 2006 within the EU-27 [2]. On a global level, approximately
one third of the produced food is wasted every year throughout the whole value chain from farmers to
consumers. According to FAO, this is about 1.3 billion tons per year [3]. This causes both environmental
and economic problems. Therefore, the European Union promotes several programs like the integrated
product policy, the resource efficiency flagship initiative and the bio-economy communication to
prevent agricultural and food loss [4–7].

Waste and by-products generated from potato, tomato, cereals and olive processing are of high
relevance as they arise in significant amounts in the European market. In particular, the European
Union is the world largest producer of wheat (143 million tons), oat (7.8 million tons) and olive oil
(2.1 million tons) [8]. Furthermore, in 2014 the EU produced 16.9 million tons of tomatoes and as
well as about 60.7 million tons of potatoes [9]. During harvesting and processing of these crops,
wastes and by-products are generated. These wastes can potentially be upgraded in other production
processes and may be used as resources for bioactive compounds such as carotenoids, phenolic
compounds, essential oils or β-glucans [10–14]. The extracted compounds have a potential use as
functional ingredients or additives in the food industry due to their health properties, antioxidant and
antimicrobial activities as well as their ability to work as a natural food colorant [15–20]. Moreover,
tissues from by-products contain varying concentrations of flavor volatiles that may be recovered and
used in the food and beverage industry [21,22]. Other valuable ingredients might be the content in
dietary fibers including polysaccharides and lignin or proteins that can be used as functional food
ingredient increasing the nutritional value and providing useful properties in food [23–25]. Likewise,
different compounds of food waste have antioxidant or antimicrobial effects which can be used for
active packaging or edible coating to extend the shelf life of food products. For example phenolic
compounds such as hydroxytyrosols contained in olive waste or wheat bran have potential antioxidant
properties. Furthermore, oat husk residues from cereal processing can be used as a reinforcing agent in
the production of bio-composites for packaging applications [26]. Currently, the applications of waste
streams include the use as plant fertilizer, composting and biogas material or animal feed. Otherwise
they are incinerated or landfilled. Consequently, they do not generate value for the farmers but lead to
billion euros lost in waste management and cause an environmental burden [27,28].

Due to various application possibilities and its economic impact, the valorization of food
wastes has attracted increasing attention. Furthermore, the global food production and thereby
the amount of food waste is expected to rise, ensuring the increased attention [4]. This review
demonstrates the potential of four selected feedstock wastes (potato, tomato, wheat and olive) as food
additives, agricultural materials, packaging materials and bio-fertilizers. Moreover, the state-of-the-art
technologies and applications are presented focusing on mainstream sectors, e.g., food, nutraceutical
and pharmaceutical industry. By this means, a sustainable utilization of agricultural commodities is
facilitated. In the following sections each chapter focuses on one feedstock waste, its characteristics
and the most important waste valorization techniques.

2. Valorization of Potato Residues

2.1. Extraction of Phenolic Compounds from Peels

Phenolic compounds can be classified as secondary plant metabolites. This term describes
substances that are formed by plants during their secondary metabolism. They are thus not essential
for the survival of plants. However, many of them are bioactive and phenolic substances can have
antioxidant, antimicrobial, anticarcinogenic and several other beneficial health effects [29–32]. Whilst
whole potatoes are a relatively poor source of polyphenols many studies have demonstrated that these
secondary metabolites are enriched in the peel of most cultivars. This is not surprising given their role
in the tuber as an allelochemical to prevent attack by fungi and other microbes. This fact coupled with
the abundance of potato peel as a by-product of potato processing has meant that a large number of
studies on the extraction of phenolic compounds from potato peel have been published. In fact, the
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topic has formed part of a number of review articles dedicated to the valorization of agro-industrial
products particularly the work of Balasundram, et al. [33] and Wijngaard, et al. [34] and the therein
cited articles.

This section will attempt to summarize and evaluate recent advances and cover both, conventional
methods of extraction such as solid/ liquid extraction and novel assisted methods. Table 1 presents
a selection of studies carried out in the last decade on extraction of phenolics from potato peels and
details on cultivars, optimal extraction and maximum yields. At the outset it should be stated that
a wide range of polyphenol levels in potato peel even for optimal extraction conditions have been
reported. For example, levels ranging from 112 to 431 mg/100 g have been published as yield obtained
by applying optimal conditions through various techniques in the past ten years. This is perhaps
not surprising given the range of cultivars that have been examined and the lack of standardized
post processing conditions and analytical methods. By far the most common method of measuring
extraction efficiency is the Folin-Ciocalteu reagent method (also known as the FCR assay) however,
some studies have reported on the levels of individual phenolic compounds. In most cases studies
reported that ferulic, chlorogenic and caffeic acid are the most abundant phenolic acids in varieties
used for industrial processing although a wider range such as gallic acid, protocatechuic acid, coumaric
acid, syringic acid, vanillic acid and p-hydroxy benzoic acid have been determined in less common
cultivars [35]. The authors reported levels of chlorogenic acid ranging from 0.86–2.79 mg/g in dried
peel powder of six potatoes varieties growing in Ontario. Chlorogenic acid and caffeic acid were found
to be the predominant phenolic acids present in the varieties they examined. In contrast, Wijngaard,
Ballay and Brunton [34] detected that caffeic acid was the predominant phenolic compound in extracts
obtained by pressurized liquid and solid liquid extraction (SLE) from peel samples of the Lady Claire
variety. The maximum level reported was 651 µg caffeic acid/g dry matter in SLE extracts. However,
the authors did not analyze chlorogenic acid in their extracts. This is surprising as it usually is the most
common phenolic compound in potato peels. However, when stored at room temperature or exposed
to light, chlorogenic acid can be converted into caffeic acid and quinic acid [36]. Therefore, if researchers
are interested in adding value to potato peel waste by isolating chlorogenic acid, the instability of this
compound should be taken into account. In addition, when attempting to interpret results from the
reported studies, the method used to generate the peel should be considered. In many cases, peels
were prepared manually, which does not reflect the abrasion methods currently used during industrial
scale peeling process of potatoes.

Simple solid liquid extraction is still the most common method used in studies aimed at extraction
of phenolic compounds from potato peels (used in three of eight studies in Table 1). Whilst this method
may have some drawbacks particularly with regard to high energy and solvent use, the equipment
used is simple and does not require a large capital investment. These are distinct advantages for
researchers and industry stakeholder who are not willing to commit a large investment and do not have
the expertise to maximize the gains from the novel technology aided approaches described in more
detail below. In common with other food by-products, phenolic compounds are best extracted from
potato peels with hydro-ethanolic solvents at ethanol concentrations ranging from 70–80%. One major
advantage of ethanol as extracting solvent is its status as a food friendly solvent. However, some
studies have used methanol due to its much lower price compared to ethanol. It would be expected
that methanol behaves in the same manner as ethanol however it cannot be used as solvent for food
due to its reported toxicity [37]. In some cases, water has been used as extracting solvent. Water is the
ideal solvent for food use as it is both food friendly and inexpensive. However, it will only extract
water soluble phenolics and the predominant species mentioned above are only sparingly soluble
in water. For example, caffeic acid is slightly soluble in cold water but completely soluble in hot
water [38].

Recently, many authors have recognized the need to develop more sustainable energy efficient
methods for recovering valuable compounds from food by-products. This has resulted in a move
towards the use of novel technology aided approaches to achieve this goal. Most of these techniques
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aid extraction of the target compound by facilitating the release of intracellular compounds such as
phenolics by breaking cell envelopes. This allows their isolation in the subsequent extraction step
with less energy. Both, pulsed electric field (PEF) [39] and ultrasound assisted extraction (UAE) [40]
operate by this principle and have been successfully applied for the extraction of phenolics from
potato peels using water as solvent. Pereira, et al. [41] applied a novel technological approach, namely
ohmic heating to allow the use of water as solvent for the recovery of phenolics from potato peels.
Ohmic heating applies a constant electric field, in contrast to a pulsed electric field and is more
commonly used as a novel method for heating foods. It can also be used to electroporate cells whilst
simultaneously heating and thus facilitating increased mass transfer into the extracting solvent. As a
result of the fears that it may degrade thermally labile compounds ohmic heating is less commonly
reported on as an extraction technique than PEF or ultrasound. However, most phenolic compounds
are reasonably heat stable and thus ohmic heating may warrant more investigation with regard to the
extraction of phenolics from potato peel. Further emphasizing the increasing use of water as a solvent,
Singh and Saldana [42] examined the application of subcritical water (i.e., water at high pressures
and temperatures) to extract polyphenols from potato peels. They reported good recovery rates for
phenolic compounds (81.83 mg/100 at 180 ◦C for 30 min) as compared to 3 h extraction with methanol.

In summary, the ideal extraction method for recovering polyphenols from potato peels would
have the following characteristics: low energy consumption, little capital investment, water as a
solvent, high yield and an easy integration into existing processing lines. Unfortunately none of the
methods discussed here fulfill all of these criteria. Therefore, potato processors must seek the method
that best matches their priorities, i.e., extraction yields, sustainability or high through-put.

Since potato peel is a valuable source for phenolic acids such as chlorogenic, caffeic, gallic and
protocatechuic acids, several applications using their antioxidant activity have been described [19,43,44].
According to Viscidi, et al. [45] phenolics such as catechin, chlorogenic acid and ferulic acid were mixed
with other ingredients prior to extrusion for the manufacturing of rolled oats leading to products more
resistant to oxidation. Although processing resulted in a 24–26% reduction of the amount of phenolics
added, the final products had a higher phenolic content in comparison to the conventional ones.

Table 1. Selection of recent studies aimed at the extraction of phenolics from potato peels detailing
optimal extraction conditions, maximum yields, method and cultivar used.

Cultivar Extraction Method Optimal Conditions Levels Reported Authors

Agria (White) SLE 34 min at 89.9 ◦C and ethanol
concentrations of 71.2% 3.2–10.3 mg/100 g db Amado, et al. [46]

Russett Burbank
(brown) MWAE MeOH (67.33%), time of 15

min and a MP of 14.67%
120–390 mg GAE

100/g db Singh, et al. [47]

Lady Claire
(cream) PLE 70% ethanol, 125 ◦C 409 mg/100 g db Wijngaard, Ballay and

Brunton [34]

Lady Claire
(cream) SLE 75% ethanol, 80 ◦C, 22 min 431 mg/100 g db Wijngaard, Ballay and

Brunton [34]

Diamond (white) SLE Methanol 112–291 mg
GAE/100g db Mohdaly, et al. [48]

Red Subcritical water
extraction

180 ◦C and extraction time of
30 min 81.83 mg/100 g wb Singh and Saldana [42]

Vitelotte (Purple) Ohmic heating
assisted 100 ◦C for 1 s 200 V/cm, water 84 mg/100 g product

Pereira, Rodrigues, Genisheva,
Oliveira, de Freitas, Teixeira and

Vicente [41]

Vitelotte (Purple) PEF aided
extraction

3.4 kV/cm and 105 µs (35
pulses of 3 µs), water 65.8 mg/100 g fw Puertolas, Cregenzan, Luengo,

Alvarez and Raso [39]

Ramus UAE
sonicated in a continuous air

stream ultrasonic bath for
15 min

593.3 mg/100 g db Samarin, Poorazarang,
Hematyar and Elhamirad [40]

MWAE—Microwave-assisted extraction, PLE—Pressurized Liquid Extraction MP—Microwave power (watts),
UAE—Ultrasound assisted extraction, PEF—Pulsed electric field, db—dry basis, fw—fresh weight.



Sustainability 2017, 9, 1492 5 of 46

2.2. Liquefaction of Potato Peels

Another possibility to valorize the continuously increasing amount of potato peel wastes is the
use as substrate for different processes. Since these wastes are rich in starch they are a valuable
feedstock for ethanol production [49,50]. However, prior fermentation or other processing steps the
peels have to be hydrolyzed into fermentable sugars which can be further converted into valuable
compounds. This can be achieved either by acids or by enzymes. For an acidic treatment, a mixture of
2-ethylhexanol and diethylene glycol with 3% of p-Toluenesulfonic acid at 160 ◦C was used [51,52].
This thermochemical process resulted in high yields of bio-oil (up to 93%). However, due to their
biodegradability, high efficiency and capability to react under mild conditions, enzymes are more
advantageous. Moreover, an enzymatic hydrolysis does not require a neutralization step like the
acidic treatment [53]. Commonly, alpha-amylase from Bacillus licheniformis or from recombinant
strains of Escherichia coli or Bacillus subtilis is applied to liquefy the slurries. Depending on the used
enzyme, reaction conditions of 55–85 ◦C and pH 5.5–6.0 are applied, exemplary for Ternamyl® and
Liquozyme® [49,54]. Several enzyme manufacturers (biocatalysts, DSM, etc) are actually offering
plenty more enzymes that can be used to downgrade cellulose, hemicelluloses and pectins. By this
means a liquefied product can be obtained which can be used to recover chemicals from vegetable
origin. Possible applications of produced ethanol are biofuel or biopolyols [55]. Another possible
liquefaction technology is the hydrothermal liquefaction in subcritical water. This procedure results
in high values of the ionic product and can be used for different kinds of biomass. This is due to
the fact that the density and dielectric constant of water decreases while the hydrocarbon solubility
increases [56–59]. Li, et al. [60] applied this process to convert starch of rice, potato and sweet potato
into reducing sugars which can be used for fermentation and ethanol production.

2.3. Aroma Extraction from Liquefied Potato Peels

Aroma extraction has been developed by human kind since ancient ages [61] and it is still
a possible way to make use of waste materials. Current methods are conducted in an industrial
approach. To avoid great losses of the natural aroma that comes from vegetables, mild conditions
(i.e., temperature) are advisable. One of the most used methods is the alcoholic extraction, which is
applied to recover several substances from their matrices. The raw material is blended with a mixture
of water and alcohol, commonly between 50 and 90% alcohol [62]. The extraction time can vary from
30 minutes to several days. The blend is filtered and the liquid can be directly used or it can be distilled
to separate more concentrated compounds.

Other interesting volatiles can be extracted by centrifugation. Particularly, organic volatiles that
are mainly hydrophobic can be recovered by this process. When they reach a certain concentration,
they can be separated from the water matrix. For example, those products are called ‘cold pressed
essential oils’. Essential oils can also be recovered using strong organic solvents, such as hexane or ethyl
acetate [63,64]. Moreover, biotechnological approaches are used to create more volatiles in the product
before they are recovered, as it is well known that aroma compounds are produced in secondary paths
of vegetable metabolism. Enhancing some pathways of the metabolism, e.g., by addition of external
enzymes such as beta-glucosidases, can lead to the production of more volatiles [63]. An interesting
technology to recover volatiles in mild conditions is the Spinning Cone Colum [65]. The volatiles are
extracted by using steam as an extractant at low temperatures under vacuum conditions. A system of
rotary and stationary plates is applied to generate centrifugal force which causes the feed material to
flow as a thin film on the surface of the cone. By introducing stripping steam the volatile compounds
are separated of the liquids and slurries [65].

Buttery, et al. [66] used a vacuum steam distillation continuous extraction with hexane (3 h)
for recovering volatile compounds from baked potatoes. They analyzed a markedly greater ratio
of pyrazines to aldehydes in the peels than in potato pulp. Furthermore, Oruna-Concha, et al. [21]
examined baked potatoes for their volatile compounds and identified sugar degradation and Maillard
reaction as the main sources of volatiles in potato peels. In this study, pentane and diethyl ether
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(9:1 v/v) were used as solvents for the extraction of 2 h. According to their results, pyrazines amounts
up to 73% with 2,5- and/or 2,6-dimethylpyrazine being the most common compound in the peels.
These substances can be further used and upgrade potato peel wastes.

2.4. Ultrasound Assisted Extraction of Toxic Compounds From Potato Residues

2.4.1. Alkaloids Content in Potatoes

There are more than 4000 varieties of native potatoes [67] which differ in characteristics such as
the shape of the tuber or the color, but generally they have high starch content and are rich in minerals
(especially potassium, magnesium and iron) and vitamins (B1, B2, B6, and C) [68]. Even if the tubers
are a valuable source of nutritional elements, potatoes are also rich in steroidal alkaloids, a class of
secondary metabolites commonly found in the plants of Solanaceae family. Steroidal alkaloids are
associated with defense against bacterial [69], fungal [70] and insect attacks [71]. These compounds
are toxic and their adverse effects on human health are typically associated with symptoms such as
colic pain, diarrhea, gastroenteritis, vomiting, fever, low blood pressure, rapid pulse and neurological
disorders [72,73].

The most abundant steroidal alkaloids in potatoes are α-solanine and α-chaconine. Both derived
from solanidine by the linkage of two different trisaccharides to the hydroxyl group at carbon C-3
(Figure 1). In particular, α-solanine contains a glycosidic chain that is built up of glucose, galactose
and rhamnose units. α-chaconine has a different glycosidic chain which is made of two glucose units
and one of rhamnose [74,75]. The composition of the glycosidic chains is supposed to be related to the
cytotoxic effects of the two alkaloids, even if the cytotoxicity mechanism has not been fully clarified
yet [76,77]. The two toxins appear to inhibit the human enzyme acetyl cholinesterase [78], the calcium
transport [79], the transport through cellular membranes [80,81] and even at low concentrations
(micro molar) the compounds may be able to harm nerve cells [82]. In vitro experiments revealed that
α-solanine and particularly α-chaconine are effective cytotoxins (IC50 = 4.1 µM) by rapidly inducing
cell lysis [83,84].
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Toxins accumulation in potatoes occurs mainly in the peel as it represents the first barrier against
pathogenic attacks [76]. This layer is also the main waste derived by the potatoes industrial processing,
which results in between 70,000 and 140,000 tons of peels worldwide annually [85]. Even if this
massive amount of waste could be a suitable feedstock for added value conversions, currently it is
only used for animal feed or disposed causing environmental concerns. Potato peels quickly undergo
microbial spoilage [68] and their use into valuable application is prevented by technical and economical
limitations including alkaloids content. Therefore, an extraction of these toxic components will enhance
the valorization possibilities of potato peels.

2.4.2. Ultrasounds Assisted Extraction of Alkaloids from Potato Peel

In addition to conventional extraction methods, several intensification techniques for the
extraction of secondary metabolites from plant tissues have been proposed and tested also to
remove alkaloids from potato peels [86–88]. Among these, ultrasounds-assisted extraction (UAE)
is one of the most promising solutions, combining acoustic energy and solvent to extract target
compounds from different plant matrices, resulting in an inexpensive, rapid and environmentally
friendly process [89–91]. Similar to other secondary metabolites, the extraction of alkaloids, indeed, is
hindered by the structure of the plant cell wall that retains these compounds from the solvent.

Ultrasounds generate acoustic waves that propagate into the liquid media causing alternating
compression and expansion cycles. If the ultrasounds intensity is high enough, the expansion cycle
can create cavities or bubbles in the liquid that suddenly collapse releasing high amount of energy.
This phenomenon is called cavitation. The implosion of cavitation bubble can locally reaches 5000 K
and 200 atm and generates sharp liquid jets of up 280 m/s velocity [92]. The mechanical shear force
caused by these jets breaks the plant cell wall (following different mechanism such as fragmentation,
erosion, capillarity, detexturation, and sonoporation). This allows an enhanced penetration of solvent
into the sample matrix. Thereby, the contact area between the solid and liquid phase is increased
and thus a higher mass transfer of the target compound toward the solvent occurs [93–95]. Moreover,
ultrasounds can improve the extraction yield by increasing the net hydrophobic character of the
extraction medium (when the target molecule is non-polar) and reducing the particle size [96].

A number of parameters can be adjusted to optimize extraction of target compounds using
ultrasounds, including extraction time and temperature, ultrasound amplitude and extracting
solvent [92]. However, the outcome depends intrinsically on the nature of the matrix and the geometry
of the system. Therefore, the main process variables can be grouped in physical and medium related
parameters. In the first group the characteristics of the mechanic waves such as frequency, wavelength
and amplitude are included. Likewise, the power input, reactor design and shape of the probe can
influence the process [97]. The medium related parameters include solvent chemo-physical properties,
the reaction temperature, the presence of dissolved gasses and external pressure and the matrix
properties. A comprehensive review on the parameters affecting UAE and its mechanism has been
recently published by Chemat, Rombaut, Sicaire, Meullemiestre, Fabiano-Tixier and Abert-Vian [92].

Regarding the up-scaling procedure, as reminded by Vinatoru [98], UAE is a very complex process
and what is observed in a volume of some milliliters (typical for lab scale experiments) is not indicative
of a volume of one liter and absolutely different than a pilot scale reaction. Therefore, even if the
application of UAE at laboratory scale is widely published, a minor number of applications have
been commercially introduced. The main obstacle for an implementation of ultrasound in industrial
processes might be the structure and development of potent generators and reactor which are capable
of large scale procedures [99]. Nevertheless, UAE is already adopted in industry, for example in the
food sector. It is used for extraction, cutting or degassing, but also for enzyme inactivation or the
sterilization of equipment [92].
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2.5. Production of Food Microorganisms Using Potato Pulp and Process Water

Literature about the utilization of agro-industrial wastes to produce beneficial microorganisms like
biocontrol agents, baker’s yeast, brewer’s yeast or probiotic cultures is scarcely. Published references
deal with the use of these wastes to produce secondary metabolites (e.g., enzymes, organic acids)
and single cell protein (SCP). SCP or microbial protein is the dried form of various microorganisms,
such as bacteria, fungi and algae. SCP is used as animal feed and as supplemental feed-stuff material.
Several agro-industrial wastes have been utilized as economic substrates to produce SCP, including
potato residues and oil mill wastewater [100–102]. Other wastes like fruit pomaces, whey, molasses
and lignocellulosic biomass have also been widely studied [103–106].

The yeast Saccharomyces (S.) cerevisiae is used for several food applications like brewer’s and
baker’s yeast, wine production, biotechnology processes (e.g., enzyme, bioethanol, acid production),
and also as SCP. S. cerevisiae is specialized for the metabolization of glucose, fructose and sucrose.
S. cerevisiae cannot be directly applied to convert cellulose. Therefore, pretreatments are required to
release glucose from cellulose-rich wastes [107]. The wild-type of S. cerevisiae is not able to metabolize
xylose and arabinose, which are contained in lignocellulosic hydrolysates and it is incapable of
degrading starch. Moreover, this yeast is sensitive to furfural and hydroxymethylfurfural which are
formed during the thermal pretreatment of lignocellulose [108].

Potato wastes are biomasses rich in starch and lignocellulosic constituents. Starch is the storage
form of carbohydrates in plants. It consists of several glucose units linked by α-1,4 linkages and
joined by α-1,6 linkages. S. cerevisiae, like many other microorganisms, is not able to metabolize
starch due to the absence of starch degrading enzymes such as α-amylase (cleaving α-1,4-glycosidic
bonds), β-amylase (separating maltose units from starch), isoamylase and pullulanase (hydrolyzing
α-1,6-glycosidic bonds) or glucoamylase (cleaving glucose units from the non-reducing part of starch).
Therefore, it is required either to add starch-degrading enzymes prior fermentation with S. cerevisiae or
to use a recombinant strain that express these enzymes in order to metabolize starch [109,110].

Potato wastes and wastewaters have been utilized to produce SCP from various microorganisms
and also for the production of secondary metabolites. They have been used alone, enriched with other
wastes or supplemented with chemically defined culture media or chemicals. Potato peel has been
applied for the production of S. cerevisiae biomass [111]. For this peels were dried, ground, sieved
and pretreated to convert cellulose into a more available sugar. Similarly, potato wastewaters from the
starch production have been used for the production of Bacillus thuringiensis [112]. Starchy wastewater
from potato chip factory demonstrated to be as good as synthetic defined medium for the production
of the probiotic strain Streptomyces [113]. Chemically defined potato starch has been found to be a good
nutrient source for the growth of the yeast Schanniomyces alluvius, equally [114].

There are several studies on the production of microbial secondary metabolites using potato
wastes and wastewaters. For example, potato wastes from the potato chip processing (rotten and
substandard potato tubers, potato peel and substandard potato chips) were applied for the production
of chitosan by fermentation with Rhizopus oryzae [115]. Enriched potato wastes from potato flakes
processing (without pretreatment) were also found to be a good nutrient source for the production of
glucoamylase by several strains of Aspergillus niger [116]. Pagana, et al. [117] produced lactic acid using
different acid lactic bacteria and sweet potato wastes (peel and water with residual flesh) enriched
with sugars. For this purpose, a previous enzyme hydrolysis of the waste was carried out. Further
utilization of potato substrates (laboratory simulated wastes) was the production of a biosurfactant by
Bacillus subtilis [118]. In this case, potato wastes were not hydrolyzed.

2.6. Protein Extraction from Potato Fruit Juice

During processing of potatoes 5–12 m3 of potato fruit juice accumulates per ton [119,120].
This leads to more than two million tons of potato fruit juice in the European Union per year [121].

The fruit juice is separated by single- or multi-stage decanters of the washed and rasped potatoes.
This aqueous by-product with approximately 5% dry matter mainly contains proteins (~35% of dm),



Sustainability 2017, 9, 1492 9 of 46

sugar (~35% of dm), minerals (~20% of dm), organic acids (~4% of dm) and other components [122].
The maximum concentration of toxic glycoalkaloids (α-solanin, α-chaconin) amounts up to 100 ppm
which is far below the permitted level in food products [123,124]. The potato protein predominantly
consists of patatin, protease inhibitors, high-molecular-weight proteins and is rich in in lysine (7.18%)
and methionine (1.06%) [125,126]. As these fractions have high nutritional quality, antioxidant
potential and valuable functional properties, its recovery is highly desired especially for use in human
nutrition [127–129]. Due to the scarcity of protein-rich food this valuable by-product should be re-used
and thereby improve protein sustenance and the sustainable use of potatoes.

So far, the potato fruit juice is mostly applied as fertilizer by spreading the juice on the fields.
However, in winter months this procedure cannot be done due to a reduced biological activity of
soil. Therefore, high amounts of wastewater arise. Due to environmental regulations in the European
Union, some countries investigated several methods to purify this waste stream and to recover valuable
ingredients [121]. Commonly, proteins are extracted through precipitation by steam injection and pH
adjustment leading to protein concentrates with yields about 50%. Such a process was developed by
Westfalia Separator Industry GmbH and is shown on Figure 2 [130]. However, the recovered proteins
possess a low solubility which is disadvantageous for food application [122,131–133]. This is due
to their denaturation at high temperatures which additionally involves a decrease of functionality,
e.g., loss of emulsifying capacity, foaming capacity or water binding capacity [134].
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W.; Goldau, H.P., Potato starch technology, 235–242, 1999, with permission from John Wiley and Sons.

Potential procedures without heat treatment are represented by membrane filtrations, e.g., reverse
osmosis or ultrafiltration. During reverse osmosis an undesired salty and bitter taste of the proteins
can arise and the functionality decreases. The ultrafiltration with a subsequent diafiltration is more
promising because proteins with a higher quality can be manufactured and yields up to 50% arise.
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Unfortunately, these techniques are limited by the occurrence of membrane fouling at large scale
processing and the presence of antinutritional factors like protease inhibitors or glycoalkaloids [119,
121,133,135]. Additionally, protein extraction of potato fruit juice under non-denaturating conditions
was described in literature: the first step is concentrating the protein by disc stack centrifugation,
followed by ultrafiltration, diafiltration and optionally freeze-drying [134].

The proteins of potato fruit juice can alternatively be precipitated by ion exchange
(e.g., on carboxymethylcellulose) or adsorbed by bentonite [133,136,137]. Besides proteins, amino acid
fractions can be separated by utilization of ion exchange resin. Moreover, the fruit juice is desalted
and protein yields of 21–32% can be achieved. Disadvantages of the adsorption procedure are high
amounts of protease inhibitors which occur in the protein concentrates. Moreover, the adsorbent has
to be removed prior food application [135]. An alternative to heat coagulation is the precipitation at an
acidic pH values. Several methods were tested and citric acid as well as ferric chloride was identified
as most suitable leading to soluble protein precipitates [122,138–140]. Another study examined the
influence of various additives on the solubility of proteins from potato fruit juice and figured out
that the addition of FeCl3, ZnCl2 and organic solvents (methanol, ethanol, isopropanol) increased the
precipitation and resolubility [135].

Modification of extracted proteins is efficiently performed by an enzymatic hydrolysis with
proteases to increase the solubility, functional properties and nutritional values [141–143]. Waglay and
Karboune [120] examined the proteases Flavourzyme, Alcalase, Papain and Novo Pro-D for hydrolysis
of proteins isolated from potato fruit juice and figured out that Alcalase, Flavourzyme and Papain
possessed high catalytic activities whereas Novo Pro-D showed a low degree of hydrolysis. Further
differences were measured with regard to the end products: Papain generated unique peptides that
can be related to protease inhibitor fractions, whereas Flavourzyme mainly produced peptides which
arise from protease-inhibitors.

Similar to potato fruit juice, potato processing water is a source of valuable proteins that arises
throughout potato processing, e.g., during spraying on potatoes to wash the excess starch and fiber
off. Protein recovery was achieved by centrifugation, membrane filtration (filter paper 2.5 mm and
0.22 mm PVDF) and ultra-filtration with a 10 kDa PES-membrane [144].

2.7. Purification of Potato Pulp

After potato rasping and extraction of starch, the potato pulp accumulates in high amounts—
approximately 0.75 tons of pulp arises per ton of purified starch, varying with the used plants and
processes applied. Within the European Union, about 140,000 tons of dried potato pulps are generated
during starch production annually [145,146]. The pulp mainly consists of water which amounts up to
90%. Other ingredients include cell debris, intact starch cells and cell aggregates of the potato skin.
Chemical analyses showed the presence of starch (37% of dry matter, dm), cellulose (17% of dm),
pectin (17% of dm), hemicellulose (14% of dm), fibers (7% of dm) protein/amino acids and ash (4% of
dm respectively) [147,148]. Untreated pulp can be applied as growth substrate for yeasts in vitamin
B12 production or as component for other growth substrates in biogas production. The wet or partially
dried potato pulp is mainly used as low value cattle feed to avoid decomposition [149,150]. De-watering is
achieved by decanters and results in an increase of the dry matter from 5% to 17–18% [151]. Distinctly
higher amounts of dry matter (85–86%) can be obtained by using centrifugal sieves. An alternative is
the application of pressure cloth filters, although this process is restricted by film formation and the
limited processing due to batch-wise application [130]. The completely dehydrated pulp can be used
in the paper industry to substitute wood fibers [152].

After extraction of nitrogen-containing components, potato pulp can be utilized as fertilizer.
By hydrolysis the pulp is converted into suitable substrates for fermentations, e.g., alcohol production.
Moreover, enzymatically hydrolyses are applied to modify and utilize potato pulp proteins.
Kamnerdpetch, Weiss, Kasper and Scheper [141] showed that the endoprotease Alcalase and the
exopeptidase Flavourzyme were most suitable while the hydrolysis can be further improved by the
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combination of both enzymes. Similarly, Waglay and Karboune [153] figured out that commercial
available multi-enzymatic systems (e.g., Depol 670 L and Ceremix 2 XL) were most efficient.

Nutritional applications include the preparation of pectin or pectin-starch mixtures for the food
industry as described by Abousteit and Kempf [154]. The researchers obtained pectin fractions
without starch contamination by hydrolysis at pH 3.0, atmospheric pressure and a temperature below
60 ◦C for 10 hours. Other studies focused on the processing of pectin fractions with high gelling
abilities [155]. Separation of potato pulp into pectins and starch on the one hand, and cellulose and
hemicellulose on the other was achieved by diluted sulphuric acid. Further fractionating can be
performed by precipitation pectins with methanol or acetone [156]. The extraction of galactan-rich
rhamnogalacturonan I of potato pectic polysaccharides is gaining attention, due to its beneficial health
effects. The microwave-assisted alkaline extraction was evaluated as most promising. Therefore,
potato cell walls were treated at a solid/liquid ratio of 2.9% (w/v) with 1.5 M KOH at 36.0 W for
2.0 min in the micro wave, yielding 21.6% galactan-rich rhamnogalacturonan I [157].

Recently, potato pulp was evaluated for incorporation into gluten-free biscuits, manufactured
with rice flour and potato pulp. The physical and sensory acceptability was very promising [158].
Besides, the pulp was examined on its usability as solid fuel. The analyses of its energetic value,
densification for pelletisation and its elemental composition led to a promising evaluation as boiler
fuel in comparison to other biomass types [159]. However, as the different treatments require a lot of
energy only small amounts of potato pulp are processed for technical purposes and high amounts
accumulate as agricultural waste. Therefore, further investigations for an increased used are needed to
improve the economically value [147].

3. Valorization of Tomato Residues

3.1. Fertilizer Production from Cull Tomato and Tomato Processing Residues

After harvesting tomato fruits huge amounts of biomass residues are left on the field (about
24,000 kg/ha, depending on cultivation conditions), namely tomato harvest stalks which include
plant residues, plant wastes or residual biomass. These wastes are mainly composed of lignin (19%),
hemicellulose (14%), cellulose (50%) and pectin (5%) and are therefore valuable resources for further
applications [160]. In addition, industrial tomato processing generates residues (cull tomato) composed
of the discards of production such as defective, damaged or immature tomatoes. These are normally
discarded in the packaging houses and also in processing plants. Processing also generates discards
following washing and inspection. One kilogram of processed tomatoes results in 20 g of discards
and 20 g of peel and skin residues [161]. Fresh culled tomatoes comprise 14–20% crude protein, 4–5%
ether extract, 22% cellulose and lignin (acid detergent fiber), 40–60% non-structural carbohydrates
(of which 90–95% are soluble sugars) and 5–10% pectins [162,163]. These residues often represent an
added cost for the manufacturer due to the disposal procedures. Due to the putrescible nature of cull
tomato wastes, a duration of storage longer than 6–7 days should be avoided [164]. During storage,
uncontrolled anaerobic fermentation releases methane that has a significant greenhouse effect and
influences the formation of tropospheric ozone [165].

These residues, especially tomatoes that do not meet quality standards, are usually sold at low
price for animal feeding. This is partly due to the small sizes of the companies and their broad
geographic dispersion. Alternatively they are used as organic fertilizers or given for free to other
enterprises [166]. However, this land application is not a favored option due to increasing stringent
regulations [167]. Riggi and Avola [164] suggested that an environmentally friendly waste management
system should be applied which is capable of recovering valuable compounds from the wastes
(e.g., lycopene). This system should be combined with a subsequent conversion of the remaining
wastes by anaerobic processes (methane production) or aerobic procedures (composting). These might
have positive effects like nutrient and energy retrieval and mitigation of greenhouse gas release [168].
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Although composting is a simple and well established technology, it is regarded as a leading
processing technique for several bio-wastes, including tomato plant, cull tomato or even the solid
fraction obtained after their anaerobic digestion [169]. It consists of user-friendly small composting
plants which are commonly available on a farm. Thereby, undegraded organic biomasses are converted
and stabilized through an aerobic thermophilic bio-oxidation. Due to higher temperatures and
the growth of aerobic microorganisms, composting can suppress pathogens and stabilize organic
matter [170]. Thereby the soil adjustment properties can be improved. The composting process is
determined by several factors, such as raw material composition, temperature, humidity, ventilation,
pH value, and turning. To achieve a C/N ratio of 20–30 is recommended for digested materials [171–173].
Tomato plant stalks and especially culled tomatoes usually contain a high nitrogen concentration.
Therefore, they should be co-composted with dry and carbon rich bulking agents to adjust the C/N ratio
and humidity up to 40–60%. Several additions have been successfully applied to balance the initial C/N
ratio of chopped tomato plants or culls such as cattle manure and sawdust [174], two-phase olive-mill
pomace plus poultry manure [175,176], almond shells and sewage sludge [177], pine bark [170,178],
biochar and chicken manure [179], wheat straw and separated dairy manures [180], hen manure
and sawdust [181]. Composting of tomato wastes usually takes 2–4 months but advancements
in composting technology have reduced its duration and improved the quality of compost by
means of added specific compounds or microbial inoculums [170]. The end product (compost)
can be utilized as fertilize. The compost quality produced from tomato wastes is a function of
the concentration of nitrogen, phosphorous, potassium, heavy metals, pathogens or organic matter.
Moreover, stability and maturity parameters as well as the absence of phytotoxins determine the
quality of the compost. Previous studies have frequently demonstrated that compost from tomato
wastes has adequate organic matter, nitrogen, phosphorous and potassium contents for plant growth.
Mendoza-Hernandez, et al. [182] mixed composts prepared from tomato crop waste with peat in
different proportions and used it as substrates for cutting rooting. Thereby, rooting, root length and root
weight of cuttings was improved. Pane, et al. [183] evaluated the utilization of tomato-based composts
within a tomato cropping system and obtained nutrition and bio-stimulation effects responsible for the
increased productive response. It has been also reported that long-term applications of these composts
improves the nitrogen status of the soil over years [184].

A similar approach for treatment of these wastes is vermicomposting, which is a result of organic
matter stabilization by bacteria and worms. In greenhouse tomato production it has been successfully
utilized as a substitute for peat [185]. Several studies have reported an increased tomato yield by
using this product [186,187]. Fernandez-Gomez, et al. [188] demonstrated that by vermicomposting
of tomato-plant waste together with paper-mill sludge at a ratio of 2:1 or 1:1 the recycling of both
wastes is possible. The environmental sustainability of tomato crops from greenhouse production is
thereby improved.

Fertilizer quality and profits of compost and vermicompost obtained from tomato plant residues
can be further improved by means of extracting its components or supplementing them with
microorganisms that are beneficial to plants. In agriculture processes, the use of soluble bio-waste
derived substances in low concentrations, instead of conventional mineral and organic nitrogen
fertilizers, could help improving plant growth and crop production in an inexpensive way.
Simultaneously, the environmental impact is minimized [189]. These compounds are defined as
bio-stimulants and include humic substances (HS) among others. HS can increase plant growth or even
make a crop less susceptible to stressful conditions by several modes of action: activation of numerous
plant metabolism pathways, increased activity of several soil enzymes, stimulation of microbial activity
and an enhanced production of hormones in the soil or growth regulators in plants [189,190]. Using
similar processes to those for extracting HS from the soil, peat, leonardite or lignite, organic fractions
which are defined as humic-like substances (HLS) can be extracted from composted organic wastes.
The basic HLS extraction process usually involves an alkaline hydrolysis (pH > 10) of compost at
high temperature and a further concentration step to reach the required HLS concentration, ranging
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from 15 to 85% [191]. Numerous composted wastes has been used for HLS extraction, namely, sewage
sludge, household wastes and several animal, agrifood and agricultural residues, with tomato residues
among them [192–194]. Various liquid fertilizers containing humic acids derived from organic wastes
have been commercialized for application on grass, horticultural plants or crop production [195]. In
spite of their positive effect on plant growth, their use is still controversial because of heterogenic
nature [196]. Therefore, a process has been developed to produce homogeneous and high-value
liquid organic fertilizer termed Hidrocompost™ from composted tomato plants [197]. The amount
of humic substances in Hidrocompost depends on humic content in the compost that is subjected to
hydrolysis [198]. Thus, analysis of the material during composting is usually required to establish the
optimum composting time for humic substances extraction [199].

A step forward in formulation of fertilizers is the addition of plant-growth promoting bacteria
which function as bio-inoculants in tomato residues based compost and are efficient as well as
environmental-friendly alternatives to chemical compounds [200]. These have been applied to
promote crop production by different bio-fertilization mechanisms, such as biological nitrogen
fixation, production of phytohormones, solubilization of insoluble minerals and biocontrol processes
that include phytopathogen antagonism and plant-induced resistance [201–204]. The presence of
bio-protective microorganisms against plant pathogens and plant growth promoting microorganisms
confers added value on tomato wasted based compost [205]. Another advantage of the interaction
between microorganisms and stable organic matter is the biological substrate enrichment. The basic
mechanism and benefits of the combined utilization of HS and plant growth-promoting bacteria
were summarized by Canellas and Olivares [206]. Martinez-Balmori, et al. [207] described the
utilization of vermicompost as a microbial carrier and reported about the ability to preserve inoculated
nitrogen-fixing microorganisms [203].

3.2. Lycopene Extraction from Tomato Skins

Lycopene is the major carotenoid in tomatoes and is responsible for the characteristic red hue [208].
From a chemical point of view lycopene (C40H56) is a tetraterpenic hydrocarbon with 13 carbon-carbon
double bonds, of which 11 are conjugated occurring in various geometrical isomers. The tomato
by-products mainly constituted by tomato skins and seeds represent one of the richest sources of
lycopene. In fact, at the end of ripening stage, tomato skins can contain up to five times more lycopene
than tomato pulp [209]. Due to its high degree of conjugation, lycopene is the most potent natural
antioxidant among pigments [210]. As a natural antioxidant it may protect against chronic diseases
and a broad range of epithelial cancers. According to studies in literature, lycopene may also play a
role in reducing the risk of cardiovascular disease [211], osteoporosis, hypertension, male infertility
and neurodegenerative diseases [212].

The main commercial use of lycopene is as a coloring agent in the food, nutraceuticals and
pharmaceutical industries. Due to its deep red color, lycopene is one of the most popular natural
pigments and it has been used for coloring of different food products for many years [213–216].
Compared to standard colors, it shows a good color efficiency [217]. In addition, carotenoids are used as
natural antioxidants for the preparation of functional food products or as additives in order to elongate
the product’s shelf life [19,218]. In fact, processed foods are often enriched with carotenoids to improve
their nutritive value. Furthermore, lycopene is widely applied in the cosmetics formulations [219–221].

Many studies in literature have reported on lycopene extraction from tomato and tomato waste,
presenting a wide variety of different methods of extraction, from the conventional organic solvent
extraction to the supercritical fluid extraction. Solvent extraction is the most commonly used method
for the recovery of carotenoids from plant materials, due to their hydrophobicity and limited solubility
in water. Regarding the extraction of carotenoids from tomato by-products, the major techniques
are soxhlet extraction and agitation [218]. Several parameters can influence the yield of extraction
and many studies have highlighted the optimization of these parameters. The solvent type, solvent
to solid ratio, temperature, extraction time, extraction steps, particle size and moisture content can
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enhance the recovery [222]. Among these, solvent type is considered as the most important parameter.
Due to its hydrophobic nature, several organic solvents have been tested for the extraction of lycopene,
including ethanol, acetone, hexane, dichloromethane, ethylene acetate, benzene ethyl ether, petroleum
ether and mixtures of polar and non-polar solvents [223,224]. However, in order to apply the lycopene
extract in food products the solvents used for the extraction have to be non-toxic for human health.
However, the organic solvents used in most extraction processes have adverse health effects (most
non-polar solvent are considered toxic) and cannot be removed entirely. Therefore, research for
alternative environmentally friendly solvents has been conducted. Among the published literature,
two interesting solvents are proposed: ethyl lactate and d-limonene. Ethyl lactate is an environmentally
friendly solvent which is produced by fermentation of carbohydrate fractions from soybean and
corn processing. Its application in food was authorized by the U.S. Food and Drug Administration.
Furthermore, ethyl lactate is colorless, has a high flashpoint and is completely biodegradable into CO2

and water [221,225,226]. Some extraction procedures from tomato processing by-products using this
solvent resulted in the highest yield of carotenoids compared to acetone and ethyl acetate [221,227].
Limonene is the main component of essential oil resulting from fruit skins of citrus. D-limonene is
extracted from orange peel through steam distillation and is mainly used as a solvent for extracting
lycopene from tomato, instead of dichloromethane [228]. Even though the final yield of lycopene
extraction with d-limonene is lower than with dichloromethane, the procedure can be considered as
an interesting alternative to conventional organic solvents.

As reported in literature [229], sonication enhanced the extraction yield of lycopene from tomato
with minor degradation and isomerization. Furthermore it allowed the application of lower extraction
temperatures and a shorter extraction time. However, the technique still requires organic solvent to
perform the extraction.

Solvent extraction of lycopene is often performed at temperatures higher than room temperature
and long heat treatments can cause a degradation of lycopene. Therefore, microwave-assisted
extraction may provide a solution to this problem. In fact, microwave quickly heats extracts,
accelerating the adsorption and desorption of the targeted compounds from matrix. In particular,
the migration of lycopene into the extraction solvent is enhanced by superheating of the polar
cellular components. Whereas the heat impact on non-polar components is limited by short
treatment periods [230,231]. The extraction arises due to modifications in the cell structure, caused
by electromagnetic waves [232]. The use of microwave assisted extraction on levels of lycopene
isomers has been investigated. In fact microwave and ultrasound can be combined together, as
reported in Lianfu and Zelong [233]. These authors combined ultrasonic and microwave assisted
extraction in one instrument to extract lycopene from tomato by-products. By this, the extraction
yield of lycopene was significantly improved. Microwave assisted extraction has some advantages
compared to the conventional extraction techniques, including lower environmental pollution due to
reduced consumption of solvent, higher extraction efficiency and a shorter extraction time. On the
other hand, some disadvantages have been reported e.g., additional filtration or centrifugation is
required to remove solid residues. Moreover, the efficiency of microwaves might be influenced by
applying non-polar or volatile target compounds [214,231,234].

Enzyme-assisted extraction could also improve conventional extraction of lycopene from tomato
residues. In fact, enzymatic treatment may be used before conventional solvent extraction process, as a
pretreatment. Enzyme-assisted extraction utilizes the cell wall degrading ability of enzymes, allowing
the extraction of bioactive compounds. This process offers a more environmental friendly approach.
Several studies have investigated the application of enzymes to increase the extraction yield of lycopene
from tomato by-products. The most used enzymes were cellulases and pectinases, followed by solvent
extraction with acetone, hexane, petroleum ether, ethyl acetate or mixtures of solvents [214,235–238].
In all cases, a significant increase of the extraction yield was observed, compared to the untreated
samples. Besides, in all these studies pectinase was more effective than cellulase in extracting lycopene,
especially from tomato peels. This can be probably explaine its’ pectinolytic activity, since the pectin
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network within the tomato peel tissue is the main reason for the unavailability of lycopene. When
pectic substances are enzymatically degraded, disintegration of the plant tissue occurs, with lycopene
becoming easily accessible, as explained by Lavecchia and Zuorro [236]. Finally, an interesting
possibility is presented in a recent paper, where unlike currently proposed enzymatic assisted lycopene
extraction techniques lycopene is extracted by tomato waste skins using a green chemistry protocol
without organic solvent [239]. In fact, it still includes the utilization of organic solvent after the
enzymatic pre-treatment. The method proposed by Cuccolini et al. [239] does not use organic solvents,
since the aim of the method is to isolate the chromoplasts from tomato peels, where lycopene is stable
because it is still incorporated in its natural medium. The present method, exploiting hydrolytic
enzymes in combination with aqueous solutions at different pH values, leads to an increase in the
chromoplast yield by separating other cell components. The lycopene in the final product is protected
against oxidation as it is still incorporated in the chromoplast [239].

Enzymatic pretreatments exhibit some advantages including reduction in extraction time and
solvent consumption, increased yield and quality of product. However, some limitations still exist
such as the high costs of enzymes, the inability of enzyme preparations to completely hydrolyze plant
cell walls and the difficult industrial feasibility of the conditions required for the treatment [240].

Lycopene extraction can also be performed by means of organic solvent, but with the aid of high
pressure. Extraction with high pressure is applied by employing temperatures from 50 to 200 ◦C and
pressures from 9 to 15 MPa, which is known as pressurized liquid extraction or accelerated solvent
extraction. The high temperatures positively affect the extraction and due to the high pressure applied,
the solvent is maintained in the liquid state. Under these conditions the liquid solvent is forced into
the matrix and the biocompound solubility is increased. An interesting application is reported by
Naviglio, Caruso, Iannece, Aragòn and Santini [213], where a pressurized extraction method by use of
the Extractor Naviglio is employed. Through this device lycopene is extracted from industrial tomato
by-products at a pressure of 0.7–0.9 MPa using tap water as extracting liquid. Although lycopene is
not soluble in water it forms molecular aggregates, which can be extracted by pressure/depressure
cycles. Another possibility is to use higher pressure (100 to 800 MPa) and low temperatures (usually
room temperature), which is known as high hydrostatic pressure extraction. This technology has
been successfully applied for the extraction of several bioactive, plant-based compounds, such as
carotenoids from tomato processing products. Recently, Strati and Oreopoulou [214] examined the
use of several organic solvents for the extraction of carotenoids, and especially lycopene, from tomato
processing waste. The authors found that high hydrostatic pressure extraction resulted in higher
extraction yields compared to conventional solvent extraction process performed at room temperature
for 30 min. The advantages of using high pressure for extraction processes are shorter processing
times, reduced solvent consumption and higher extraction yields. In addition the high hydrostatic
pressure extraction has the advantage of being to operate at room temperature. While using lower
pressure (pressurized liquid extraction), the temperature has to be increased which could affect the
functional activity and structure of the bioactive compound.

Finally, supercritical fluid can be employed to perform lycopene extraction. Supercritical fluid
extraction (SFE) is an environmentally friendly technology and based on the fluids properties.
By raising pressure and temperature over the critical point, the solvating power of the gas is
increased [215]. The most widely used compound is CO2, due to its low critical temperature
and pressure. CO2 represents a favored alternative to organic solvents because it is inexpensive,
non-explosive, non-toxic and can be easily removed from the final products. Furthermore, lipophilic
substances can be solubilized by the use of CO2. Most of the research studies on SFE for the carotenoid
recovery have focused on tomato products and tomato wastes [215,241]. All these studies demonstrated
that by increasing the pressure and/or temperature of CO2, the extracted amount of lycopene rose.
This is due to the increased density of the supercritical CO2, which leads to an improved ability to
solubilize carotenoids. However, in the first two studies mentioned the extraction of lycopene is
improved by using also a co-solvent like ethanol or hexane. Instead, Rozzi, et al. [242] demonstrated
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that lycopene can be extracted with significant success from industrial tomato by-products with SFE
using CO2 without any other co-solvents. The results of this study indicated that the concentration of
lycopene increased with higher temperature and pressure. The main advantages of SFE are the high
target specificity, short extraction times, the use of non-toxic organic solvents and that pollution is
reduced [243]. Disadvantages could be represented by its high operating costs, since high pressures
have to be applied to maintain the fluid in supercritical state.

3.3. Cutin Extraction from Tomato Skins

With 40 to 85% (w/w), cutin is the main component of the tomato plant cuticle. A tomato cuticle
forms a protecting film covering the epidermis of tomato fruits. It consists of lipids, polysaccharides
(mainly cellulose and pectin), polypeptides, phenolic compounds and hydrocarbon polymers
impregnated with wax. It is synthesized exclusively by the epidermal cells [244]. Thus, the plant
cuticle can be considered as polyester waxes complex associates, with a very small hydrophobic nature
reactivity, since most of the carboxylic groups present in the membrane are esterified with aliphatic
hydroxyl groups of other fatty acids.

Due to the cuticle weight (around 600 µg/cm2), it can be termed as the major lipid plant polymer.
Chemically, cutin consists of a polymeric network of polyhydroxylated C16 and C18 fatty acids which
are linked by ester bonds [245–247]. Cutin plays an important role as a structural component in
the cuticle, as a defense barrier against pathogens [248], as protection against the loss of water and
waxes [249], as well as in carrying substances through plant tissues [249]. Commonly, cutin is extracted
from plant material using enzymatic treatments, organic solvents or acid hydrolysis. Enzymatic
treatments degrade cell walls and membranes of cuticle as they destroy polysaccharides. In most of the
studies reported in literature enzymatic treatments act as a pretreatment to degrade the cuticle, prior
an extraction with organic solvents. The most used enzymes are cellulase and pectinase, generally
employed in acetate or phosphate buffer [250,251]. These enzymes degrade plant cell wall components
and disrupt the structural integrity, thus increasing the cell wall permeability [240].

By extraction with organic solvents lipid components of the cuticle are isolated, obtaining a
dewaxed cuticle. Generally, the solvents used are chloroform and methanol in the Soxhlet apparatus.
The extraction of cutin using acetone in a Soxhlet apparatus for 24 hours followed by a reflux of the
obtained solid material in a solution of propanol has been reported and patented [252]. Another
organic solvent used to extract cutin from tomato skins is prepared by dissolving potassium hydroxide
in methanol. With this method the solid cutin is isolated and then precipitated by acidification [253].
In addition, Luque, et al. [254] proposed the extraction with diethyl ether of the de-waxed product
derived from saponification to isolate cutin from mature tomato green cuticles.

Finally, another possibility to obtain cutin is by acid hydrolysis. By this means cutin samples
are obtained after hydrolysis of dewaxed cuticles in an acid solution (6 M HCl) for 12 h at 105 ◦C
to remove polar hydrolysable components. Afterwards, samples are depolymerized in a 3% (w/v)
sodium methoxide solution for 18 h at 100 ◦C [246]. However, a first initial treatment with organic
solvent to dewax the cuticle is necessary.

In the literature there are some examples of cutin extraction methods combining organic solvent
extraction and acid hydrolysis [255,256]. In some cases, an additional pretreatment of tomato
skins is performed, which consists of a heat treatment with oxalic acid and ammonium oxalate
to remove the residual pulp, that can remain attached to the skins [257]. Previous methods which
successfully conducted organic solvent-free cutin extractions are very scarcely, in particular using
tomato by-products as raw material. In fact, all methods reported aimed at analyzing the composition
of cutin. However, no information is available regarding the use of cutin as raw material for other
preparations. Instead, the method patented by SSICA and CTAEX in the previous European FP7
project BIOCOPAC (GA 286446, WO2015/028299 A1), is solvent-free and feasible to industrialization
or scale up [258]. This extraction process consists of a solubilization of tomato skin in alkaline solution.
The skins are mostly soluble in alkaline solution and this method exploits this property. Afterwards,
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the tomato skins are subjected to thermal treatment with an alkaline solution (saponification).
Subsequently, the raw cutin in solution as sodic resinates, was separated and cleaned of impurities,
essentially by filtration and centrifugation. Finally, the solid extract is precipitated by acidification,
separated and purified by centrifugation. The extracted cutin can be used as a protective coating for
metal food containers to develop completely recyclable packaging [259]. The study showed that the
bio-lacquer can be applied on different metal substrates (e.g., aluminum, tinplate and tin free steel)
with good chemical and mechanical properties.

3.4. Further Utilization of Tomato Plant and Tomato Processing Residues

Energetic use of tomato plant waste was proposed by Encinar, et al. [260]. The gas phase produced
by pyrolysis process of the tomato plant waste mainly composed of H2, CO, CH4, CO2 and small
amounts of ethane and ethylene. The solid phase consists of charcoal with an average higher heating
value (HHV) of 26 MJ/kg, the liquid phase presents a HHV of 7.8 MJ/kg at 400 ◦C. The key operation
variables of the process are the temperature (400–800 ◦C), the sample mass and the particle size.

Among all different biomass conversion technologies of tomato plant wastes (TPW) the
hydrothermal liquefaction is of great interest. This presumably derives from the fact that this process
can efficiently be used to transform inedible biomass into bio-oils (or bio-crude oils) which can be
applied as a source for chemicals (e.g., bio-phenols or bio-polyols) or can be valorized by converting
into drop-in bio-fuels, like biodiesel [261].

Other uses of TPW were proposed in literature. For example, the conversion of non-edible
polysaccharides and tomato plant waste to levulinic acid has been developed by a microwave-assisted
method. A total conversion has been achieved and clean levulinic acid was obtained without any
purification in high yields (63–95%) by 2 min irradiation [262].

Tomato leaves were used to extract volatile aroma components. The volatiles of tomato leaves
were isolated by adsorbent trapping and by direct solvent extraction [263]. The application of
volatiles from tomato leafs as antifungal compounds against plant pathogenic fungi was proposed by
Baldwin, et al. [264].

Polyphenolic antioxidants can be extracted from tomato skins by liberating these compounds
from the vacuolar structures where they are found, either through rupturing plant tissue or through a
process of diffusion [265]. Water, aqueous mixtures of methanol, ethanol and acetone are commonly
used as solvents [266]. The selected extraction method should result in a complete extraction of the
compounds of interest and avoid their chemical conversion [267].

A further possible application is the production of food microorganisms using tomato wastes.
Supplemented tomato wastes have been tested as alternative culture medium for the production of
carotenoids by Rhodotorula glutinis [268]. The authors found that higher concentrations of yeast extracts
negatively affected the formation of biomass but favored carotenogenesis while higher amounts of
glucose in the medium increased biomass formation. In another study, valorization of tomato waste
proteins was investigated by Moayedi, et al. [269]. They revealed that the proteolytic bacterium
Bacillus subtilis produced antioxidant and antibacterial hydrolysates during fermentation of the protein
fraction of tomato seeds.

4. Valorization of Cereal Processing Residues

4.1. Cellulose Extraction from Wheat Bran and Oat Husk

Cereals are the most commonly cultivated crops worldwide. Cereal grains are regarded as one
of the most important sources of carbohydrates, dietary proteins, vitamins, minerals and fibers [270].
Wheat, together with maize and rice, accounts for about 90% of the world’s cereal production, and
for about half of the total cereal production within the EU [271,272]. Based on previous data wheat
is of great importance to the EU economy and wheat-derived by-products can be considered as a
feedstock for biorefinery development. Current worldwide wheat global production is more than 700
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million tons per year [271,273] and about one-fifth of the cultivated wheat is converted into bran (90
to 150 million tons/year) [273,274]. Currently, the bran is mainly used as a feed supplement, while
minor amounts are applied in food [275]. However, there is great interest in innovative technologies
for valorizing wheat bran through its conversion into value-added biomolecules [270].

Cellulose, the most abundant polysaccharide in nature, has been purified from natural resources
and utilized in a myriad of applications for thousands of years. Natural cellulose fibers from
cotton, flax, hemp, and sisal, have been utilized for millennia due to their outstanding properties
in textile applications [276,277]. Furthermore, wood and non-woody plants such as bamboo have
been applied extensively for the production of paper and cardboard both for printing and packaging
applications [278–280]. Figure 3 summarizes the most widely used resources for the production of
cellulosic fibers.
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Advantageous features, such as biodegradability, low costs, high specific strength and light weight,
resulted in the comprehensive development of this environmentally friendly bio-based material [281].
In the last two decades, a new family of cellulose-based nanoscale building-blocks has appeared. New
technologies have allowed disintegrating cellulose fibers into nanofibers at a reasonable cost [282–284].
These new nanofibers have diameters from 2 to 20 nm and lengths in the range of several µm. Due to
their immense available surface, compared with micrometric fibers, cellulose nanofibers (CNFs) offer
an enormous potential for a wide range of applications, from reinforcement in composite materials to
viscosity modifier in suspensions [285]. However, CNFs have been mostly produced from bleached
wood pulp, which is used to produce fine paper, and thus has a considerably high price compared to
non-renewable materials such as commodity polymers, e.g., PP and PE. Therefore, some researchers
have focused on the production of CNFs from agricultural residues, not only to decrease their cost, but
also to mitigate the environmental impact of agricultural waste, moving towards a biorefinery concept.
Recently, an extensive review from Jonoobi, et al. [286] detailed the different preparation methods for
CNFs from various natural resources and residues. Agricultural resources and residues such as wheat
straw and soy hulls [287,288], empty fruit bunches [289], sugar beet pulp [290], potato pulp [291],
swede root [292], bagasse [293,294], rice straw [293], banana rachis [295] and banana peels [296], have
been used as a raw material for the production of CNFs. The extraction is conducted by mechanical
processes, e.g., high-pressure homogenization, grinding, refining treatments or by acid hydrolysis.
By mechanical treatments it is possible to isolate CNFs from cell walls without distinct cellulose
degradation [286]. A comparison of three different mechanical processes showed that microfluidization
and grinding needed less energy than homogenization. Moreover, the first-mentioned techniques
provided higher film toughness [297].

Several studies were conducted to find new alternative sources for obtaining nanocellulose by
valorizing all non-valuable raw materials existing in the nature. For example, oat husk residues from
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cereal processing were converted into CNFs which were used as a reinforcing agent in the production
of bio-composites for packaging applications [26]. Furthermore, some publications have reported the
production of CNFs from sesame and rice husks [298]. However, to the best of our knowledge, even
though there are large numbers of papers in the production of CNFs using agricultural residues, there
are no reports of CNFs from wheat bran. Therefore, this could be a further opportunity to enhance the
sustainability of wheat cultivation and processing.

4.2. Production and Extraction of Oligosaccharides and Phenolic Acids from Wheat Bran

4.2.1. Extraction of Biomolecules from Bran

Wheat bran is multi-layered (pericarp, testa, hyaline, aleurone layers and residual starchy
endosperm) and consists of different cell types with various chemical compositions. Generally,
it consists of approximately 12% water, 13–18% proteins, 57% carbohydrates, 4% fats and 1% phenolic
acids. Wheat cell wall contains high amounts of oligosaccharides (such as arabinoxylan dietary
fibres) and phenolic acids, mainly ferulic acid (FA) that acts as a cross-linker binding to sugar
residues [299,300].

The chemically heterogeneous composition of wheat bran makes it a potential feedstock for
biorefinery processes aiming to obtain a wide variety of compounds, which may be either valuable
per se, or as precursors of commodity and building block chemicals [299]. Two different routes of
wheat bran valorization have been recently carried out aiming at the extraction of carbohydrate
and/or non-carbohydrate-based products. Concerning the carbohydrate fraction, the most interesting
proposed valorization routes include the extraction and conversion to bio-based chemicals, e.g., lactic
acid, poly lactic acid, succinic acid. Likewise, the recovery of arabinoxylans and their conversion to
xylose and xylitol and, to a lesser extent, the extraction of β-D-glucans are promising [299]. Valuable
components in the non-carbohydrate fraction are FA and other phenolic acids, followed by proteins,
amino acids and wheat bran oil. More than 90% of the phenolic acids are present in a bound
form [299,301,302]. FA is the most abundant phenolic acid (0.2–15 g/kg) and is mostly linked to
cell wall polysaccharides or lignin by ester and ether bonds. This compound has demonstrated
beneficial activities for human health (such as antioxidant, anti-cancer, improving vascular function),
and thus has a high potential of application in the food, health and cosmetic industry [275,299,300,303].
Moreover, FA isolated from crop by-products can be bio-converted into natural vanillin [304].

The extraction of wheat bran components includes a range of different steps. Pretreatments
may be necessary to increase the extraction efficiency, e.g., by selecting the bran fraction richer in the
target product, increasing the matrix surface/volume ratio and/or the matrix de-structuration, or by
removing unwanted components before the extraction of the target compound. On the other hand,
pretreatment represents one of the most expensive processing steps in wheat bran biorefinery [305]
and can affect further exploitation of the recovered compounds (e.g., solvent extractions may limit
food application). Fractionation of the raw material allows simplification of its composition, to easily
isolate specific high-value components and to obtain a more efficient hydrolysis of fermentable sugars
(e.g., for ethanol production) [275,305,306]. Particle size reduction, due to milling process, was found
to improve the recovery of phenolic acids, anthocyanins and carotenoids [307], whereas extensive
ball-milling was found to be the most promising and specific mechanical pretreatment for the recovery
of xylan-based polysaccharides and arabinoxylans [308].

Among thermal treatments, liquid hot water saccharification (especially for lab-scale optimization)
and steam explosion (more applicable to industry) are the most common. Both methods apply similar
mechanisms for matrix destructuring, based on hot water biomass treatment under high pressure,
which is released either gradually (in liquid hot water treatment) or rapidly (steam explosion) [306].
Recently, steam explosion-assisted extraction was found to be particularly effective in phenolic acid
extraction, with a recovery yield gradually increasing with residence time and temperature [309]. The
increase of ferulic and diferulic acids release from destarched bran has been in particular associated
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to the degradation and depolymerisation of the hemicellulosic arabinoxylans, along with some
breakdown of cellulosic glucose [310]. Thermal pretreatment is often adopted because of the simplicity
of the required equipment and the absence of corrosive and hard to recycle chemicals [311]. Generally,
it is performed at 180–190 ◦C for 10–20 min to avoid the formation of toxic compounds, such as furfural
and 5-hydroxymethyfurfural, generated from hexose and pentose degradation [305,306,311].

Ultrasonication is a process able to destructure plant cell walls and to release polysaccharides
and other less extractable compounds in a shorter time and at lower temperatures. Short ultrasound-
assisted extraction was used to isolate hemicellulose components (mainly phenolics-rich heteroxylans)
of industrial wheat bran, leading to a sugar yield similar to that of the standard alkaline extraction.
Besides, a shortening of the process by about 60% with a lower sodium hydroxide consumption can
be achieved [312]. When aiming at phenolic acid recovery an ultrasonic procedure was found to be
more effective than microwave extraction, due to the gelatinization of starch induced by microwave
treatment [313].

Classical chemical extractions of oligosaccharides and phenolic acids from wheat bran involve acid
(such as sulfuric acid), alkaline (sodium hydroxide) and hydrogen peroxide treatments [308]. Solvent
extraction offers the opportunity to partially disintegrate and fractionate biomass, but is less used in
wheat bran exploitation. It was demonstrated that different ethanol/water ratios were more effective in
combination with enzymatic treatment [311]. The performance of the ethanol/water-enzyme process
was similar to the hydrothermal-enzyme one, with about 85% of the feedstock dissolved into the liquid
phase [273,311].

Enzymatic digestion of wheat bran can be considered either as a pretreatment, when the aim
is to remove interfering molecules for further process steps (such as bioethanol production), or as
an extraction technique, when the goal is the recovery of specific compounds (such as phenolic
components or oligosaccharides). The use of amylase and/or xylanase, cellulase and hemicellulase
for monomeric sugars or oligosaccharides isolation, and of protease for peptides and proteins, has
been largely reported [273,305,306,311]. Feruloyl-esterase was tested for FA and other phenolic acids
release, but due to the extremely complicated structure of the cell wall, its combination with an array
of enzymes having different digestion activities (e.g., xylanase) can be more effective [304]. Sequential
enzymatic digestions (α-amylase, glucoamylase, xylanase) have been proposed for the recovery of
a mixture of xylo-oligosaccharides [314], although the recovery of specific oligosaccharides can be
hampered by the co-extraction of other cell compounds [308]. Compared to chemical approaches,
enzymatic treatments are more cost and energy effective, more selective, produce a greater range of
fractions with different chemical, functional and technological characteristics and do not require the
solvent recovery and purification [275].

Extraction processes are typically followed by one or more purification steps, usually based on
adsorption and desorption with high specific resins and/or with activated charcoal, or on compounds
solubility in different solvents [299].

Often a multi-step processes combining different type of treatments has been proposed for wheat bran
valorization. For example, Hromadkova, et al. [315] sequentially extracted two different water-soluble
arabinoxylan fractions: the first obtained during enzymatic digestion of protein and starch, the second
recovered via sodium hydroxide hydrolysis. Wood, Cook, Wilson, Ryden, Robertson and Waldron [306]
recently suggested a multi-step wheat bran biorefinery consisting of sequential amylase, protease and
xylanase digestion (leading to starch removal and to the recovery of arabinoxylans, glucose, xylan and
arabinan and of proteins) followed by a thermal treatment (liquid hot water or steam explosion) and a
cellulose digestion, before the final conversion of fermentable sugars to ethanol.

4.2.2. Valorization of Ferulic Acid (FA) and Aromatic Compounds as Monomers for Polymer Synthesis

Based on the current state of the art and inevitable future technological improvements, wheat
bran can be considered as a highly versatile mass by-product suitable for biorefinery challenge and
valorization. In fact, wheat bran can be used as a source of phenolic and aromatic compounds that
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can be key intermediates in the production of polymers [316]. Indeed, aromatic compounds offer
rigidity, hydrophobicity, resistance against fire and the derived polymers are characterized by good
thermomechanical and barrier properties. The following section will focus on the preparation of
thermoplastic polymers from aromatic phenolic compounds. Among these, ferulic and vanillic acids
are most available in plant-based wastes can be used for the production of polyesters. This processing
represents a possible means to increase the sustainable utilization of agricultural and food resources.
Therefore, the focus will be on sustainable and green processes.

The first example of the valorization of vanillic acid as monomer was reported in 1955 [317].
Vanillic acid from lignin was transformed to carboxylate by etherifying the phenolic moiety with
ethylene dihalides and then the carboxylate was esterified with ethylene glycol and gave rise through
condensation to a linear polyester. The resulting polymer had a glass transition temperature (Tg)
of 80 ◦C and a melting temperature (Tm) of 210 ◦C [318,319]. Later, Lange and Kordsachia [320]
in 1981, developed a new strategy to polymerize vanillic and syringic acids. In the new synthetic
pathway, the phenolic functional group of vanillic acid was reacted with ethylene oxide, giving rise by
condensation, to polyester with different aromatic substituents. The polymer obtained from vanillic
acid demonstrated thermal performances very close to poly(ethylene terephthalate) (PET). However,
the use of ethylene oxide requires an apparatus suitable for the treatment of toxic and explosive gases.
Although the reaction delivers complete conversion, the desired hydroxy-acid was only obtained
after precipitation with sulfur dioxide, followed by sublimation and crystallization with a mixture of
methanol and ethyl acetate. Then, the use of solvents is necessary for the purification step.

In 2010, the synthesis of bio-renewable PET mimics, synthesized from lignin and acetic acid was
reported [321]. In particular, vanillin and acetic anhydride were employed and through the production
of acetyldihydroferulic acid a homo-polymerization was conducted. It was demonstrated that zinc
acetate was the most efficient catalyst and the final material exhibited a Tm of 234 ◦C, a Tg of 73 ◦C
and 50% thermal decomposition (Td) at 462 ◦C. The corresponding values of PET are very similar:
Tm = 265 ◦C, Tg = 67 ◦C and Td 50% = 470 ◦C.

Similarly, vanillin, 4-hydroxybenzoic acid and syringic acid were employed for the synthesis
of poly(alkylenehydroxybenzoate)s (PAHBs) [322]. Through a series of reaction steps hydroxyl-acid
monomers were obtained and then homo-polymerized using antimony oxide as a catalyst, yielding a
wide variety of thermomechanical properties as a function of the aromatic substitution. In this series
of polymers, Tg was ranging between 50 and 70 ◦C and Tm between 170 and 239 ◦C were reported.
A more sustainable chemical pathway from vanillic acid to polyethylene vanillate has been recently
reported [323]. In fact, etherification reactions of phenolic compounds with a bio-based reagent,
ethylene carbonate, instead of chloroethanol, represent an eco-friendly way to improve the reactivity
of the phenolic functionality. Then, a final solid state reaction results in a relatively high molecular
weight (about 5000 g/mol). No purification steps are necessary and solvents are not used. Moreover,
properties can be easily tuned by copolymerization.

Recently, FA and derivatives of vegetable oil were employed to synthesize fully bio-based
polyesters. In particular, a polyester from FA was produced by polycondensation [324]. First, FA was
derivatized into a more reactive molecule then, methanol was used to esterify the carboxylic acid and
the resulting ester was hydrogenated and further reacted with two equivalents of ethyl carbonate.
The corresponding semicristalline polyester was produced by a catalytic homopolymerization, and
the final polymer exhibited a low molecular weight, a Tg of −27 ◦C and a Tm of 25 ◦C. Amorphous
polymers were also synthesized by copolymerization with methyloleate and methylerulate derivatives.
The same authors also reported the polycondensation of a vanillin derivative, another phenolic
compound derived from biomass. The reaction strategy employs thiol-ene addition and yields
semicristalline polymers [325].

Another path for polyesters synthesis starting from derivatives of phenolic biomass is based on
the coupling of phenolic substrates in order to obtain di-functional monomers [326,327]. For example,
by the copolymerization of dicarbonyl functionalities with derivatives of vegetable oils, Pang, Zhang,
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Wu, Wang, Gao and Ma [326] obtained fully bio-based semi aromatic polyesters. The coupling of
several phenolic compounds to produce difunctional monomers, was also investigated by employing
enzymatic reactions [328].

Recently, Goto, et al. [329] developed a copolymer of FA employing glycine. They obtained an
amorphous material characterized by a high thermal stability and a Tg at 189 ◦C.

4.2.3. Valorization of Aromatic Compounds as Additives for Polymer Formulation

FA has gained considerable attention for its use in preventing oxidation and further beneficial
properties. As a photo-protective and antioxidant agent, FA also protects against dangerous radiation
effects as a UV absorber and as a free radical scavenger [303,330,331].

Free FA is a good antioxidant due to its ability to produce stabilized phenoxyl radicals by donating
hydrogen atoms. FA has shown high scavenging activity for hydrogen peroxide, superoxide anions,
hydroxyl radicals, and nitrogen dioxide free radicals [330]. FA also possess the ability to react with
polysaccharides and proteins through crosslinking reactions, indicating that it can be used in the
preparation of biomedical, pharmaceutical, food and cosmetic products [330,332]. To control the
release of FA via diffusion, it has been incorporated into a hybrid material or has been modified with
polymers containing cinnamoyl moieties to improve photostability [333].

These characteristics of FA can also be exploited in polymer formulations since during the
processing and service life polymers are subjected to oxidative degradation due to exposure to light and
temperature. Nevertheless, although FA exhibits beneficial properties, it can undergo decomposition
by temperature, air, and light, which reduces its efficacy. In general, the main drawback related to the
use of extracted natural phenols is their generally limited temperature stability, which causes their
degradation during the polymer melt processing. Furthermore, natural phenols have often limited
solubility in polymers [334].

Derivatization is a way to adapt natural antioxidants to their use in polymers. In fact, by
derivatizing hydroxycinnamic compounds, an increase in their activity and thermal stability can be
obtained. Another approach is their insertion into an inorganic host filler in order to avoid diffusion as
well as to limit as much as possible their thermal degradation and reactivity with polymer chain [335].

The derivatization of FA and its use as antioxidant additives were reported [336,337]. The authors
enzymatically synthesized bis- and trisphenols from FA and bio-based diols (butenediols, propanediols
and isosorbide) or triols (glycerol). Afterwards, their antioxidant activity at different concentrations
and processing methods were investigated in polypropylene (PP) and polybutylene succinate (PBS).
In case of PBS, the trisphenols antioxidant was more efficient, while in the case of PP the commercial
antioxidant Irganox 1010 was better. Indeed, they reported difficulties during melt compounding
of PP due to sticking in the feeder and condensation on the extruder equipment. These problems
were avoided by processing PBS with solvent casting. However, solvent casting is not in line with
green chemistry. Good efficiency of natural extracts was also observed under the thermal stress and
processing under oxygen with PP [338].

Coelho, Hennous, Verney and Leroux [335] developed a strategy for the insertion of FA and
other natural antioxidants inside layered double hydroxide. The UV shielding properties were tested
when melted inside PBS. They reported that a better UV stability was not fully demonstrated but an
enhancement of rheological properties was obtained and less carbon dioxide during photo-degradation
was formed. On the other hand, crosslinked polymers with antioxidant properties were synthesized by
inserting FA in a polymer based on methacrylic acid (MAA) and using ethylene glycole dimethacrylate
as co-monomer and crosslinker [339]. Co-polymers of FA and methacrylic acid were also manufactured
in the work of Iemma, et al. [340] with antioxidant and antifungal properties.

FA has also been effective for increasing the thermal and mechanical performances of PLA. In fact,
by introducing biomesogenic units the thermal stability and the elastic properties improved, while the
Tm, the degree of crystallinity and the rate of enzymatic degradation reduced [341]. Cerruti, et al. [342]
incorporated phenolic compounds derived from wine production residues in starch biopolymers.
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This natural additive caused a plasticization effect in the obtained extruded films and promoted an
earlier disintegration.

According to Kim, et al. [343] and Rizzarelli and Carroccio [344] PBS can undergo three different
degradation mechanisms depending on the storage conditions. Like all polyesters, PBS is sensible to
hydrolysis by exposure with liquid water or water vapor. In the absence of water, heat, UV light or
mechanical stress it can produce primary radicals on the polymer backbone leading to the formation
of peroxyl radicals. In the presence of oxygen it caused the formation of peroxy radicals. This process
can be interrupted by primary antioxidants. Aiming at proposing bio-based antioxidants, the use of
natural hindered phenolic compounds exhibiting antioxidant activity has received increasing interest.
Examples are α- tocopherol, lignin, carvacrol, thymol or curcumin.

Poly-anhydride-esters based on FA can enable controlled bioactive release and protect bioactive
functional groups from degradation. In this study by incorporating FA into a polymer backbone
FA retained its antioxidant activity when released via polymer degradation. Further, the FA-based
polymer prevented discoloration, indicating a promising FA-based topical formulation [334].

4.3. Production of Food Microorganisms Using Cereal Processing Residues

The production of different bacterial and yeast strains using wastes from cereal processing have
been reported several times and is an effective way to valorize unexploited by-products. Poopathi
and Archana [345] investigated the production of Bacillus thuringiensis from powdered wheat bran,
chickpea husk and corncob as well as their combinations. It was observed that corncob supplemented
with MnCl2 was as effective as Luria-Bertrani medium for the production of Bacillus but 50 times less
expensive. To perform liquid fermentation with these by-products they were boiled and extracted.
Wheat straw, barley straw, oats hull, chili stubble and starch-glucose powder were used for solid
fermentation of S. cerevisiae. Biomass and digestibility of the protein obtained were determined [346].
The production of single cell proteins from Candida utilis and Rhizopus oligosporus by microbial
conversion of wheat bran has been studied. Growth parameters including inoculum size and age,
temperature and incubation period were optimized for this process [347].

The performance of six microorganisms of industrial relevance (Escherichia coli, Corynebacterium
glutamicum, S. cerevisiae, Pichia stipites, Aspergillus niger and Trichoderma reesei) were tested for their
ability to grow on lignocellulosic biomass hydrolysates obtained from sugar cane bagasse, corn stover,
wheat straw and willow wood. In addition, their resistance to growth inhibitors present in these
hydrolysates was evaluated [108]. For this, raw materials were previously hydrolyzed by enzymatic or
acid hydrolysis using concentrated sulfuric acid. Some growth inhibitors (e.g., furfural, acetate) were
contained in acid hydrolyzed feedstocks. However, all tested microorganisms showed a good growth
behavior on the pretreated materials. Pichia stipites and Aspergillus niger exhibited the overall best
performance on renewable feedstocks. Therefore, it can be assumed that lignocellulosic hydrolysates
from different feedstocks can be used as substrates for industrial fermentations and thus, upgrade the
value of these feedstock wastes.

5. Valorization of Olive Residues

5.1. Pretreatment of Olive Pomace and Leaves

A common pretreatment process for olive residues is liquefaction. This procedure is similar to
that described for potato peels (Sections 2.2 and 2.3). By liquefying or hydrolyzing olive residues,
processing for further valorization is facilitated. Studies concerning the liquefaction of olive stones
were published by Tejeda-Ricardez, et al. [348]. Liquefaction was performed using phenol (71 % wt)
and sulfuric acid (6 % wt) at 170 ◦C for 2 h. The products were intended for use as raw material for
phenol-formaldehyde resins. Similar, Briones, Serrano and Labidi [55] conducted a mild liquefaction
of olive stones with polyhydric alcohols to obtain biopolyols. Liquefaction treatment of olive husks
was also reported [349–351], whereas studies concerning the liquefaction of olive pomace are rather
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scarce [352]. Another pretreatment for valorization of olive wastes is aroma extraction. However,
reports on the aroma extraction of olive residues are rare as they are more commonly used for extraction
and application of polyphenols and pectins [353]. However, Reboredo-Rodríguez, et al. [354] described
a method for the extraction of volatiles from olive samples based on dynamic headspace-thermal
desorption (DHS-TD) combined with GC-MS. In another report this technique was used to extract
aromatic compounds from olive pulp at an extraction temperature of 40 ◦C. By purging with an inert
gas (helium), the volatiles were carried out and concentrated on a cooled trap [354,355]. However,
these studies were not designed to use the aromatic compounds for further application but only for
analysis and separation by GC.

Furthermore, disintegration of olive pomace and leaves is used to process these wastes. Steam
explosion has been applied for wood since in the 1930’s [356]. Nowadays it is still an important
technology for treatment of woody biomass for biofuels production. In this context it is considered
as an alternative for the much more intensive torrefaction of biomass, which takes place at higher
temperatures and pressures [357]. Moreover, it is used to increase the extractability of phenolic acids,
mainly ferulic acid from wheat bran [309]. In general, during application of steam explosion the
biomass is exposed to direct steam for 30 seconds to 10 minutes and at pressures ranging from 130 to
220 ◦C. After a sudden pressure release the steam, which has penetrated within the biomass, expands
and a large part of the plant infrastructure is destroyed, making the material more available for
enzymatic hydrolysis. In this way enzymatic conversion of cellulose to glucose is improved. This
results in high yields of woody biomass suitable for use as for example bio-based ethanol [358–360].
Some demonstration plants have been into operation but the technology has not reached full maturity
yet. The effects of steam explosion are twofold: the short period of intense temperature and exposure
to high pressure steam and water causes reactions to take place, such as hydrolysis of hemicellulose
or the formation of furfural or similar substances. These reactions can be enhanced or slowed by
addition of chemicals. For example, under alkali conditions lignin will be dissolved and the conversion
rate of hemi-cellulose will be lower. Secondly, there is a disruption of the plant fibers due to the
steam explosion. Both effects can improve the extraction of valuable compounds from the biomass.
The destruction of plant structure can make certain molecules more available for dissolution by a
solvent [358,361].

Due to the fact that olive crops have to be cut down regularly during cultivation to achieve high
yields (olive pruning), huge amounts of residues are generated. Depending on the culture conditions,
1 to 3 tons may arise per pruning process. The residues mainly consist of thin branches, leaves and
wood, comprising cellulose, hemicellulose, lignin, minerals and extractives. Valuable compounds of
that can be extracted from these residues include glucose, phenolics and other antioxidants [360,362–364].
Steam explosion is also considered as an effective pretreatment for obtaining valuable compounds
from olive residues, including pomace and leaves [365,366]. Cara, et al. [360] applied steam explosion
as a preparatory process for the use of olive residues, mainly olive wood as substrate for enzymatic
hydrolysis. Furthermore, it was described that olive pomace treated with steam explosion is a good
source of fermentable sugars [367]. Likewise, various phenolic compounds (e.g, vanillic acid, tyrosol,
hydroxytyrosol) can be separated from olive stones and seed husks by steam explosion [368]. Therefore,
steam explosion offers new opportunities for valorizing olive residues and might be a promising
future technology.

Patent literature on pretreatment and olive oil waste processing is limited. The different components
will probably behave differently in steam explosion: The pulp might have no significant benefit
from this pretreatment. For olive stones and leaves it may be useful, but various conditions have
to be applied. Washing and neutralization procedures are also important for the process steps
downstream [358,361].
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5.2. Extraction and Purification of Phenolic Compounds from Olive Pomace and Leaves

Olive pomace arises during olive oil production with 800 kg/ton olives and approximately
7 millions of tons per year in Europe. It is composed of skin, pulp, stone and olive kernels [369].
Since olive processing residues are rich in bioactive compounds especially phenolic acids, triterpenic
acids and flavonoids, their extraction is highly desired and numerous application possibilities exist.
By this means, huge amounts of olive residues which mainly accumulate in the Mediterranean areas
can be valorized. Furthermore, the environmental issues might be reduced. Several methods for
the extraction of phenolic compounds have been investigated, e.g., extraction with organic solvents,
ultrasound- or microwave-assisted extraction and high-pressure processes [370–373]. Most commonly,
solid/liquid extraction is used for plant materials whereby the extraction yield is dependent on
the applied parameters. For example, the addition of water enhanced the polyphenol yield during
extraction with ethanol [374–376]. Furthermore, an adjustment of the pH value to an alkaline milieu
increased the extraction due to an improved solubility of the phenolic substances [377].

Polyphenols contained in olive pomace can be extracted under high pressure and incubation
(25 bar, 180 ◦C for 90 min) with a mixture of ethanol: water (50:50 v/v) resulting in yields of 5.77 mg
caffeic acid equivalents/mL as measured by the Folin–Ciocalteu assay [378]. In contrast, the successive
extraction of defatted olive pomace with chloroform, chloroform: methanol (9:1) and methanol resulted
in 207–210 mg oleuropein equivalents/kg (Folin–Ciocalteu colorimetric method). Another procedure
was described by Berthet, et al. [371] in which the milled olive pomace was mixed in a liquid ratio of
1:15 (w/w) with ethanol:water (70:30) and extracted at 80 ◦C for 90 min. The main phenolic compounds
in olive pomace are oleuropein, ligstroside aglycone, tyrosol, oleuropein aglycone, caffeic and ferulic
acid, depending on the cultivar [20]. For purification of the phenolic extracts, solid-phase extractions
with silica-based C-18 cartridges can resulting in an increase in recovery of used up to 97–100% [379].

Olive leaves represent about 10% of the harvest weight and contain higher concentrations of
antioxidants than the other parts of the plant [380,381]. Traditionally, polyphenols of olive leaves
are extracted by maceration. However, the efficiency is rather low [382]. Therefore, several other
extraction techniques have been investigated, e.g., solid liquid extraction (SLE), supercritical fluid
extraction, pressurized liquid extraction, derivatized polar extraction, microwave assisted extraction
and dynamic ultrasound assisted extraction [383–385]. Using SLE the best parameters for the extraction
of phenolic compounds from olive leaves are often analyzed using response surface methodology.
According to Sifaoui, et al. [386], an extraction with water at 58 ◦C, pH 8 for 54 min and a liquid-to-solid
ratio of 77:1 was most effective. The best conditions for an alcoholic extraction were published by
Mkaouar, et al. [387] and are composed of 95.6% ethanol, 55 ◦C and 40 ml/g dry matter. By applying an
ultrasonic-assisted extraction at high temperatures, the polyphenol yield can be further improved [382].
The use of hydroalcoholic solvents, like methanol or ethanol-water mixtures have been investigated in
detail, due to their ability to extract lipophilic as well as hydrophilic phenolic compounds [372,388].
The main phenolic substances in olive leaves have been identified using high performance liquid
chromatography (HPLC) coupled with Photo Diode Array Detection (DAD) and studies have revealed
that six major compounds are commonly present e.g., oleuropein, verbascoside, hydroxytyrosol,
tyrosol, luteolin-7-O-glucoside and apigenin-7-O-glucoside [389–391].

The polyphenols present in olive oil processing chain by-products including olive leaves,
olive pomace or olive oil mill wastes have found a variety of application potentials in the food
market [14,25,392,393]. Polyphenols have recognized antioxidant activity [19,43,44,394,395] and
antimicrobial effects with protective effects against pathogenic agents [396–398]. Therefore, the use of
olive waste products as an antioxidant or antimicrobial agent is promising. In addition, flavonoids
have been linked to an enhancement of the antiviral activities [399]. The incorporation of polyphenol
extracts such as gallic acid from waste waters of olive oil pomace has also been tested in enriched
meat such as pre-cooked beef or pork to improve their lipid stability [400]. Moreover, polyphenols
could be an interesting ingredient in the design of new beverages for their potential benefits on human
health [401,402]. For instance, Kranz, et al. [403] evaluated fruit smoothies fortified with olive leaf



Sustainability 2017, 9, 1492 26 of 46

extract containing high quantities of oleuropein and hydroxytyrosol. The study showed that at higher
polyphenol levels (20 mg/100 g) the arising bitter taste can be reduced by addition of sodium cyclamate
and sucrose.

5.3. Purification of Olive Fibers

The dietary fiber content of olives varies among the different cultivars, but is in general noticeable
with 5–20 g/100 g total dietary fibers [404–406]. Almost one third of olive pulp cell walls consist
of pectic polysaccharides with an esterification degree of more than 80%. The soluble fraction is
mainly composed of polyuronides and arabinans, the neutral fraction of arabinans with arabinose
and the acid part of homogalacturonans and rhamnogalacturonans [405]. Olive endocarp is mostly
lignified and contains high amounts of cellulose and hemicelluloses [407]. As olives are predominantly
processed to oil by pressing, the residues of olive oil production are rich in dietary fibers. Olive
pomace is composed of 65.3 wt% insoluble fibers and 5.5 wt% soluble fibers. Therefore, insoluble fibers
represent the major fraction (approximately 92%) with hemicellulose, cellulose and lignin being most
abundant [408]. Due to their limited application, only a few refinery processes have been described.
Valiente, et al. [409] used cellulases, hemicellulases and pectinolytic preparations to saccharify fibers of
olive press cake and incorporated them in bakery goods. A prior treatment with chlorite improves
the enzymatic hydrolysis [410]. Dufresne, et al. [367] used lignocellulosic flour of ground olive stones
for the production of poly-(hydroxybutyrate-co-valerate, PHBV)-based composites and reported
a significant reinforcing and a stabilization effect. Another study described the incorporation of
olive husk flour into a polypropylene matrix [411]. The researchers observed an improved thermal
stability of the composites. The fibers were purified by an extraction with methanol/water (90:10) for
12 h at room temperature to remove starch and waxes. Similar, an extraction of olive pomace with
ethanol/water (70:30) for 90 min at 80 ◦C was applied to remove polyphenols [369]. This intended
used of the extracted polyphenols was as anti-browning agent which can lead to the discoloration of
some foods. Afterwards, the fibers were recovered by filtration and purified by an acid-alkaline fusion.

Besides their application as composites, fibers of olive cell wall can be extracted from olive mill
by-products and used for the derivation of microcrystalline or powdered cellulose, as fat substitutes
or gelling agents [366,406,412–414]. Pectic material of olive pomace, which could replace fat in
confectionary has been obtained by extraction with nitric acid. Afterwards, the substrate was purified
with chelating agents and recovered by an alcoholic precipitation with ethanol [412,415]. The extracted
olive pectin exhibited a methylation degree of 42% and comparable rheological characteristics to
citrus pectin.

The extraction of dietary fibers from olive mill wastewater was performed by ethanol and citric
acid. Subsequently, ethanol was added to precipitate the alcohol insoluble residues. The isolated and
concentrated water soluble fraction showed gel forming abilities [413].

5.4. Production of Food Microorganisms Using Olive Mill Wastewaters

Reports of the chemical composition of olive mill wastewaters (OMW) display large variations
mainly due to the cultivar, harvesting time and extraction process [416]. The organic fraction of
OMW is composed of sugars, organic acids, polyphenols and residual oil [417]. Polyphenols can exert
antimicrobial or toxic effects against target microorganisms and thus, it is often not convenient to be
contained in culture media. For this reason, OMW is often submitted to a chemical process in order to
decrease its polyphenolic content. However, OMW has been investigated as a medium source for the
production of single cell proteins and secondary metabolites. For example, solid fermentation of OMW
by different Pleurotus species, S. cerevisiae, Kluyveromyces lactis, Oidodendron spp. and Penicillium spp. in
order to produce microbial biomass and bioremediation has been investigated [418]. Aouidi, et al. [419]
studied the production of Geotrichum candidum biomass, for its use as starter for cheese production
using a combination of OMW enriched with cheese whey and found that the combination was a cost
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effective medium. OMW is also a good source of nutrients for the production of microbial protein
from new isolated yeasts, e.g., Schwanniomyces etchellsiii M2 and Candida pararugosa BM24 [420].

Lipase production by Candida cylindracea on a supplemented OMW has been investigated
by Brozzoli, et al. [416]. The production of citric acid by means of OMW fermentation using
Yarrowia lipolytica strains has been also studied [417]. In this sense, Sarris, et al. [417] examined citric
acid and biomass production of Yarrowia lipolytica on OMWs supplemented with sugar and nitrogen
compounds and found efficient growth of different strains when cultivated on glucose-enriched OMWs.
Moreover, polyphenols were reduced to 13–34% in all fermentations. Similar results were obtained by
Papankolaou, et al. [421].

Solid wastes from the olive oil processing (waste pomace) have also been studied for solid state
fermentation with the aim of providing a substrate for yeasts [422]. In this study, solid wastes were
submitted to an alkaline pretreatment and to a delignification process by Phanerochaete chryosporium,
Phlebia radiate, Pleurotus ostreatus or Dacrymyces stellatus. Subsequently, a saccharification by Trichoderma
spp. was performed to provide substrates for Candida utilis or S. cerevisiae. A combination of these
processes increased the concentration of crude protein in the pomace suggesting that it could be used
for animal feed.

6. Conclusions

The ever-growing amount of agricultural and food wastes lead to the necessity to utilize these
waste materials and to develop further processing technologies for their beneficial application.
This review summarized the valorization potential and state-of-the-art technologies of agricultural
and food waste products, especially of potato, tomato, cereals and olive. These materials exhibit
considerable economic impact due to their high occurrence within the European Union. It was
demonstrated that various valuable compounds can be extracted by different techniques from
food wastes and by-products. Furthermore, numerous application possibilities were described.
Nevertheless, the processes reported could be improved for example with regard to extraction yield,
a reduce process labor and costs or the development of additional application opportunities. In addition
it would be preferable to simplify and generalize the methods to increase the applicability. Therefore,
further research and optimization studies on valorization technologies might be necessary with a
recommendation to focus on full rather than laboratory studies to increase their relevance for industrial
applications up-scaling from laboratory experiences.
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