Entomoculture: A Preliminary Techno-Economic Assessment
Abstract
:1. Introduction
1.1. Cost of Cellular Agriculture
1.2. Techno-Economic Assessment
1.3. Insect Cells for Cellular Agriculture
2. Materials and Methods
2.1. ACBM Cost Model
2.2. Sensitivity Analysis
2.3. Media Cost Estimates
2.4. Scenario Models
3. Results and Discussion
3.1. Understanding Model Outcomes: Bioreactor Outcomes
3.2. Understanding Model Outcomes: Media
3.3. Understanding Model Outcomes: Utility
3.4. Understanding Model Outcomes: Labor
3.5. Understanding Model Outcomes: Financing
3.6. Sensitivity Analysis
3.7. Proposed Scenarios to Reduce Per Kilogram Cost of Insect Cell Cultured Meat
3.7.1. Scenario A: Larger Cell Size Increases Cell Mass Produced Per Batch
3.7.2. Scenario B: Different Media Consumption Measurements May Be Used to Decrease Turnover Rates
3.7.3. Scenario C: Base Media Formulation and Supplementation May Be Altered for Cost Minimization
3.7.4. Scenario D: Insect Growth Factors May Increase Achievable Cell Concentration, Thus Increasing Cell Mass Produced per Batch
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Tables
Metric | Value | Units | Cell Line | Insect Order | Source |
---|---|---|---|---|---|
Incubation Temperature | |||||
27 | Sf-9 | Lepidoptera | [22] | ||
27 | High-Five | Lepidoptera | [22] | ||
27 | Sf-9 | Lepidoptera | [40] | ||
27 | High-Five | Lepidoptera | [40] | ||
27 | Sf-9 | Lepidoptera | [30] | ||
27 | High-Five | Lepidoptera | [30] | ||
Final Value | 27 | °C | Sf-9/High-Five | Most common in literature | |
28 | S2 | Diptera | [41] | ||
28 | S2AcGPV2 | Diptera | [24] | ||
28 | S2AcGPV2 | Diptera | [26] | ||
28 | S2 | Diptera | [42] | ||
Final Value | 28 | °C | S2 | Most common in literature | |
Cell Doubling Time | |||||
26.88 | h | Sf-9 | Lepidoptera | [21] | |
20.7 | h | Sf-9 | Lepidoptera | [22] | |
21 | h | Sf-9 | Lepidoptera | [40] | |
26 | h | Sf-9 | Lepidoptera | [43] | |
26 | h | Sf-9 | Lepidoptera | [44] | |
21.7 | h | High-Five | Lepidoptera | [22] | |
22 | h | High-Five | Lepidoptera | [40] | |
18.7 | h | High-Five | Lepidoptera | [45] | |
Final Value | 22.72 | h | Sf-9/High-Five | Average of above values | |
34-42 | h | S2R+ | Diptera | [46] | |
39 | h | S2R+ | Diptera | [46] | |
Final Value | 38.5 | h | S2 | Average of above values | |
Achievable Cell Concentration | |||||
6.00 × 106 | cells/mL | Sf-9 | Lepidoptera | [47] | |
1.90 × 107 | cells/mL | Sf-9 | Lepidoptera | [25] | |
5.4 × 106 | cells/mL | Sf-9 | Lepidoptera | [22] | |
8.10 × 106 | cells/mL | Sf-9 | Lepidoptera | [40] | |
1.60 × 107 | cells/mL | Sf-9 | Lepidoptera | [21] | |
1.50 × 107 | cells/mL | Sf-9 | Lepidoptera | [48] | |
3.05 × 106 | cells/mL | Sf-9 | Lepidoptera | [43] | |
7.30 × 106 | cells/mL | Sf-9 | Lepidoptera | [44] | |
8.60 × 106 | cells/mL | High-Five | Lepidoptera | [40] | |
6.10 × 106 | cells/mL | High-Five | Lepidoptera | [22] | |
2.10 × 107 | cells/mL | S2AcGPV2 | Diptera | [24] | |
1.40 × 107 | cells/mL | S2AcGPV2 | Diptera | [24] | |
2.13 × 107 | cells/mL | S2AcGPV2 | Diptera | [26] | |
Final Value | 2.00 × 107 | cells/mL | Sf-9/High-Five | Assumed highest achieved in literature | |
9.80 × 106 | cells/mL | S2 | Diptera | [42] | |
1.04 × 108 | cells/mL | S2 | Diptera | [41] | |
1.06 × 107 | cells/mL | S2 | Diptera | [41] | |
Final Value | 3.01 × 107 | cells/mL | S2 | Average of above values | |
Glucose Consumption Rate per Cell | |||||
8.64 × 10−8 | mol/(h × 106 cells) | Sf-9 | Lepidoptera | [40] | |
7.80 × 10−8 | mol/(h × 106 cells) | Sf-9 | Lepidoptera | [49] | |
4.99 × 10−8 | mol/(h × 106 cells) | Sf-9 | Lepidoptera | [50] | |
4.58 × 10−8 | mol/(h × 10 6 cells) | Sf-9 | Lepidoptera | [51] | |
9.35 × 10−8 | mol/(h × 10 6 cells) | Sf-9 | Lepidoptera | [30] | |
6.25 × 10−8 | mol/(h × 106 cells) | Sf21 | Lepidoptera | [52] | |
1.01 × 107 | mol/(h × 106 cells) | High-Five | Lepidoptera | [40] | |
1.22 × 107 | mol/(h × 106 cells) | High-Five | Lepidoptera | [53] | |
1.04 × 107 | mol/(h × 106 cells) | High-Five | Lepidoptera | [54] | |
1.65 × 107 | mol/(h × 106 cells) | High-Five | Lepidoptera | [30] | |
Final Value | 9.61 × 10−14 | mol/(h × 106 cells) | Sf-9/High-Five | Average of above values | |
4.16 × 10−8 | mol/(h × 106 cells) | S2 | Diptera | [55] | |
1.96 × 10−9 | mol/(h × 106 cells) | S2 | Diptera | [41] | |
1.68 × 10−9 | mol/(h × 10 6 cells) | S2 | Diptera | [41] | |
Final Value | 1.51 × 10−14 | mol/(h × 106 cells) | S2 | Average of above values | |
Maturation time | |||||
Final Value | 168 | h | Assumption | ||
Single cell volume | |||||
3.21 × 10−15 | m3/cell | Sf-9 | Lepidoptera | [56] | |
2.25 × 10−15 | m3/cell | Sf-9 | Lepidoptera | [27] | |
2.44 × 10−15 | m3/cell | Sf-9 | Lepidoptera | [29,57] | |
1.44 × 10−15 | m3/cell | Sf-9 | Lepidoptera | [29] | |
3.32 × 10−15 | m3/cell | Sf-9 | Lepidoptera | [58] | |
3.05 × 10−15 | m3/cell | Sf-9 | Lepidoptera | [59] | |
1.98 × 10−15 | m3/cell | Sf-9 | Lepidoptera | [60] | |
1.83 × 10−15 | m3/cell | Sf-9 | Lepidoptera | [61] | |
1.15 × 10−15 | m3/cell | Sf-9 | Lepidoptera | [30] | |
1.77 × 10−15 | m3/cell | High-five | Lepidoptera | [30] | |
2.27 × 10−15 | m3/cell | High-five | Lepidoptera | [29] | |
Final Value | 2.16 × 10−15 | m3/cell | Sf-9/High-Five | Average of above values | |
6.97 × 10−16 | m3/cell | D.mel-2 | Diptera | [27] | |
2.30 × 10−16 | m3/cell | Diptera | [28] | ||
Final Value | 5.73 × 10−16 | m3/cell | S2 | Average of above values | |
Oxygen consumption | |||||
2.10 × 10−15 | mol/h × cell | Sf-9 | Lepidoptera | [40] | |
3.60 × 10−13 | mol/h × cell | Sf-9 | Lepidoptera | [62] | |
4.80 × 10−13 | mol/h × cell | Sf-9 | Lepidoptera | [63] | |
1.54 × 10−13 | mol/h × cell | Sf-9 | Lepidoptera | [64] | |
2.00 × 10−13 | mol/h × cell | Sf-9 | Lepidoptera | [43] | |
2.92 × 10−13 | mol/h × cell | Sf-9 | Lepidoptera | [44] | |
1.96 × 10−13 | mol/h × cell | Sf-9 | Lepidoptera | [65] | |
2.21 × 10−13 | mol/h × cell | Sf-9 | Lepidoptera | [50] | |
4.60 × 10−13 | mol/h × cell | Sf-9 | Lepidoptera | [30] | |
3.81 × 10−13 | mol/h × cell | Sf-9 | Lepidoptera | [51] | |
4.50 × 10−15 | mol/h × cell | High-Five | Lepidoptera | [40] | |
6.55 × 10−13 | mol/h × cell | High-Five | Lepidoptera | [30] | |
Final Value | 3.07 × 10−13 | mol/h × cell | Sf-9/High-Five | Average of above values | |
1.12 × 10−14 | mol/h × cell | S2 | Diptera | [66] | |
Final Value | 1.12 × 10−14 | mol/h × cell | S2 | Above value |
Parameter | Description | Equation |
---|---|---|
growth_time | Growth time | log(100)/log(2) × d |
GluConInGrowthPhase | Glucose concentration in maturation phase | Ug× (time/2^d × cell conc. at inoculum) |
GluConInMatPhase | Glucose concentration in growth phase | BRWV × ACC × MatTime × Ug × 1000 |
GluInCharge | Moles of glucose in a bioreactor | BRWV × GConInBM |
TotGluConBatch | Total glucose consumed per batch | GluConInGrowthPhase + GluConInMatPhase |
MediaChargeBatch | Number of times media must be changed per batch | TotGluConBatch/GluInCharge |
Media_Vol | Total volume of media needed per batch | BRWV × MediaChargeBatch |
BatchPerYear | Number of batches produced with one bioreactor per year | AnnOpTime/MatTime + growth_time |
CellMassBatch | Achievable cell mass per batch | BRWV × AveCellDensity × AveCellVol × 1000 × ACC |
ACBM | Total achievable cell mass per year | CellMassBatch × BatchPerYear |
BioReact | Number of bioreactors needed per year | DesiredMassMeat/ACBM |
AnnBatches | Total number of batches produced annually | BioReact × BatchPerYear |
BioEquip | Cost of bioreactors | BioReact × tot_fixed_eq_costs |
BioEquip_total | Total cost of bioreactors | BioEquip × 2 |
Fix_Manu_Cost | Fixed manufacturing cost | BioEquip_total × FixManuCost_Factor |
AnnVolMedia | Total volume of media used by plant per year | Media_Vol × AnnBatches |
AnnMediaCost | Total cost of media used by plant per year | AnnVolMedia × Media_Cost |
O2_cons_in_mat | Total oxygen consumption in maturation phase | BRWV × ACC × MatTime × oxygen_consump × 1000 |
initial_O2_batch | Initial concentration of oxygen in batch | (MediaChargeBatch × BRWV × media_Density × perc_O2_initial_charge)/mm_O2 |
total_O2_cons_growth | Total oxygen consumption in growth phase | integral(oxygen_consump × d(time)) |
O2_consum_batch | Oxygen consumption per batch | total_O2_cons_growth + initial_O2_batch + O2_cons_in_mat |
Ann_O2_Consum | Annual oxygen consumption | (O2_consum_batch × mm_O2_ × AnnBatches)/1000 |
Ann_O2_Cost | Total cost of oxygen per year | Ann_O2_Consum × cost_O2 |
Elect_Cool_BioReact | Electricity needed to cool bioreactor | (O2_consum_batch × AnnBatches × heat_release_O2)/water_cooler_eff |
Elect_Heat_Media | Electricity needed to heat media | (AnnVolMedia × media_Density × (desired_Temp—starting_Water_temp) × water_spec_Heat)/heater_eff |
Elect_Cool_ACBM | Electricity needed to cool meat | (DesiredMassMeat × (desired_Temp – ACBM_cool_temp) × ACBM_spec_heat)/ACBM_cooler_eff |
total_Elect | Total electricity needed | Elect_Heat_Media + Elect_Cool_BioReact + Elect_Cool_ACBM |
Elect_Cost | Total electricity cost | total_Elect × cost_of_elect |
Manpower_Cost | Annual cost of manpower | BioReact |
Ann_Labor_Cost | Total annual labor cost | Manpower_Cost × Labor_Cost_Corr_Fact × prod_worker_wage × AnnOpTime |
Process_Water | Total volume of water used for media production | AnnVolMedia/1000 |
Ann_Water_Cost | Total cost of water used by plant per year | Process_Water × (Process_Water_Cost + Waste_Water_Cost + Oxidation_Water_Cost) |
tot_equity_cost | Total equity cost | BioEquip_total × Equity_Ratio |
ann_equity_recov | Annual equity recovery | tot_equity_cost × cap_rec_fac |
tot_debt_cost | Total debt cost | BioEquip_total × Debt_Ratio |
ann_debt_payment | Annual debt repayment | tot_debt_cost × debt_rec_fac |
tot_ann_payment | Total annual payment | ann_debt_payment + ann_equity_recov |
Cap_expend_with _debt_equity | Capital expenditure with debt equity | tot_ann_payment × Economic_Life |
Min_Ann_Op_Cost | Minimum annual operating cost | Fix_manu_Cost + AnnMediaCost + Ann_O2_Cost + Elect_Cost + Ann_Labor_Cost + Ann_Water_Cost |
Min_ACBM_tomeet_Exp | Minimum amount of meat produced needed to meet expenditures | Min_Ann_Op_Cost/DesiredMassMeat |
Min_Ann_Cap_Op_Expend | Minimum total annual expenditure for the plant | (BioEquip_total/Economic_Life) + Min_Ann_Op_Cost |
Min_ACBM_Price | Minimum price of meat needed to cover expenses of production | Min_Ann_Cap_Op_Expend/DesiredMassMeat |
Constant | Description | Value | Units |
---|---|---|---|
BRWV | Bioreactor working volume | 20,000 | L |
BRUC | Bioreactor cost per m3 | 50,000 | USD |
Adj_BioR_valu | Adjusted bioreactor value | 1.29 | |
BioRScF | Bioreactor scale factor | 0.60 | |
AveCellDensity | Average single cell density | 1060.00 | kg/m3 |
DesiredMassMeat | Desired mass of meat produced by plant annually | 121,000,000 | kg |
FixManuCost_Factor | Fixed manufacturing cost factor | 0.15 | |
AnnOpTime | Annual operating time | 8760 | hr |
media_Density | Media density | 1 | kg/L |
perc_O2_initial_charge | Percent O2 initial charge | 0.02 | %ww |
mm_O2 | Molar mass O2 | 0.032 | kg/mol |
cost_O2 | Cost of oxygen | 40 | USD/ton |
natural_gas_cost | Cost of natural gas | 4.17 | USD/1000 ft3 |
boiler_ener_eff | Efficiency of boiler | 0.85 | % |
heat_release_O2 | Heat released per O2 consumed | 0.13 | kWh |
water_cooler_eff | Efficiency of water cooler | 1.00 | % |
starting_Water_temp | Starting water temperature | 20 | C |
water_spec_Heat | Specific heat of water | 0.0016 | kWh/(kg × C) |
heater_eff | Efficiency of heater | 1.00 | % |
ACBM_cool_temp | Desired temperature of cooled meat | 4 | C |
ACBM_cooler_eff | Efficiency of meat cooler | 1.00 | % |
prod_worker_wage | Production worker wage | 13.68 | USD/h |
Labor_Cost_Corr_Fact | Labor cost correction factor | 2.52 | |
Process_Water_Cost | Process water cost | 0.63 | USD/m3 |
Waste_Water_Cost | Wastewater cost | 0.51 | USD/m3 |
Oxidation_Water_Cost | Oxidation water cost | 0.57 | USD/m3 |
Components | Final Concentration (mg/L) | Amount per 20,000 L (g) | Cost per 20,000 L |
---|---|---|---|
Amino Acids | |||
Glycine | 200 | 4000 | USD 8 |
Hydroxy L-proline | 800 | 16,000 | USD 320 |
L-Arginine Hydrochloride | 800 | 16,000 | USD 480 |
L-Asparagine | 1300 | 26,000 | USD 780 |
L-aspartic Acid | 1300 | 26,000 | USD 78.20 |
L-Cystine 2Na | 119.14 | 2382.8 | USD 59.57 |
L-Glutamic Acid | 1500 | 30,000 | USD 900 |
L-Glutamine | 1000 | 20,000 | USD 9680 |
L-Histidine | 200 | 4000 | USD 1000 |
L-Isoleucine | 750 | 15,000 | USD 750.28 |
L-Leucine | 250 | 5000 | USD 75.02 |
L-lysine hydrochloride | 700 | 14,000 | USD 420 |
L-methionine | 1000 | 20,000 | USD 299.88 |
L-Phenylalanine | 1000 | 20,000 | USD 560.03 |
L-Proline | 500 | 10,000 | USD 200 |
L-Serine | 200 | 4000 | USD 160 |
L-Threonine | 200 | 4000 | USD 9.99 |
L-tryptophan | 100 | 2000 | USD 11.09 |
L-Tyrosine disodium salt dihydrate | 360.4 | 7208 | USD 252.08 |
L-Valine | 500 | 10,000 | USD 300 |
Beta-alanine | 300 | 6000 | USD 180 |
Vitamins | |||
Biotin | 0.16 | 3.2 | USD 0.00 |
Choline Chloride | 20 | 400 | USD 14.01 |
D-calcium pantothenate | 0.008 | 0.16 | USD 0.00 |
Folic Acid | 0.08 | 1.6 | USD 0.01 |
Nicotinic Acid | 0.16 | 3.2 | USD 1.16 |
Para-Aminobenzoic Acid | 0.32 | 6.4 | USD 1.17 |
Pyridoxine Hydrochloride | 0.4 | 8 | USD 0.26 |
Riboflavin | 0.08 | 1.6 | USD 0.04 |
Succinic Acid | 4.8 | 96 | USD 26.21 |
Thiamine Hydrochloride | 0.08 | 1.6 | USD 0.06 |
Vitamin B-12 | 0.24 | 4.8 | USD 0.07 |
I-inositol | 0.4 | 8 | USD 0.12 |
Inorganic Salts | |||
Ammonium Molybdate | 0.04 | 0.8 | USD 9.44 |
Calcium Chloride | 500 | 10,000 | USD 3.00 |
Cobalt Chloride | 0.05 | 1 | USD 3.30 |
Cupric Chloride | 0.2 | 4 | |
Ferric Sulfate | 0.55 | 11 | USD 0.00 |
Magnesium Sulfate | 918 | 18,360 | USD 0.00 |
Manganese Chloride | 0.02 | 0.4 | USD 0.21 |
Potassium Chloride | 1200 | 24,000 | USD 9.35 |
Sodium Bicarbonate | 350 | 7000 | USD 3.5 |
Sodium Chloride | 2850 | 57,000 | USD 22.80 |
Sodium Phosphate monobasic | 1160 | 23,200 | USD 46.4 |
Zinc Chloride | 0.04 | 0.8 | USD 4.23 |
Other Components | |||
Alpha ketoglutaric | 29.6 | 592 | USD 704.5 |
D-glucose | 2500 | 50,000 | USD 40 |
Fumaric Acid | 4.4 | 88 | USD 6.88 |
Malic acid | 53.6 | 1072 | USD 133 |
Maltose | 1000 | 20,000 | USD 7180 |
Sucrose | 1650 | 33,000 | USD 2039 |
Total Cost per 20,000 L | USD 26,773 |
Components | Final Concentration (mg/L) | Amount per 20,000 L (g) | Cost per Gram | Source Supplier | Cost per 20,000 L |
---|---|---|---|---|---|
IPL-41 (basal medium) | [n/a (1X)] | 20,000 L | USD 1.34/L | Calculated in Table 4 | USD 26,773 |
Glucose | 10,000 | 200,000 | USD 1.13 | Thermofisher Scientific, Waltham, MA | USD 226,000 |
Glutamine | 3500 | 70,000 | USD 159/600 mL | Sigma Aldrich, St. Louis, MO | USD 18,550 |
Yeastolate Ultrafiltrate | 6000 | 120,000 | USD 1.97 | Thermofisher Scientific, Waltham, MA | USD 236,400 |
Primatone RL | 5000 | 100,000 | USD 0.62 | Sigma Aldrich, St. Louis, MO | USD 62,000 |
Pluronic F-68 lipid mixture | 1000 | 20,000 | USD 0.34 | Sigma Aldrich, St. Louis, MO | USD 6800 |
Total Cost for 20,000 L | USD 577,723 | ||||
Cost per L | USD 28.88 |
Components | Final Concentration (mg/L) | Amount per 20,000 L (g) | Cost per 20,000 L |
---|---|---|---|
Amino Acids | |||
Glycine | 250 | 5000 | USD 1204 |
L-Arginine | 400 | 8000 | USD 3161.60 |
L-Aspartic Acid | 400 | 8000 | USD 2848 |
L-Cysteine | 60 | 1200 | USD 920.64 |
L-Cystine | 100 | 2000 | USD 1556.80 |
L-Glutamic Acid | 800 | 16,000 | USD 2201.60 |
L-Glutamine | 1800 | 36,000 | USD 25,776 |
L-Histidine | 400 | 8000 | USD 7680 |
L-Isoleucine | 150 | 3000 | USD 4728 |
L-Leucine | 150 | 3000 | USD 2472 |
L-Lysine Hydrochloride | 1650 | 33,000 | USD 3669.60 |
L-Methionine | 800 | 16,000 | USD 9676.80 |
L-Phenylalanine | 150 | 3000 | USD 2292 |
L-Proline | 1700 | 34,000 | USD 32,912 |
L-Serine | 250 | 5000 | USD 5320 |
L-Threonine | 350 | 7000 | USD 11,984 |
L-Tryptophan | 100 | 2000 | USD 1968 |
L-Tyrosine | 500 | 10,000 | USD 6912 |
L-Valine | 300 | 6000 | USD 4992 |
Beta-alanine | 500 | 10,000 | USD 2560 |
Inorganic Salts | |||
Calcium Chloride | 600 | 12,000 | USD 30.24 |
Magnesium Sulfate | 1806.9 | 36,138 | USD 6967.40 |
Potassium Chloride | 1600 | 32,000 | USD 6739.20 |
Potassium Phosphate Monobasic | 450 | 9000 | USD 1346.40 |
Sodium Bicarbonate | 400 | 8000 | USD 437.12 |
Sodium Chloride | 2100 | 42,000 | USD 1048.32 |
Sodium Phosphate Dibasic | 701.1 | 14,022 | USD 1884.55 |
Sugars | |||
D-Glucose (Dextrose) | 2000 | 40,000 | USD 4192 |
Trehalose | 2000 | 40,000 | USD 112,000 |
Other Components | |||
Alpha-Ketoglutaric Acid | 200 | 4000 | USD 2291.20 |
Fumaric Acid | 100 | 1000 | USD 55.84 |
Malic Acid | 100 | 1000 | USD 106.40 |
Succinic Acid | 100 | 1000 | USD 120.80 |
Total Cost for 20,000 L | USD 255,800 |
Components | Final Concentration (mg/L) | Amount per 20,000 L (g) | Cost per Gram | Source Supplier | Cost per 20,000 L |
---|---|---|---|---|---|
Schneider’s (basal medium) | [n/a (1X)] | 20,000 L | USD 13.65/L | Calculated inTable 6 | USD 255,800 |
Yeastolate Ultrafiltrate | 2000 | 40,000 | USD 0.43 | Thermofisher Scientific, Waltham, MA | USD 17,200 |
Total Cost for 20,000 L | USD 273,000 | ||||
Cost per L | USD 13.65 |
Appendix B. Equations
Specific heat (J/kg × C) = 4.18W + 1.711P + 1.547C + 0.908A + 1.928F
Value | Order | P | W | F | C | A | Source |
---|---|---|---|---|---|---|---|
9.40 × 10−5 | Lepidoptera | 13.614 | 70 | 8.298 | 5.628 | 1.353 | [67] |
9.50 × 10−5 | Lepidoptera | 13.614 | 70 | 8.298 | 5.628 | 1.353 | [68] |
9.20 × 10−5 | Diptera | 16.875 | 70 | 5.37 | 1.335 | 1.56 | [67] |
9.30 × 10−5 | Diptera | 16.875 | 70 | 5.37 | 1.335 | 1.56 | [68] |
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf (accessed on 18 December 2021).
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Broucek, J. Production of Methane Emissions from Ruminant Husbandry: A Review. J. Environ. Prot. 2014, 5, 1482–1493. [Google Scholar] [CrossRef]
- Fountain, H. A Lab-Grown Burger Gets a Taste Test. The New York Times. 2013, p. 5. Available online: https://www.nytimes.com/2013/08/06/science/a-lab-grown-burger-gets-a-taste-test.html (accessed on 22 August 2021).
- Nelson, D. $5 Lab-Grown Burger Could Be Ready by 2021; Genetic Literacy Project: Cincinnati, OH, USA, 2018; Available online: https://geneticliteracyproject.org/2018/09/28/5-lab-grown-burger-could-be-ready-by-2021/ (accessed on 23 August 2021).
- Frankl-Duval, M. Lab-Grown Meat Is Coming, But the Price Is Hard to Stomach—WSJ. The Wall Street Journal. 2 May 2019. Available online: https://www.wsj.com/articles/lab-grown-meat-is-coming-but-the-price-is-hard-to-stomach-11556805600 (accessed on 13 September 2021).
- Sousa, A. BlueNalu’s Cultured Fish May Go From Lab to U.S. Plates This Year—Bloomberg. Bloomberg. 2021. Available online: https://www.bloomberg.com/news/articles/2021-01-19/cultured-fish-may-go-from-lab-to-u-s-plates-this-year (accessed on 14 September 2021).
- FAQs—UPSIDE Foods. Available online: https://upsidefoods.com/faqs/ (accessed on 7 March 2022).
- Lavars, N. Future Meats Drives Cost of Lab-Grown Chicken Down to $1.70 a Breast. New Atlas. 2021. Available online: https://newatlas.com/science/future-meats-lab-gown-chicken-breast-costs/ (accessed on 7 March 2022).
- Scipioni, J. Singapore Restaurant First Ever to Serve Eat Just Lab-Grown Chicken. CNBC. 2020. Available online: https://www.cnbc.com/2020/12/18/singapore-restaurant-first-ever-to-serve-eat-just-lab-grown-chicken.html (accessed on 23 August 2021).
- Humbird, D. Scale-Up Economics for Cultured Meat: Techno-Economic Analysis and Due Diligence. Biotechnol. Bioeng. 2020, 118, 3239–3250. [Google Scholar] [CrossRef]
- Vergeer, R.; Pelle, S.; Odegard, I. TEA of Cultivated Meat Future Projections of Different Scenarios; CE Delft: Delft, The Netherlands, 2021. [Google Scholar]
- Risner, D.; Li, F.; Fell, J.S.; Pace, S.A.; Siegel, J.B.; Tagkopoulos, I.; Spang, E.S. Preliminary Techno-Economic Assessment of Animal Cell-Based Meat. Foods 2020, 10, 3. [Google Scholar] [CrossRef]
- Datar, I.; Betti, M. Possibilities for an in vitro meat production system. Innov. Food Sci. Emerg. Technol. 2010, 11, 13–22. [Google Scholar] [CrossRef]
- Gahukar, R. Entomophagy and human food security. Int. J. Trop. Insect Sci. 2011, 31, 129–144. [Google Scholar] [CrossRef]
- Rubio, N.R.; Fish, K.D.; Trimmer, B.A.; Kaplan, D.L. Possibilities for Engineered Insect Tissue as a Food Source. Front. Sustain. Food Syst. 2019, 3, 00024. [Google Scholar] [CrossRef]
- Chan, L.C.L.; Reid, S. Development of Serum-Free Media for Lepidopteran Insect Cell Lines. In Baculovirus and Insect Cell Expression Protocols; Humana Press: New York, NY, USA, 2016; Volume 1350, pp. 161–196. [Google Scholar] [CrossRef]
- Caron, A.W.; Archambault, J.; Massie, B. High-level recombinant protein production in bioreactors using the baculovirus-insect cell expression system. Biotechnol. Bioeng. 1990, 36, 1133–1140. [Google Scholar] [CrossRef]
- Xie, Q.; Michel, P.O.; Baldi, L.; Hacker, D.L.; Zhang, X.; Wurm, F.M. TubeSpin bioreactor 50 for the high-density cultivation of Sf-9 insect cells in suspension. Biotechnol. Lett. 2011, 33, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Ikonomou, L.; Bastin, G.; Schneider, Y.-J.; Agathos, S.N. Design of an Efficient Medium for In-Sect Cell Growth and Recombinant Protein Production. In Vitro Cell. Dev. Biol. Anim. 2001, 37, 549–559. [Google Scholar] [CrossRef]
- Specht, L. An Analysis of Culture Medium Costs and Production Volumes for Cultivated Meat; The Good Food Institute: Washington, DC, USA, 2020. [Google Scholar]
- Galesi, A.L.L.; Pereira, C.A.; Moraes, M. Culture of transgenicDrosophila melanogaster Schneider 2 cells in serum-free media based on TC100 basal medium. Biotechnol. J. 2007, 2, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Chiou, T.-W.; Hsieh, Y.-C.; Ho, C.S. High density culture of insect cells using rational medium design and feeding strategy. Bioprocess Biosyst. Eng. 2000, 22, 483–491. [Google Scholar] [CrossRef]
- Rossi, N.; Silva, B.G.; Astray, R.; Swiech, K.; Pereira, C.A.; Suazo, C.A. Effect of hypothermic temperatures on production of rabies virus glycoprotein by recombinant Drosophila melanogaster S2 cells cultured in suspension. J. Biotechnol. 2012, 161, 328–335. [Google Scholar] [CrossRef]
- Thermo Fisher Scientific—US. Insect Cell Culture Support—Getting Started. Available online: https://www.thermofisher.com/us/en/home/technical-resources/technical-reference-library/cell-culture-support-center/insect-cell-culture-support/insect-cell-culture-support-getting-started.html (accessed on 13 June 2021).
- Lee, D.-F.; Chen, C.-C.; Hsu, T.-A.; Juang, J.-L. A Baculovirus Superinfection System: Efficient Vehicle for Gene Transfer into Drosophila S2 Cells. J. Virol. 2000, 74, 11873–11880. [Google Scholar] [CrossRef]
- Sander, L.; Harrysson, A. Using cell size kinetics to determine optimal harvest time for Spodoptera frugiperda and Trichoplusia ni BTI-TN-5B1-4 cells infected with a baculovirus expression vector system expressing enhanced green fluorescent protein. Cytotechnology 2007, 54, 35–48. [Google Scholar] [CrossRef]
- Drugmand, J.-C. Characterization of Insect Cell Lines Is Required for Appropriate Industrial Processes: Case Study of High-Five Cells for Recombinant Protein Production. 2007. Available online: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A4586 (accessed on 20 September 2022).
- Grace, T. The development of clones from lines of Antheraea eucalypti cells grown in vitro. Exp. Cell Res. 1968, 52, 451–458. [Google Scholar] [CrossRef]
- Grace, T.D.C. Establishment of Four Strains of Cells from Insect Tissues Grown in vitro. Nature 1962, 195, 788–789. [Google Scholar] [CrossRef]
- Neermann, J.; Wagner, R. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J. Cell. Physiol. 1996, 166, 152–169. [Google Scholar] [CrossRef]
- Ferrance, J.P.; Goel, A.; Ataai, M.M. Utilization of glucose and amino acids in insect cell cultures: Quantifying the metabolic flows within the primary pathways and medium development. Biotechnol. Bioeng. 1993, 42, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, K.; Shibata, T.; Saget, O.; Peel, D.; Bryant, P. A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development 1999, 126, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Yamaguchi, S.; Fujii-Taira, I.; Iijima, R.; Natori, S.; Homma, K.J. Involvement of insect-derived growth factor (IDGF) in the cell growth of an embryonic cell line of flesh fly. Biochem. Biophys. Res. Commun. 2006, 350, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Broz, V.; Kucerova, L.; Rouhova, L.; Fleischmannova, J.; Strnad, H.; Bryant, P.J.; Zurovec, M. Drosophila imaginal disc growth factor 2 is a trophic factor involved in energy balance, detoxification, and innate immunity. Sci. Rep. 2017, 7, srep43273. [Google Scholar] [CrossRef]
- Zhang, J.; Iwai, S.; Tsugehara, T.; Takeda, M. MbIDGF, a novel member of the imaginal disc growth factor family in Mamestra brassicae, stimulates cell proliferation in two lepidopteran cell lines without insulin. Insect Biochem. Mol. Biol. 2006, 36, 536–546. [Google Scholar] [CrossRef]
- USA—Beef—Price. 2022. Available online: https://www.globalproductprices.com/USA/beef_price/ (accessed on 17 March 2022).
- Rhiel, M.; Mitchell-Logean, C.M.; Murhammer, D.W. Comparison of Trichoplusia ni BTI-Tn-5B1-4 (High FiveTM) and Spodoptera frugiperda Sf-9 Insect Cell Line Metabolism in Suspension Cultures. Biotechnol. Bioeng. 1997, 55, 909–920. [Google Scholar] [CrossRef]
- Wang, L.; Hu, H.; Yang, J.; Wang, F.; Kaisermayer, C.; Zhou, P. High Yield of Human Monoclonal Antibody Produced by Stably Transfected Drosophila Schneider 2 Cells in Perfusion Culture Using Wave Bioreactor. Mol. Biotechnol. 2011, 52, 170–179. [Google Scholar] [CrossRef]
- Swiech, K.; Galesi, A.; Moraes, A.; Mendonça, R.; Pereira, C.; Suazo, C. Comparison of the Cultivation of Wild and Transfected Drosophila Melanogaster S2 Cells in Different Media. In Cell Technology for Cell Products; Springer: Dordrecht, The Netherlands, 2007; pp. 415–423. [Google Scholar] [CrossRef]
- Archambault, J.; Robert, J.; Tom, L. Culture of immobilized insect cells. Bioprocess Eng. 1994, 11, 189–197. [Google Scholar] [CrossRef]
- Scott, R.I.; Blanchard, J.H.; Ferguson, C.H. Effects of oxygen on recombinant protein production by suspension cultures of Spodoptera frugiperda (Sf-9) insect cells. Enzym. Microb. Technol. 1992, 14, 798–804. [Google Scholar] [CrossRef]
- Yang, J.D.; Gecik, P.; Collins, A.; Czarnecki, S.; Hsu, H.H.; Lasdun, A.; Sundaram, R.; Muthukumar, G.; Silberklang, M. Rational Scale-Up of a Baculovirus-Insect Cell Batch Process Based on Medium Nutritional Depth. Biotechnol. Bioeng. 1996, 52, 696–706. [Google Scholar] [CrossRef]
- Luhur, A.; Mariyappa, D.; Klueg, K.M.; Buddika, K.; Tennessen, J.M.; Zelhof, A.C. Adapting Drosophila melanogaster Cell Lines to Serum-Free Culture Conditions. G3 Genes Genomes Genet. 2020, 10, 4541–4551. [Google Scholar] [CrossRef] [PubMed]
- Drews, M.; Paalme, T.; Vilu, R. The growth and nutrient utilization of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture. J. Biotechnol. 1995, 40, 187–198. [Google Scholar] [CrossRef]
- Expression Systems. Sf9 (Spodoptera frugiperda) Insect Cells INSTRUCTIONS FOR USE; Expression Systems: St. Davis, CA, USA, 2016. [Google Scholar]
- Mendonça, R.Z.; Palomares, L.; Ramírez, O.T. An insight into insect cell metabolism through selective nutrient manipulation. J. Biotechnol. 1999, 72, 61–75. [Google Scholar] [CrossRef]
- Wong, T.K.K.; Nielsen, L.; Greenfield, P.F.; Reid, S. Relationship between oxygen uptake rate and time of infection of Sf9 insect cells infected with a recombinant baculovirus. Cytotechnology 1994, 15, 157–167. [Google Scholar] [CrossRef]
- Hensler, W.T.; Agathos, S. Evaluation of monitoring approaches and effects of culture conditions on recombinant protein production in baculovirus-infected insect cells. Cytotechnology 1994, 15, 177–186. [Google Scholar] [CrossRef]
- Deutschmann, S.M.; Jäger, V. Optimization of the growth conditions of Sf21 insect cells for high-density perfusion culture in stirred-tank bioreactors. Enzym. Microb. Technol. 1994, 16, 506–512. [Google Scholar] [CrossRef]
- Donaldson, M.S.; Shuler, M.L. Low-Cost Serum-Free Medium for the BTI-Tn5B1-4 Insect Cell Line. Biotechnol. Prog. 1998, 14, 573–579. [Google Scholar] [CrossRef]
- Schlaeger, E.-J.; Stricker, J.; Wippler, J.; Foggetta, M. Investigations of high cell density baculovirus infection using Sf9 and High Five insect cell lines in the low-cost SF-1 medium. In Animal Cell Technology: Developments Towards the 21st Century; Springer: Dordrecht, The Netherlands, 1995; pp. 313–315. [Google Scholar] [CrossRef]
- Yokomizo, A.Y.; Jorge, S.A.C.; Astray, R.M.; Fernandes, I.; Ribeiro, O.G.; Horton, D.S.P.Q.; Tonso, A.; Tordo, N.; Pereira, C.A. Rabies virus glycoprotein expression in Drosophila S2 cells. I. Functional recombinant protein in stable co-transfected cell line. Biotechnol. J. 2007, 2, 102–109. [Google Scholar] [CrossRef]
- Nexcelom Bioscience. Insect Cells. Available online: https://www.nexcelom.com/applications/cellometer/unique-assays-cell-types/insect-cells/ (accessed on 4 July 2021).
- Palomares, L.A.; Pedroza, J.C.; Ramírez, O.T. Cell size as a tool to predict the production of recom-binant protein by the insect-cell baculovirus expression system. Biotechnol. Lett. 2001, 23, 359–364. [Google Scholar] [CrossRef]
- Gotoh, T.; Fukuhara, M.; Kikuchi, K.-I. Mathematical model for change in diameter distribution of baculovirus-infected Sf-9 insect cells. Biochem. Eng. J. 2008, 40, 379–386. [Google Scholar] [CrossRef]
- Üstün-Aytekin, Ö.; Gürhan, D.; Ohura, K.; Imai, T.; Öngen, G. Monitoring of the effects of transfection with baculovirus on Sf9 cell line and expression of human dipeptidyl peptidase IV. Cytotechnology 2013, 66, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Janakiraman, V.; Forrest, W.F.; Chow, B.; Seshagiri, S. A rapid method for estimation of baculovirus titer based on viable cell size. J. Virol. Methods 2006, 132, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Rosinski, M.; Reid, S.; Nielsen, L.K. Osmolarity Effects on Observed Insect Cell Size after Baculovirus Infection Are Avoided Using Growth Medium for Sample Dilution. Biotechnol. Prog. 2000, 16, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Palomares, L.; Ramirez, O.T. The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology 1996, 22, 225–237. [Google Scholar] [CrossRef]
- Palomares, L.A.; López, S.; Ramírez, O.T. Utilization of oxygen uptake rate to assess the role of glucose and glutamine in the metabolism of infected insect cell cultures. Biochem. Eng. J. 2004, 19, 87–93. [Google Scholar] [CrossRef]
- Maiorella, B.; Inlow, D.; Shauger, A.; Harano, D. Iarge-Scale Inseo Cell-Culture for Recom-Binant Prorin Produoion. 1988. Available online: http://www.nature.com/naturebiotechnology (accessed on 14 June 2021).
- King, G.A.; Daugulis, A.J.; Faulkner, P.; Goosen, M.F.A. Recombinant.beta.-galactosidase production in serum-free medium by insect cells in a 14-liter airlift bioreactor. Biotechnol. Prog. 1992, 8, 567–571. [Google Scholar] [CrossRef]
- Pamboukian, M.M.; Jorge, S.A.C.; Santos, M.G.; Yokomizo, A.Y.; Pereira, C.A.; Tonso, A. Insect cells respiratory activity in bioreactor. Cytotechnology 2008, 57, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Heldman, D.R. Introduction to Food Engineering; Academic Press: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Fellows, P. Heat processing. In Food Processing Technology; Woodhead Publishing: Sawston, UK, 2009; pp. 339–366. [Google Scholar] [CrossRef]
Variable Name | Description | Units | Mammalian [15] | Sf-9/Hi-Five | S2 |
---|---|---|---|---|---|
desired_Temp | Cell incubation temperature | C | 37 | 27 | 28 |
aveCellVol | Average volume of single cell | m3/cell | 5.00 × 10−15 | 2.16 × 10−15 | 5.73 × 10−16 |
Ug | Glucose consumption rate per cell | mol/h·cell | 4.13 × 10−13 | 9.61 × 10−14 | 1.51 × 10−14 |
GConInBM | Glucose concentration in basal media | mol/L | 1.78 × 10−2 | 5.55 × 10−2 | 1.11 × 10−2 |
oxygen_consump | Oxygen consumption rate per cell | mol/h·cell | 1.80 × 10−14 | 3.07 × 10−13 | 1.12 × 10−14 |
MatTime | Time until cell maturation | h | 240 | 168 | 168 |
ACC | Highest achievable cell concentration in culture | cells/mL | 1.00 × 107 | 2.00 × 107 | 3.01 × 107 |
d | H per population doubling | h | 24 | 22.72 | 38.50 |
BaseMedia_cost | Cost of culture media | USD/L | 3.12 | 28.88 | 13.65 |
ACBM_spec_heat | Specific heat of meat product | kWh/kg·C | 6.22 × 10−4 | 9.43 × 10−5 | 9.26 × 10−5 |
Hi-Five/Sf-9 | S2 | |
---|---|---|
Media Cost | USD 4186.78 | USD 6362.97 |
Water Cost | USD 0.25 | USD 0.80 |
Electricity Cost | USD 0.74 | USD 1.96 |
Oxygen Cost | USD 0.15 | USD 0.38 |
Manufacturing Cost | USD 4.55 | USD 15.21 |
Labor Cost | USD 11.78 | USD 39.33 |
Mammalian [15] | Insect | ||||||
---|---|---|---|---|---|---|---|
Units | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Hi-Five/Sf-9 | S2 | |
Batches per bioreactor per year | 22 | 34 | 34 | 114 | 28 | 21 | |
Cell mass per batch | kg | 1.06 × 103 | 1.01 × 104 | 1.01 × 104 | 2.12 × 104 | 9.16 × 102 | 3.66 × 102 |
Cell mass produced per bioreactor per year (kg) | kg | 2.33 × 104 | 3.42 × 105 | 3.42 × 105 | 2.42 × 106 | 2.56 × 104 | 7.68 × 103 |
No. bioreactors per year | 5.19 × 103 | 3.54 × 102 | 3.54 × 102 | 5.10 × 101 | 4.72 × 103 | 1.58 × 104 | |
Total no. batches produced annually | 1.14 × 105 | 1.20 × 104 | 1.20 × 104 | 5.81 × 103 | 1.32 × 105 | 3.31 × 105 | |
Total cost of bioreactors | USD | 4.04 × 109 | 2.76 × 108 | 2.76 × 108 | 3.97 × 107 | 3.67 × 109 | 1.23 × 1010 |
Fixed manufacturing cost | USD | 6.06 × 108 | 4.13 × 107 | 4.13 × 107 | 5.95 × 106 | 5.51 × 108 | 1.84 × 109 |
Mammalian [15] | Insect | ||||||
---|---|---|---|---|---|---|---|
Units | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Hi-Five/Sf-9 | S2 | |
Conc. glucose in bioreactor | mol | 356 | 534 | 534 | 712 | 1110 | 222 |
Total glucose consumed per batch | mol | 2.19 × 104 | 6.79 × 104 | 6.79 × 104 | 5.34 × 103 | 7.37 × 103 | 1.89 × 103 |
No. media changes per batch | 61 | 127 | 127 | 8 | 7 | 9 | |
Volume media used per batch | L | 1.23 × 106 | 2.54 × 106 | 2.54 × 106 | 1.50 × 105 | 1.33 × 105 | 1.70 × 105 |
Volume media used annually | L | 1.40 × 1011 | 3.06 × 1010 | 3.0 × 1010 | 8.72 × 108 | 1.75 × 1010 | 5.64 × 1010 |
Annual media cost for facility | USD | 5.29 × 1013 | 6.93 × 1012 | 5.40 × 1012 | 2.09 × 108 | 5.05 × 1011 | 7.70 × 1011 |
Oxygen consumption per batch | mol | 7.70 × 105 | 1.60 × 106 | 1.60 × 106 | 9.61 × 104 | 1.06 × 105 | 1.08 × 105 |
Annual oxygen consumption | g | 2.81 × 106 | 6.15 × 105 | 6.15 × 105 | 1.79 × 104 | 4.50 × 105 | 1.14 × 106 |
Annual oxygen cost | USD | 1.12 × 108 | 2.46 × 107 | 2.46 × 107 | 7.15 × 105 | 1.80 × 107 | 4.57 × 107 |
Mammalian [15] | Insect | ||||||
---|---|---|---|---|---|---|---|
Units | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Hi-Five/Sf-9 | S2 | |
Electricity cooling bioreactor | kWh | 1.14 × 1010 | 2.50 × 109 | 2.50 × 109 | 7.26 × 107 | 1.83 × 109 | 4.64 × 109 |
Electricity heating media | kWh | 3.82 × 109 | 8.33 × 108 | 8.33 × 108 | 2.37 × 107 | 1.96 × 108 | 7.22 × 108 |
Electricity cooling meat | kWh | 2.48 × 106 | 2.48 × 106 | 2.48 × 106 | 2.48 × 106 | 2.62 × 105 | 4.78 × 106 |
Total electricity | kWh | 1.52 × 1010 | 3.33 × 109 | 3.33 × 109 | 9.89 × 107 | 2.02 × 109 | 5.37 × 109 |
Electricity cost | USD | 6.73 × 108 | 1.47 × 108 | 1.47 × 108 | 4.36 × 106 | 8.94 × 107 | 2.37 × 108 |
Volume water used by facility | m3 | 1.40 × 108 | 3.06 × 107 | 3.06 × 107 | 8.72 × 105 | 1.75 × 107 | 5.64 × 107 |
Annual water cost | USD | 2.40 × 108 | 5.23 × 107 | 5.23 × 107 | 1.49 × 106 | 3.00 × 107 | 9.65 × 107 |
Mammalian [15] | Insect | ||||||
---|---|---|---|---|---|---|---|
Units | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Hi-Five/Sf-9 | S2 | |
Annual manpower cost | USD | 5.19 × 103 | 3.54 × 102 | 3.54 × 102 | 5.10 × 101 | 4.72 × 103 | 1.58 × 104 |
Annual labor cost | USD | 1.57 × 109 | 1.07 × 108 | 1.07 × 108 | 1.54 × 107 | 1.43 × 109 | 4.76 × 109 |
Mammalian [15] | Insect | ||||||
---|---|---|---|---|---|---|---|
Units | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Hi-Five/Sf-9 | S2 | |
Min. meat production to meet expenditures | kg | 4.37 × 105 | 5.73 × 104 | 4.46 × 104 | 1.96 | 4.20 × 103 | 6.42 × 103 |
Min. total annual expenditure | USD | 5.29 × 1013 | 6.93 × 1012 | 5.40 × 1012 | 2.39 × 108 | 5.07 × 1011 | 7.78 × 1011 |
Min. price of meat per kg | USD | USD 437,205 | USD 57,291 | USD 44,609 | USD 2 | USD 4193 | USD 6426 |
Variable | 1st Order | Total |
---|---|---|
Average cell volume | 2.29 × 10−1 | 8.38 × 10−1 |
Glucose conc. in basal media | 7.30 × 10−2 | 7.90 × 10−1 |
Base media cost | 7.61 × 10−3 | 1.34 × 10−1 |
Glucose consumption rate | 3.68 × 10−3 | 1.27 × 10−1 |
Doubling time | 4.02 × 10−4 | 9.33 × 10−4 |
Achievable cell concentration | −3.36 × 10−5 | 1.08 × 10−5 |
Oxygen consumption rate | −2.16 × 10−8 | 5.05 × 10−11 |
Specific heat of meat | 1.80 × 10−12 | 6.54 × 10−20 |
Cell Type | Diameter (µm) | Average Volume (m3) | Price of Meat (per kg) |
---|---|---|---|
S2 | 10–12 | 5.73 × 10−16 | USD 6425 |
High-Five | 15–16.3 | 2.02 × 10−15 | USD 4484 |
Sf-9 | 13–18.5 | 2.30 × 10−15 | USD 3939 |
AeC6 | 30 | 1.14 × 10−14 | USD 798 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashizawa, R.; Rubio, N.; Letcher, S.; Parkinson, A.; Dmitruczyk, V.; Kaplan, D.L. Entomoculture: A Preliminary Techno-Economic Assessment. Foods 2022, 11, 3037. https://doi.org/10.3390/foods11193037
Ashizawa R, Rubio N, Letcher S, Parkinson A, Dmitruczyk V, Kaplan DL. Entomoculture: A Preliminary Techno-Economic Assessment. Foods. 2022; 11(19):3037. https://doi.org/10.3390/foods11193037
Chicago/Turabian StyleAshizawa, Reina, Natalie Rubio, Sophia Letcher, Avery Parkinson, Victoria Dmitruczyk, and David L. Kaplan. 2022. "Entomoculture: A Preliminary Techno-Economic Assessment" Foods 11, no. 19: 3037. https://doi.org/10.3390/foods11193037
APA StyleAshizawa, R., Rubio, N., Letcher, S., Parkinson, A., Dmitruczyk, V., & Kaplan, D. L. (2022). Entomoculture: A Preliminary Techno-Economic Assessment. Foods, 11(19), 3037. https://doi.org/10.3390/foods11193037