Physical, Chemical and Biochemical Modification Approaches of Potato (Peel) Constituents for Bio-Based Food Packaging Concepts: A Review
Abstract
:1. Introduction
2. Potato Tubers
2.1. Potato Starch
2.2. Potato Protein
3. Modifications
3.1. Physical Modification
3.1.1. Thermal Physical Modification
Heat Moisture Treatment
Annealing
Microwave Treatment
Radio Frequency Treatment
Others
3.1.2. Non-Thermal Physical Modification
High Pressure Treatment
Ultrasonication
Ionizing Irradiation
Others
Conclusion Physical Modification
Starch | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Modification | Properties | ||||||||||||
Structure | Crystallinity | Hydration properties | Thermal properties | Pasting properties | |||||||||
Damaging | Amylose content | Degree | Type | Solubility | Swelling power | Water absorption capacity | Gelatinization temperatures | Melting enthalpy | Pasting temperature | Final viscosity | |||
HMT | ↗ | ↑ | ↓ | B → C/A | ↑ | ↓ | ↓ | ↑ | ↓ | ↑ | ↓/↑ | ||
ANN | → | - | →/↗ | → | ↓/↑ | ↓/↑ | - | ↑ | →/↗ | ↑ | ↑ | ||
MW | ↑ | ↓ | ↓/↑ | B → A | ↓ | ↑ | ↑ | ↘/→/↗ | ↗ | →/↑ | ↘/↑ | ||
RF | ↗ | ↓ | ↓ | B → C | - | - | - | ↘ | ↘ | ↘ | ↗ | ||
FT | ↑ | - | - | - | - | - | - | ↘ | ↘ | ↗ | ↘ | ||
Superheated steam | → | - | ↓ | → | ↓ | ↓ | - | ↘ | ↘ | ↑ | ↑ | ||
HP | ↗/↑ | ↗ | ↓/→ | B → B + V | ↓ | ↘ | - | ↘/→/↗ | → | → | ↘/→/↗ | ||
US | ↗ | ↑ | ↘ | →/B → V | ↗ | ↗ | ↗ | → | → | → | → | ||
Ionizing irradiation | →/↗ | ↓ | ↘ | → | ↗ | ↘/↗ | - | ↓ | ↓ | - | - | ||
Milling | ↑ | - | ↓ | loss | ↑ | ↑ | ↑ | ↓ | - | ↓ | ↓ | ||
EF | ↗ | ↑ | ↓/→ | - | ↓ | ↘/↓ | - | ↑ | → | →/↑ | ↑ | ||
Protein | |||||||||||||
Modification | Properties | ||||||||||||
Structure | Film forming properties | Hydration properties | Foaming properties | Emulsifying properties | |||||||||
α-helix content | β-sheet content | Particle size | Viscosity | Solubility | Surface hydrophobicity | Ability/Capability | Stability | Activity | Stability | ||||
Autoclaving | - | - | ↑ | → | - | - | - | ↗ | ↗ | ||||
HP | ↓ | ↑ | ↓ | - | ↓ 1/→ 2/↑ | ↗ | ↗ | ↗ | - | ↓ | |||
US | ↓ | ↑ | ↓ | - | → 2/↑ 2/3 | ↘ | ↑ | ↓ | ↑ | ↑ | |||
Potato-based films | |||||||||||||
Modification | Properties | ||||||||||||
Crystallinity | Film forming properties | Hydration properties | Thermal properties | Tensile properties | |||||||||
Degree | Viscosity | G’ | Smoothness | Solubility | Moisture content | Water absorption | WVP | Surface hydrophobicity | Glass transition/Thermal stability | Elongation modulus | Tensile strength | Elongation | |
HMT | - | - | - | - | ↘ | - | - | ↘ | - | - | - | ↗ | ↗ |
HP | - | ↑ | ↑ | ↑ | - | - | - | - | - | - | - | - | - |
US | ↑ 4 | - | - | - | ↓ | - | ↓ | ↘ 4 | - | ↗ 4 | - | ↑ | ↓ 4/↑ |
Ionizing irradiation | - | ↓ | - | - | ↘ | - | ↓ | - | ↑ | - | - | ↘/→ 5/↗ | →/↑ |
3.2. Chemical Modification
3.2.1. Chemical Substitution
Acetylation
Phosphorylation
Fatty Acid Esterification
Octenyl Succinylation
Citric Acid Esterification
Etherification
3.2.2. Chemical Cross-Linking
3.2.3. Degradation
Acid Hydrolysis
Oxidation
3.2.4. Conclusion Chemical Modification
Starch | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Modification | Properties | ||||||||||||||
Structure | Crystallinity | Film forming properties | Hydration properties | Thermal properties | Pasting properties | ||||||||||
Damaging | Amylose content | Degree | Type | Viscosity | Solubility | Swelling power | Water absorption capacity | Moisture content | Thermal stability | Gelatinization temperatures | Melting enthalpy | Pasting temp. | Final viscosity | ||
Acetylation | - | ↑ | ↑ | → | - | ↑ | - | - | ↑ | - | → | ↓ | - | - | |
Phosphorylation | - | → | - | - | ↑ | - | - | - | ↘ | - | ↘/→/↗ | →/↗ | - | - | |
FA esterification | - | - | - | - | - | - | - | - | - | ↑ | - | - | - | - | |
OSA modification | ↗ | ↗ | - | → | ↓ | - | ↗ | ↘ | - | - | →/↗ | ↘/→ | ↘ | ↓ | |
Citric acid esterification | ↗ | ↘/↗ | ↓ | → | - | ↓ | ↗ | ↗ | ↓ | - | ↗ | ↓ | ↘/→ | ↘/↑ | |
Etherification | ↗ | - | ↓ | - | - | ↑ | - | - | - | ↓ | - | - | ↓ | ↑ | |
Cross-linking | ↗/↑ | - | ↓ | - | ↑ | - | ↓ | - | - | ↓ | - | - | ↗ | ↑ | |
Acid hydrolysis | ↑ | ↓ | ↘ | → | ↓/↑ | ↑ | ↓ | - | ↓ | ↑ | ↘/↑ | ↓ | → | ↑ | |
Oxidation | →/↗ | ↓ | ↓/→/↑ | → | - | ↑ | ↓ | ↓ | - | - | - | - | ↗ | ↓ | |
Protein | |||||||||||||||
Modification | Properties | ||||||||||||||
Structure | Hydration properties | Thermal properties | Foaming properties | Emulsifying properties | |||||||||||
α-helix content | β-sheet content | Solubility | Water absorption capacity | Oil binding/absorption capacity | Thermal stability | Ability/Capability | Stability | Activity | Stability | ||||||
Acylation | - | - | - | ↑ | - | ↓ | - | - | - | - | |||||
Acetylation | - | - | ↗/↑ | ↑ | ↘/↗ | - | ↘ | ↘/↗ | ↓/↘ | ↑/→ | |||||
Phosphorylation | - | - | → | ↗ | ↑ | - | ↑ | - | ↑ | - | |||||
Potato-based films | |||||||||||||||
Modification | Properties | ||||||||||||||
Crystallinity | Film forming properties | Hydration properties | Thermal properties | Tensile properties | |||||||||||
Degree | Viscosity | G’ | Smoothness | Solubility | Moisture content | Water absorption | WVP | Surface hydrophobicity | Glass transition/Thermal stability | Elongation modulus | Tensile strength | Elongation | |||
Citric acid esterification | - | - | - | ↘ | ↓ | ↓ | ↓ | ↓ | ↑ | ↑ | - | ↑ | ↑ | ||
Cross-linking | - | ↑ | ↑ | - | → | - | ↑ | - | - | ↑ | ↑ | ↑ | ↓/→ | ||
Acid hydrolysis | - | - | - | ↑ | - | - | - | - | - | - | - | - | - | ||
Oxidation | ↘/↑ | - | - | - | ↓/→/↗ | - | - | ↘/→ | ↑ | - | ↓/↑ | ↘/→/↗ | ↓ |
3.3. Biochemical Modification
3.3.1. Enzymatic Substitution
3.3.2. Enzymatic Cross-Linking
3.3.3. Enzymatic De-/Branching
3.3.4. Enzymatic Hydrolysis
3.3.5. Conclusion Biochemical Modification
3.4. Dual Modification
3.4.1. Physical–Physical
3.4.2. Physical-Chemical
3.4.3. Physical–Biochemical
3.4.4. Chemical–Chemical
3.4.5. Chemical–Biochemical
3.4.6. Biochemical–Biochemical
4. Overall Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bundesanstalt für Landwirtschaft und Ernährung. Bericht zur Markt- und Versorgungslage Kartoffeln; Bundesanstalt für Landwirtschaft und Ernährung: Bonn, Germany, 2020. [Google Scholar]
- Gebrechristos, H.Y.; Chen, W. Utilization of potato peel as eco-friendly products: A review. Food Sci. Nutr. 2018, 6, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Landesanstalt für Entwicklung der Landwirtschaft und der ländlichen Räume, Schwäbisch Gmünd. Kartoffeln. Available online: https://lel.landwirtschaft-bw.de/pb/site/pbs-bw-mlr/get/documents_E973294336/MLR.LEL/PB5Documents/lel/Abteilung_4/Agrarm%C3%A4rkte%202020/04%20Kartoffeln_%28BW%29_2020.pdf (accessed on 30 November 2021).
- Willersinn, C.; Mack, G.; Mouron, P.; Keiser, A.; Siegrist, M. Quantity and quality of food losses along the Swiss potato supply chain: Stepwise investigation and the influence of quality standards on losses. Waste Manag. 2015, 46, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Mouron, P.; Willersinn, C.; Möbius, S.; Lansche, J. Environmental profile of the Swiss supply chain for French fries: Effects of food loss reduction, loss treatments and process modifications. Sustainability 2016, 8, 1214. [Google Scholar] [CrossRef]
- Kranert, M.; Hanfer, G.; Barabosz, J.; Schuller, H.; Leverez, D.; Kölbig, A.; Schneider, F.; Lebersorger, S.; Scherhaufer, S. Ermittlung der Weggeworfenen Lebensmittelmengen und Vorschläge zur Verminderung der Wegwerfrate bei Lebensmitteln in Deutschland. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/Lebensmittelverschwendung/Studie_Lebensmittelabfaelle_Langfassung.pdf?__blob=publicationFile&v=3 (accessed on 23 February 2022).
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Otterdijk, R.V.; Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention. Available online: https://www.semanticscholar.org/paper/Global-food-losses-and-food-waste%3A-extent%2C-causes-Gustavsson-Cederberg/19c0065b1ad3f83f5ce7b0b16742d137d0f2125e (accessed on 20 April 2022).
- Punjabi, M. The Potato Supply Chain to PepsiCo’s Frito Lay: India. Available online: https://www.fao.org/fileadmin/user_upload/ivc/PDF/Asia/15_Punjabi_potato_contract_farming_for_Pepsi_India_formatted.pdf (accessed on 8 December 2021).
- Sepelev, I.; Galoburda, R. Industrial potato peel waste application in food production: A review. Res. Rural. Dev. 2015, 1, 130–136. [Google Scholar]
- Maroušek, J.; Rowland, Z.; Valášková, K.; Král, P. Techno-economic assessment of potato waste management in developing economies. Clean Technol. Environ. Policy 2020, 22, 937–944. [Google Scholar] [CrossRef]
- Brandão, A.S.; Gonçalves, A.; Santos, J.M. Circular bioeconomy strategies: From scientific research to commercially viable products. J. Clean. Prod. 2021, 295, 126407. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Hyoun Kim, S.; Wong, J.W.C. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Puranik, N.M.; Jambhulkar, S.J.; Kulkarni, B.D. Valorization of potato peel: A biorefinery approach. Crit. Rev. Biotechnol. 2018, 38, 218–230. [Google Scholar] [CrossRef]
- Virtanen, S.; Chowreddy, R.R.; Irmak, S.; Honkapää, K.; Isom, L. Food industry co-streams: Potential raw materials for biodegradable mulch film applications. J. Polym. Environ. 2017, 25, 1110–1130. [Google Scholar] [CrossRef]
- Karki, D.B.; KC, Y.; Khanal, H.; Bhattarai, P.; Koirala, B.; Khatri, S.B. Analysis of biodegradable films of starch from potato waste. Asian Food Sci. J. 2020, 14, 28–40. [Google Scholar] [CrossRef]
- Artkan, E.B.; Bilgen, H.D. Production of bioplastic from potato peel waste and investigation of its biodegradability. Int. Adv. Res. Eng. J. 2019, 3, 93–97. [Google Scholar] [CrossRef]
- Rommi, K.; Rahikainen, J.; Vartiainen, J.; Holopainen, U.; Lahtinen, P.; Honkapää, K.; Lantto, R. Potato peeling costreams as raw materials for biopolymer film preparation. J. Appl. Polym. Sci. 2016, 133, 42862. [Google Scholar] [CrossRef]
- Schäfer, D.; Reinelt, M.; Stäbler, A.; Schmid, M. Mechanical and barrier properties of potato protein isolate-based films. Coatings 2018, 8, 58. [Google Scholar] [CrossRef]
- Waglay, A.; Achouri, A.; Karboune, S.; Zareifard, M.R.; L’Hocine, L. Pilot plant extraction of potato proteins and their structural and functional properties. LWT 2019, 113, 108275. [Google Scholar] [CrossRef]
- Chen, X.; Luo, J.; Liang, Z.; Zhu, J.; Li, L.; Wang, Q. Structural and physicochemical/digestion characteristics of potato starch-amino acid complexes prepared under hydrothermal conditions. Int. J. Biol. Macromol. 2020, 145, 1091–1098. [Google Scholar] [CrossRef]
- Chen, W.; Oldfield, T.L.; Cinelli, P.; Righetti, M.C.; Holden, N.M. Hybrid life cycle assessment of potato pulp valorisation in biocomposite production. J. Clean. Prod. 2020, 269, 122366. [Google Scholar] [CrossRef]
- Talja, R.A.; Helén, H.; Roos, Y.H.; Jouppila, K. Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohyd. Polym. 2007, 67, 288–295. [Google Scholar] [CrossRef]
- Miller, K.; Silcher, C.; Lindner, M.; Schmid, M. Effects of glycerol and sorbitol on optical, mechanical, and gas barrier properties of potato peel-based films. Packag. Technol. Sci. 2021, 34, 11–23. [Google Scholar] [CrossRef]
- Fu, Z.; Guo, S.; Sun, Y.; Wu, H.; Huang, Z.; Wu, M. Effect of glycerol content on the properties of potato flour films. Starch—Stärke 2021, 73, 2000203. [Google Scholar] [CrossRef]
- Kang, H.J.; Won, M.Y.; Lee, S.J.; Min, S.C. Plasticization and moisture sensitivity of potato peel-based biopolymer films. Food Sci. Biotechnol. 2015, 24, 1703–1710. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, L. Chemistry, processing, and nutritional attributes of potatoes–An introduction. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 23–26. ISBN 9780128000021. [Google Scholar]
- Leonel, M.; do Carmo, E.L.; Fernandes, A.M.; Soratto, R.P.; Ebúrneo, J.A.M.; Garcia, É.L.; Dos Santos, T.P.R. Chemical composition of potato tubers: The effect of cultivars and growth conditions. J. Food Sci. Technol. 2017, 54, 2372–2378. [Google Scholar] [CrossRef] [Green Version]
- Lieberei, R.; Reisdorff, C. Nutzpflanzen, 8th ed.; Thieme: Stuttgart, Germany, 2012; ISBN 9783131516381. [Google Scholar]
- Subroto, E.; Indiarto, R.; Marta, H.; Shalihah, S. Effect of heat-moisture treatment on functional and pasting properties of potato (Solanum tuberosum L. var. Granola) starch. Food Res. 2018, 3, 469–476. [Google Scholar] [CrossRef]
- Awokoya, K.N.; Odeleye, I.E.; Muhammed, Y.A.; Ndukwe, N.A.; Ibikunle, A.A. Impact of microwave irradiation energy levels on molecular rotation, structural, physicochemical, proximate and functional properties of potato (Ipomoea batatas) starch. Ghana J. Sci. 2021, 61, 57–72. [Google Scholar] [CrossRef]
- Van Koningsveld, G.A.; Gruppen, H.; Jongh, H.H.; de Wijngaards, G.; van Boekel, M.A.; Walstra, P.; Voragen, A.G. The solubility of potato proteins from industrial potato fruit juice as influenced by pH and various additives. J. Sci. Food Agric. 2002, 82, 134–142. [Google Scholar] [CrossRef]
- Løkra, S.; Strætkvern, K.O. Industrial proteins from potato juice. A review. Food 2009, 3, 88–95. [Google Scholar]
- Lee, C.H. A simple outline of methods for protein isolation and purification. Endocrinol. Metab. 2017, 32, 18–22. [Google Scholar] [CrossRef]
- Li, H.; Zeng, X.; Shi, W.; Zhang, H.; Huang, S.; Zhou, R.; Qin, X. Recovery and purification of potato proteins from potato starch wastewater by hollow fiber separation membrane integrated process. Innov. Food Sci. Emerg. Technol. 2020, 63, 102380. [Google Scholar] [CrossRef]
- Knorr, D.; Kohler, G.O.; Betschart, A.A. Potato protein concentrates: The influence of various methods of recovery upon yield, compositional and functional characteristics. J. Food Process. Preserv. 1977, 1, 235–247. [Google Scholar] [CrossRef]
- Waglay, A.; Karboune, S.; Alli, I. Potato protein isolates: Recovery and characterization of their properties. Food Chem. 2014, 142, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Cornejo-Ramírez, Y.I.; Martínez-Cruz, O.; Del Toro-Sánchez, C.L.; Wong-Corral, F.J.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J. The structural characteristics of starches and their functional properties. CyTA J. Food 2018, 16, 1003–1017. [Google Scholar] [CrossRef]
- Bertoft, E.; Blennow, A. Structure of Potato Starch. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 57–73. ISBN 9780128000021. [Google Scholar]
- Raigond, P.; Singh, B.; Dutt, S.; Chakrabarti, S.K. Potato; Springer: Singapore, 2020; ISBN 978-981-15-7661-4. [Google Scholar]
- Wang, S. Starch Structure, Functionality and Application in Foods; Springer: Singapore, 2020; ISBN 978-981-15-0621-5. [Google Scholar]
- Van Soest, J.J.G.; Vliegenthart, J.F.G. Crystallinity in starch plastics: Consequences for material properties. Trends Biotechnol. 1997, 15, 208–213. [Google Scholar] [CrossRef]
- Van Soest, J.J.; van Hullemann, S.H.; de Wit, D.; Vliegenthart, J.F. Crystallinity in starch bioplastics. Ind. Crops Prod. 1996, 5, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Liu, P.; Gao, W.; Wu, Z.; Yu, B.; Wang, R.; Cui, B.; Qiu, L.; Sun, C. Preparation of starch-lipid complex by ultrasonication and its film forming capacity. Food Hydrocoll. 2020, 99, 105340. [Google Scholar] [CrossRef]
- Frost, K.; Kaminski, D.; Kirwan, G.; Lascaris, E.; Shanks, R. Crystallinity and structure of starch using wide angle X-ray scattering. Carbohyd. Polym. 2009, 78, 543–548. [Google Scholar] [CrossRef]
- Karim, A.A.; Toon, L.C.; Lee, V.P.L.; Ong, W.Y.; Fazilah, A.; Noda, T. Effects of phosphorus contents on the gelatinization and retrogradation of potato starch. J. Food Sci. 2007, 72, C132–C138. [Google Scholar] [CrossRef]
- Thomasik, P. Specific physical and chemical properties of potato starch. Food 2009, 3, 45–56. [Google Scholar]
- Jagadeesan, S.; Govindaraju, I.; Mazumder, N. An insight into the ultrastructural and physiochemical characterization of potato starch: A review. Am. J. Potato Res. 2020, 97, 464–476. [Google Scholar] [CrossRef]
- Alvani, K.; Qi, X.; Tester, R.F.; Snape, C.E. Physico-chemical properties of potato starches. Food Chem. 2011, 125, 958–965. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef]
- Waglay, A.; Karboune, S. Potato proteins: Functional food ingredients. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 75–104. ISBN 9780128000021. [Google Scholar]
- Pots, A.M.; De Jongh, H.H.J.; Gruppen, H.; Hamer, R.J.; Voragen, A.G.J. Heat-induced conformational changes of patatin, the major potato tuber protein. Eur. J. Biochem. 1998, 252, 66–72. [Google Scholar] [CrossRef]
- Giuseppin, M.L.F.; van der Sluis, C.; Laus, M.C. Native Potato Protein Isolates. U.S. Patent 8,465,911, 10 November 2006. [Google Scholar]
- Fu, Y.; Liu, W.-N.; Soladoye, O.P. Towards potato protein utilisation: Insights into separation, functionality and bioactivity of patatin. Int. J. Food Sci. Technol. 2020, 55, 2314–2322. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Damgaard, H.; Greve-Poulsen, M.; Larsen, L.B.; Hammershøj, M. Foam and emulsion properties of potato protein isolate and purified fractions. Food Hydrocoll. 2018, 74, 367–378. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Damgaard, H.; Greve-Poulsen, M.; Sunds, A.V.; Larsen, L.B.; Hammershøj, M. Gel properties of potato protein and the isolated fractions of patatins and protease inhibitors—Impact of drying method, protein concentration, pH and ionic strength. Food Hydrocoll. 2019, 96, 246–258. [Google Scholar] [CrossRef]
- Bártová, V.; Bárta, J.; Jarošová, M. Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Appl. Microbiol. 2019, 103, 5533–5547. [Google Scholar] [CrossRef]
- Pouvreau, L.; Kroef, T.; Gruppen, H.; van Koningsveld, G.; van den Broek, L.A.M.; Voragen, A.G.J. Structure and stability of the potato cysteine protease inhibitor group (cv. Elkana). J. Agric. Food Chem. 2005, 53, 5739–5746. [Google Scholar] [CrossRef]
- Wijeyesakere, S.J.; Stuckey, J.A.; Richardson, R.J. The Crystal Structure of Native Patatin. PLoS ONE 2014, 9, e108245. [Google Scholar]
- Meulenbroek, E.M.; Thomassen, E.; Pannu, N.S. Crystal Structure of Potato Serine Protease Inhibitor. Crystallogr. Sect. D Biol. Crystallogr. 2012, 68, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Zink, J.; Wyrobnik, T.; Prinz, T.; Schmid, M. Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review. Int. J. Mol. Sci. 2016, 17, 1376. [Google Scholar] [CrossRef] [PubMed]
- Pęksa, A.; Miedzianka, J. Amino acid composition of enzymatically hydrolysed potato protein preparations. Czech J. Food Sci. 2014, 32, 265–272. [Google Scholar] [CrossRef]
- BeMiller, J.N.; Huber, K.C. Physical modification of food starch functionalities. Annu. Rev. Food Sci. Technol. 2015, 6, 19–69. [Google Scholar] [CrossRef] [PubMed]
- Grgić, I.; Ačkar, Đ.; Barišić, V.; Vlainić, M.; Knežević, N.; Medverec Knežević, Z. Nonthermal methods for starch modification—A review. J. Food Process. Preserv. 2019, 43, 1. [Google Scholar] [CrossRef]
- Han, Z.; Shi, R.; Sun, D.-W. Effects of novel physical processing techniques on the multi-structures of starch. Trends Food Sci. Technol. 2020, 97, 126–135. [Google Scholar] [CrossRef]
- Zia-Ud-Din; Xiong, H.; Fei, P. Physical and chemical modification of starches: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691–2705. [Google Scholar] [CrossRef]
- Maniglia, B.C.; Castanha, N.; Rojas, M.L.; Augusto, P.E.D. Emerging technologies to enhance starch performance. Curr. Opin. Food Sci. 2021, 37, 26–36. [Google Scholar] [CrossRef]
- Shi, M.; Gao, Q.; Liu, Y. Corn, potato, and wrinkled pea starches with heat-moisture treatment: Structure and digestibility. Cereal Chem. 2018, 95, 603–614. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Luo, Z.; Lu, X. Different variations in structures of A- and B-type starches subjected to microwave treatment and their relationships with digestibility. LWT 2019, 99, 179–187. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Li, S.; Wang, S.; Wang, S.; Copeland, L. Insights into structure and function of high pressure-modified starches with different crystalline polymorphs. Int. J. Biol. Macromol. 2017, 102, 414–424. [Google Scholar] [CrossRef]
- Rahman, M.H.; Mu, T.-H.; Zhang, M.; Ma, M.-M.; Sun, H.-N. Comparative study of the effects of high hydrostatic pressure on physicochemical, thermal, and structural properties of maize, potato, and sweet potato starches. J. Food Process. Preserv. 2020, 44, 2854. [Google Scholar] [CrossRef]
- Guillén, J.S. Modification of potato starch by emerging technologies. Trop. Agric. Res. 2021, 32, 480. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Halal, S.L.M.E.; Dias, A.R.G.; Zavareze, E.D.R. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohyd. Polym. 2021, 274, 118665. [Google Scholar] [CrossRef]
- Zhang, B.; Saleh, A.S.M.; Su, C.; Gong, B.; Zhao, K.; Zhang, G.; Li, W.; Yan, W. The molecular structure, morphology, and physicochemical property and digestibility of potato starch after repeated and continuous heat-moisture treatment. J. Food Sci. 2020, 85, 4215–4224. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-L.; Lin, J.-H.; Lin, J.-J.; Chang, Y.-H. Progressive alterations in crystalline structure of starches during heat-moisture treatment with varying iterations and holding times. Int. J. Biol. Macromol. 2019, 135, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.S.; de Bet, C.D.; Bisinella, R.Z.B.; Waiga, L.H.; Colman, T.A.D.; Schnitzler, E. Heat-moisture treatment (HMT) on blends from potato starch (PS) and sweet potato starch (SPS). J. Therm. Anal. Calorim. 2018, 133, 1491–1498. [Google Scholar] [CrossRef]
- Bartz, J.; da Rosa Zavareze, E.; Dias, A.R.G. Study of heat-moisture treatment of potato starch granules by chemical surface gelatinization. J. Sci. Food Agric. 2017, 97, 3114–3123. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, J.; Wang, S.; Wang, S. Annealing improves paste viscosity and stability of starch. Food Hydrocoll. 2017, 62, 203–211. [Google Scholar] [CrossRef]
- Xu, M.; Saleh, A.S.M.; Gong, B.; Li, B.; Jing, L.; Gou, M.; Jiang, H.; Li, W. The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Res. Int. 2018, 111, 324–333. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, W. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy. Sci. Rep. 2017, 7, 9311. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, L.; Hu, T.; Li, Z.; Chen, A.; Zhang, Z.; Wu, H.; Li, S.; Hou, X. Preparation of potato flour by freeze-thaw pretreatment: Effect of different thawing methods on hot-air drying process and physicochemical properties. LWT 2020, 133, 110157. [Google Scholar] [CrossRef]
- Ozturk, S.; Kong, F.; Trabelsi, S.; Singh, R.K. Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating. J. Food Eng. 2016, 169, 91–100. [Google Scholar] [CrossRef]
- Fan, D.; Wang, L.; Shen, H.; Huang, L.; Zhao, J.; Zhang, H. Ultrastructure of potato starch granules as affected by microwave treatment. Int. J. Food Prop. 2017, 20, S3189–S3194. [Google Scholar] [CrossRef]
- Zhu, H.; Li, D.; Li, S.; Wang, S. A novel method to improve heating uniformity in mid-high moisture potato starch with radio frequency assisted treatment. J. Food Eng. 2017, 206, 23–36. [Google Scholar] [CrossRef]
- Tao, Y.; Yan, B.; Fan, D.; Zhang, N.; Ma, S.; Wang, L.; Wu, Y.; Wang, M.; Zhao, J.; Zhang, H. Structural changes of starch subjected to microwave heating: A review from the perspective of dielectric properties. Trends Food Sci. Technol. 2020, 99, 593–607. [Google Scholar] [CrossRef]
- Oyeyinka, S.A.; Akintayo, O.A.; Adebo, O.A.; Kayitesi, E.; Njobeh, P.B. A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. Int. J. Biol. Macromol. 2021, 176, 87–95. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, Z.; Wang, S. Microwave processing: Effects and impacts on food components. Crit. Rev. Food Sci. Nutr. 2018, 58, 2476–2489. [Google Scholar] [CrossRef]
- Przetaczek-Rożnowska, I.; Fortuna, T.; Wodniak, M.; Łabanowska, M.; Pająk, P.; Królikowska, K. Properties of potato starch treated with microwave radiation and enriched with mineral additives. Int. J. Biol. Macromol. 2019, 124, 229–234. [Google Scholar] [CrossRef]
- Kumar, Y.; Singh, L.; Sharanagat, V.S.; Patel, A.; Kumar, K. Effect of microwave treatment (low power and varying time) on potato starch: Microstructure, thermo-functional, pasting and rheological properties. Int. J. Biol. Macromol. 2020, 155, 27–35. [Google Scholar] [CrossRef]
- Miernik, A.; Jakubowski, T. Response of potato starch granules to microwave radiation. J. Phys. Conf. Ser. 2021, 1782, 12018. [Google Scholar] [CrossRef]
- Xia, T.; Gou, M.; Zhang, G.; Li, W.; Jiang, H. Physical and structural properties of potato starch modified by dielectric treatment with different moisture content. Int. J. Biol. Macromol. 2018, 118, 1455–1462. [Google Scholar] [CrossRef]
- Villanueva, M.; Lamo, B.; de Harasym, J.; Ronda, F. Microwave radiation and protein addition modulate hydration, pasting and gel rheological characteristics of rice and potato starches. Carbohyd. Polym. 2018, 201, 374–381. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, L.; Fang, X.; Wang, Y.; Li, D.; Wang, L. Effects of intermittent radio frequency drying on structure and gelatinization properties of native potato flour. Food Res. Int. 2021, 139, 109807. [Google Scholar] [CrossRef]
- Zhang, C.; Lim, S.-T.; Chung, H.-J. Physical modification of potato starch using mild heating and freezing with minor addition of gums. Food Hydrocoll. 2019, 94, 294–303. [Google Scholar] [CrossRef]
- Wang, L.; Xie, B.; Xiong, G.; Wu, W.; Wang, J.; Qiao, Y.; Liao, L. The effect of freeze–thaw cycles on microstructure and physicochemical properties of four starch gels. Food Hydrocoll. 2013, 31, 61–67. [Google Scholar] [CrossRef]
- Li, J.; Shen, C.; Ge, B.; Wang, L.; Wang, R.; Luo, X.; Chen, Z. Preparation and application of potato flour with low gelatinization degree using flash drying. Dry. Technol. 2018, 36, 374–382. [Google Scholar] [CrossRef]
- Hu, X.; Guo, B.; Liu, C.; Yan, X.; Chen, J.; Luo, S.; Liu, Y.; Wang, H.; Yang, R.; Zhong, Y.; et al. Modification of potato starch by using superheated steam. Carbohyd. Polym. 2018, 198, 375–384. [Google Scholar] [CrossRef]
- Drozłowska, E.; Weronis, M.; Bartkowiak, A. The influence of thermal hydrolysis process on emulsifying properties of potato protein isolate. J. Food Sci. Technol. 2020, 57, 1131–1137. [Google Scholar] [CrossRef]
- Liu, Y.; Chao, C.; Yu, J.; Wang, S.; Wang, S.; Copeland, L. New insights into starch gelatinization by high pressure: Comparison with heat-gelatinization. Food Chem. 2020, 318, 126493. [Google Scholar] [CrossRef]
- Kunugi, S.; Tanaka, N. Cold denaturation of proteins under high pressure. Biochim. Biophys. Acta 2002, 1595, 329–344. [Google Scholar] [CrossRef]
- Baier, A.K.; Knorr, D. Influence of high isostatic pressure on structural and functional characteristics of potato protein. Food Res. Int. 2015, 77, 753–761. [Google Scholar] [CrossRef]
- Słomińska, L.; Zielonka, R.; Jarosławski, L.; Krupska, A.; Szlaferek, A.; Kowalski, W.; Tomaszewska-Gras, J.; Nowicki, M. High pressure impact on changes in potato starch granules. Pol. J. Chem. Technol. 2015, 17, 65–73. [Google Scholar] [CrossRef]
- Dos Santos Aguilar, J.G.; Cristianini, M.; Sato, H.H. Modification of enzymes by use of high-pressure homogenization. Food Res. Int. 2018, 109, 120–125. [Google Scholar] [CrossRef]
- Guo, X.; Chen, M.; Li, Y.; Dai, T.; Shuai, X.; Chen, J.; Liu, C. Modification of food macromolecules using dynamic high pressure microfluidization: A review. Trends Food Sci. Technol. 2020, 100, 223–234. [Google Scholar] [CrossRef]
- Castro, L.M.; Alexandre, E.M.; Saraiva, J.A.; Pintado, M. Impact of high pressure on starch properties: A review. Food Hydrocoll. 2020, 106, 105877. [Google Scholar] [CrossRef]
- Yang, Z.; Chaib, S.; Gu, Q.; Hemar, Y. Impact of pressure on physicochemical properties of starch dispersions. Food Hydrocoll. 2017, 68, 164–177. [Google Scholar] [CrossRef]
- He, X.; Luo, S.; Chen, M.; Xia, W.; Chen, J.; Liu, C. Effect of industry-scale microfluidization on structural and physicochemical properties of potato starch. Innov. Food Sci. Emerg. Technol. 2020, 60, 102278. [Google Scholar] [CrossRef]
- Hu, C.; Xiong, Z.; Xiong, H.; Chen, L.; Zhang, Z. Effects of dynamic high-pressure microfluidization treatment on the functional and structural properties of potato protein isolate and its complex with chitosan. Food Res. Int. 2021, 140, 109868. [Google Scholar] [CrossRef]
- Katzav, H.; Chirug, L.; Okun, Z.; Davidovich-Pinhas, M.; Shpigelman, A. Comparison of thermal and high-pressure gelation of potato protein isolates. Foods 2020, 9, 1041. [Google Scholar] [CrossRef]
- Kang, H.J.; Min, S.C. Potato peel-based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound. LWT 2010, 43, 903–909. [Google Scholar] [CrossRef]
- Patist, A.; Bates, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emerg. Technol. 2008, 9, 147–154. [Google Scholar] [CrossRef]
- Cárcel, J.A.; García-Pérez, J.V.; Benedito, J.; Mulet, A. Food process innovation through new technologies: Use of ultrasound. J. Food Eng. 2012, 110, 200–207. [Google Scholar] [CrossRef]
- Maniglia, B.C.; Castanha, N.; Le-Bail, P.; Le-Bail, A.; Augusto, P.E.D. Starch modification through environmentally friendly alternatives: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2482–2505. [Google Scholar] [CrossRef]
- Wang, X.; Majzoobi, M.; Farahnaky, A. Ultrasound-assisted modification of functional properties and biological activity of biopolymers: A review. Ultrason. Sonochem. 2020, 65, 105057. [Google Scholar] [CrossRef]
- Brodnjak, U.V. Influence of ultrasonic treatment on properties of bio-based coated paper. Prog. Org. Coat. 2017, 103, 93–100. [Google Scholar] [CrossRef]
- Sujka, M.; Jamroz, J. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocoll. 2013, 31, 413–419. [Google Scholar] [CrossRef]
- Sujka, M. Ultrasonic modification of starch—Impact on granules porosity. Ultrason. Sonochem. 2017, 37, 424–429. [Google Scholar] [CrossRef]
- Hu, A.; Li, Y.; Zheng, J. Dual-frequency ultrasonic effect on the structure and properties of starch with different size. LWT 2019, 106, 254–262. [Google Scholar] [CrossRef]
- Zhu, J.; Li, L.; Chen, L.; Li, X. Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocoll. 2012, 29, 116–122. [Google Scholar] [CrossRef]
- Bai, W.; Hébraud, P.; Ashokkumar, M.; Hemar, Y. Investigation on the pitting of potato starch granules during high frequency ultrasound treatment. Ultrason. Sonochem. 2017, 35, 547–555. [Google Scholar] [CrossRef]
- Nie, H.; Li, C.; Liu, P.-H.; Lei, C.-Y.; Li, J.-B. Retrogradation, gel texture properties, intrinsic viscosity and degradation mechanism of potato starch paste under ultrasonic irradiation. Food Hydrocoll. 2019, 95, 590–600. [Google Scholar] [CrossRef]
- Mao, C.; Wu, J.; Zhang, X.; Ma, F.; Cheng, Y. Improving the solubility and digestibility of potato protein with an online ultrasound-assisted pH shifting treatment at medium temperature. Foods 2020, 9, 1908. [Google Scholar] [CrossRef]
- Hussain, M.; Qayum, A.; Zhang, X.; Hao, X.; Liu, L.; Wang, Y.; Hussain, K.; Li, X. Improvement in bioactive, functional, structural and digestibility of potato protein and its fraction patatin via ultra-sonication. LWT 2021, 148, 111747. [Google Scholar] [CrossRef]
- Borah, P.P.; Das, P.; Badwaik, L.S. Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultrason. Sonochem. 2017, 36, 11–19. [Google Scholar] [CrossRef]
- Wang, R.; Liu, P.; Cui, B.; Kang, X.; Yu, B. Effects of different treatment methods on properties of potato starch-lauric acid complex and potato starch-based films. Int. J. Biol. Macromol. 2019, 124, 34–40. [Google Scholar] [CrossRef]
- Bashir, K.; Aggarwal, M. Physicochemical, structural and functional properties of native and irradiated starch: A review. J. Food Sci. Technol. 2019, 56, 513–523. [Google Scholar] [CrossRef]
- Zivanovic, S. Electron beam processing to improve the functionality of biodegradable food packaging. In Electron Beam Pasteurization and Complementary Food Processing Technologies; Pillai, S.D., Shayanfar, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 279–294. ISBN 9781782421009. [Google Scholar]
- Makuuchi, K.; Cheng, S. Radiation Processing of Polymer Materials and Its Industrial Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 978-0-470-58769-0. [Google Scholar]
- Zhu, F. Impact of γ-irradiation on structure, physicochemical properties, and applications of starch. Food Hydrocoll. 2016, 52, 201–212. [Google Scholar] [CrossRef]
- Rao, N.R.; Rao, B.S.; Reddy, S.V.S.R.; Rao, T.V. The effect of electron beam irradiation on physicochemical properties of potato starch. In Proceedings of the International Conference on Renewable Energy Research and Education (RERE-2018), Andhra Pradesh, India, 8–10 February 2018; p. 40030. [Google Scholar]
- Atrous, H.; Benbettaieb, N.; Chouaibi, M.; Attia, H.; Ghorbel, D. Changes in wheat and potato starches induced by gamma irradiation: A comparative macro and microscopic study. Int. J. Food Prop. 2017, 20, 1532–1546. [Google Scholar] [CrossRef]
- Teixeira, B.S.; Garcia, R.H.; Takinami, P.Y.; del Mastro, N.L. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch. Radiat. Phys. Chem. 2018, 142, 44–49. [Google Scholar] [CrossRef]
- Teixeira, B.S.; Chierentin, G.S.; Del Mastro, N.L. Impact of electron beam irradiation in potato starch films containing hibiscus aquous extract. Braz. J. Radiat. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Cieśla, K.; Sartowska, B. Modification of the microstructure of the films formed by gamma irradiated starch examined by SEM. Radiat. Phys. Chem. 2016, 118, 87–95. [Google Scholar] [CrossRef]
- Fu, Z.; Wu, M.; Zhang, H.; Wang, J. Retrogradation of partially gelatinised potato starch prepared by ball milling. Int. J. Food Sci. Technol. 2018, 53, 1065–1071. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.; Hou, Y.; Lang, S.; Wang, C.; Zhang, D. Changes in particle size, structure, and physicochemical properties of potato starch after jet-milling treatments. J. Food Process. Preserv. 2020, 44, 1. [Google Scholar] [CrossRef]
- Juarez-Arellano, E.A.; Urzua-Valenzuela, M.; Peña-Rico, M.A.; Aparicio-Saguilan, A.; Valera-Zaragoza, M.; Huerta-Heredia, A.A.; Navarro-Mtz, A.K. Planetary ball-mill as a versatile tool to controlled potato starch modification to broaden its industrial applications. Food Res. Int. 2021, 140, 109870. [Google Scholar] [CrossRef] [PubMed]
- Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A.; Xanthakis, E. The principles of high voltage electric field and its application in food processing: A review. Food Res. Int. 2016, 89, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Gao, Q. Effects of high-voltage electric field treatment on physicochemical properties of potato starch. J. Food Meas. Charact. 2019, 13, 3069–3076. [Google Scholar] [CrossRef]
- Zhu, F. Modifications of starch by electric field based techniques. Trends Food Sci. Technol. 2018, 75, 158–169. [Google Scholar] [CrossRef]
- Li, D.; Yang, N.; Jin, Y.; Zhou, Y.; Xie, Z.; Jin, Z.; Xu, X. Changes in crystal structure and physicochemical properties of potato starch treated by induced electric field. Carbohyd. Polym. 2016, 153, 535–541. [Google Scholar] [CrossRef]
- Garavand, F.; Rouhi, M.; Razavi, S.H.; Cacciotti, I.; Mohammadi, R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017, 104, 687–707. [Google Scholar] [CrossRef]
- Celikci, N.; Dolaz, M.; Colakoglu, A.S. An environmentally friendly carton adhesive from acidic hydrolysis of waste potato starch. Int. J. Polym. Anal. Charact. 2021, 26, 97–110. [Google Scholar] [CrossRef]
- Vanier, N.L.; El Halal, S.L.M.; Dias, A.R.G.; da Rosa Zavareze, E. Molecular structure, functionality and applications of oxidized starches: A review. Food Chem. 2017, 221, 1546–1559. [Google Scholar] [CrossRef]
- Vanmarcke, A.; Leroy, L.; Stoclet, G.; Duchatel-Crépy, L.; Lefebvre, J.-M.; Joly, N.; Gaucher, V. Influence of fatty chain length and starch composition on structure and properties of fully substituted fatty acid starch esters. Carbohyd. Polym. 2017, 164, 249–257. [Google Scholar] [CrossRef]
- Almonaityte, K.; Bendoraitiene, J.; Babelyte, M.; Rosliuk, D.; Rutkaite, R. Structure and properties of cationic starches synthesized by using 3-chloro-2-hydroxypropyltrimethylammonium chloride. Int. J. Biol. Macromol. 2020, 164, 2010–2017. [Google Scholar] [CrossRef]
- Wu, H.; Lei, Y.; Lu, J.; Zhu, R.; Xiao, D.; Jiao, C.; Xia, R.; Zhang, Z.; Shen, G.; Liu, Y.; et al. Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocoll. 2019, 97, 105208. [Google Scholar] [CrossRef]
- Barbosa, J.V.; Martins, J.; Carvalho, L.; Bastos, M.M.; Magalhães, F.D. Effect of peroxide oxidation on the expansion of potato starch foam. Ind. Crops Prod. 2019, 137, 428–435. [Google Scholar] [CrossRef]
- Shah, U.; Naqash, F.; Gani, A.; Masoodi, F.A. Art and science behind modified starch edible films and coatings: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 568–580. [Google Scholar] [CrossRef]
- Haq, F.; Yu, H.; Wang, L.; Teng, L.; Haroon, M.; Khan, R.U.; Mehmood, S.; Bilal-Ul-Amin; Ullah, R.S.; Khan, A.; et al. Advances in chemical modifications of starches and their applications. Carbohyd. Res. 2019, 476, 12–35. [Google Scholar] [CrossRef]
- Haroon, M.; Wang, L.; Yu, H.; Abbasi, N.M.; Zain-ul-Abdin, Z.-A.; Saleem, M.; Khan, R.U.; Ullah, R.S.; Chen, Q.; Wu, J. Chemical modification of starch and its application as an adsorbent material. RSC Adv. 2016, 6, 78264–78285. [Google Scholar] [CrossRef]
- Wang, X.; Huang, L.; Zhang, C.; Deng, Y.; Xie, P.; Liu, L.; Cheng, J. Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohyd. Polym. 2020, 240, 116292. [Google Scholar] [CrossRef]
- Xu, J.; Andrews, T.D.; Shi, Y.-C. Recent advances in the preparation and characterization of intermediately to highly esterified and etherified starches: A review. Starch-Stärke 2020, 72, 1900238. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Huang, C.; Zhu, J.; Lin, A.H.-M.; Chen, L.; Li, L. Inhibition of plasticizer migration from packaging to foods during microwave heating by controlling the esterified starch film structure. Food Control. 2016, 66, 130–136. [Google Scholar] [CrossRef]
- Capezza, A.J.; Glad, D.; Özeren, H.D.; Newson, W.R.; Olsson, R.T.; Johansson, E.; Hedenqvist, M.S. Novel sustainable superabsorbents: A one-pot method for functionalization of side-stream potato proteins. ACS Sustain. Chem. Eng. 2019, 7, 17845–17854. [Google Scholar] [CrossRef]
- Rożnowski, J.; Juszczak, L.; Szwaja, B.; Przetaczek-Rożnowska, I. Effect of esterification conditions on the physicochemical properties of phosphorylated potato starch. Polymers 2021, 13, 2548. [Google Scholar] [CrossRef]
- Remya, R.; Jyothi, A.N.; Sreekumar, J. Effect of chemical modification with citric acid on the physicochemical properties and resistant starch formation in different starches. Carbohyd. Polym. 2018, 202, 29–38. [Google Scholar] [CrossRef]
- Van Hung, P.; Vien, N.L.; Lan Phi, N.T. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chem. 2016, 191, 67–73. [Google Scholar] [CrossRef]
- Mbougueng, P.D.; Tenin, D.; Scher, J.; Tchiégang, C. Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. J. Food Eng. 2012, 108, 320–326. [Google Scholar] [CrossRef]
- Zięba, T.; Kapelko, M.; Szumny, A. Effect of preparation method on the properties of potato starch acetates with an equal degree of substitution. Carbohyd. Polym. 2013, 94, 193–198. [Google Scholar] [CrossRef]
- Miedzianka, J.; Pęksa, A.; Aniołowska, M. Properties of acetylated potato protein preparations. Food Chem. 2012, 133, 1283–1291. [Google Scholar] [CrossRef]
- Miedzianka, J.; Pęksa, A. Effect of pH on phosphorylation of potato protein isolate. Food Chem. 2013, 138, 2321–2326. [Google Scholar] [CrossRef]
- Wang, C.; Tang, C.-H.; Fu, X.; Huang, Q.; Zhang, B. Granular size of potato starch affects structural properties, octenylsuccinic anhydride modification and flowability. Food Chem. 2016, 212, 453–459. [Google Scholar] [CrossRef]
- Won, C.; Jin, Y.I.; Chang, D.-C.; Kim, M.; Lee, Y.; Gansean, P.; Lee, Y.-K.; Chang, Y.H. Rheological, pasting, thermal and retrogradation properties of octenyl succinic anhydride modified potato starch. Food Sci. Technol. 2017, 37, 321–327. [Google Scholar] [CrossRef]
- Won, C.; Jin, Y.; Kim, M.; Lee, Y.; Chang, Y.H. Structural and rheological properties of potato starch affected by degree of substitution by octenyl succinic anhydride. Int. J. Food Prop. 2017, 20, 3076–3089. [Google Scholar] [CrossRef]
- Remya, R.; Jyothi, A.N.; Sreekumar, J. Comparative study of RS4 type resistant starches derived from cassava and potato starches via octenyl succinylation. Starch-Stärke 2017, 69, 1600264. [Google Scholar] [CrossRef]
- Martins, P.C.; Gutkoski, L.C.; Martins, V.G. Impact of acid hydrolysis and esterification process in rice and potato starch properties. Int. J. Biol. Macromol. 2018, 120, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Kapelko-Żeberska, M.; Zięba, T.; Pietrzak, W.; Gryszkin, A. Effect of citric acid esterification conditions on the properties of the obtained resistant starch. Int. J. Food Sci. Technol. 2016, 51, 1647–1654. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, L.; Ren, M.-H.; BeMiller, J.N. Developments in hydroxypropylation of starch: A review. Starch-Stärke 2019, 71, 1800167. [Google Scholar] [CrossRef]
- Prajapati, N.K.; Patel, N.K.; Sinha, V.K. Optimization of reaction condition for carboxylicpropyl starch from potato starch. Int. J. Plast. Technol. 2018, 22, 104–114. [Google Scholar] [CrossRef]
- Öztürk, Y.S.; Dolaz, M. Synthesis and characterization of hydroxyethyl starch from chips wastes under microwave irradiation. J. Polym. Environ. 2021, 29, 948–957. [Google Scholar] [CrossRef]
- Kou, T.; Gao, Q. New insight in crosslinking degree determination for crosslinked starch. Carbohyd. Res. 2018, 458–459, 13–18. [Google Scholar] [CrossRef]
- Shulga, O.; Simurova, N.; Shulga, S.; Smirnova, J. Modification of potato starch by acetylmalic acid chloroanhydride and physicochemical research of the new product. Int. J. Polym. Sci. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Heo, H.; Lee, Y.-K.; Chang, Y.H. Rheaological, pasting, and structural properties of potato starch by cross-linking. Int. J. Food Prop. 2017, 2, 1–13. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Johansson, C. Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents. Carbohyd. Polym. 2016, 151, 103–112. [Google Scholar] [CrossRef]
- Sun, B.; Tian, Y.; Wei, B.; Chen, L.; Bi, Y.; Jin, Z. Effect of reaction solvents on the multi-scale structure of potato starch during acid treatment. Int. J. Biol. Macromol. 2017, 97, 67–75. [Google Scholar] [CrossRef]
- Merino, D.; Paul, U.C.; Athanassiou, A. Bio-based plastic films prepared from potato peels using mild acid hydrolysis followed by plasticization with a polyglycerol. Food Packag. Shelf Life 2021, 29, 100707. [Google Scholar] [CrossRef]
- Hutla, P.; Kolaříková, M.; Hájek, D.; Doležal, P.; Hausvater, E.; Petráčková, B. Ozone treatment of stored potato tubers. Agron. Res. 2020, 18, 100–112. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, Q.; Zhang, H.; Chen, Q.; Kong, B. Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. Int. J. Biol. Macromol. 2016, 84, 410–417. [Google Scholar] [CrossRef]
- Castanha, N.; Matta Junior, M.D.D.; Augusto, P.E.D. Potato starch modification using the ozone technology. Food Hydrocoll. 2017, 66, 343–356. [Google Scholar] [CrossRef] [Green Version]
- Castanha, N.; Santos, D.N.E.; Cunha, R.L.; Augusto, P.E.D. Properties and possible applications of ozone-modified potato starch. Food Res. Int. 2019, 116, 1192–1201. [Google Scholar] [CrossRef]
- La Fuente, C.I.A.; Castanha, N.; Maniglia, B.C.; Tadini, C.C.; Augusto, P.E.D. Biodegradable films produced from ozone-modified potato starch. J. Package. Technol. Res. 2020, 4, 3–11. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Henkes, A.K.; Bruni, G.P.; Viana, L.A.N.; Moura, C.M.; de Flores, W.H.; Galio, A.F. Fabrication and characterization of native and oxidized potato starch biodegradable films. Food Biophys. 2018, 13, 163–174. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Roque, V.R.; Roquete, A.P.J.; Mossmann, A.; Viana, L.A.N.; Henkes, A.K.; Luiz, C.D.C.; Galio, A.F.; Da Zavareze, E.R. Mechanical analysis of biodegradable films from native and chemically modified potato starches. Mater. Sci. Forum 2016, 869, 830–834. [Google Scholar] [CrossRef]
- Boruczkowska, H.; Boruczkowski, T.; Gubica, T.; Anioł, M.; Tomaszewska-Ciosk, E. Analysis of the chemical structure of insoluble products of enzymatic esterification of starch and transesterification of acetylated starch with oleic acid by solid-state CP/MAS 13 C NMR. Starch-Stärke 2016, 68, 1180–1186. [Google Scholar] [CrossRef]
- Zarski, A.; Ptak, S.; Siemion, P.; Kapusniak, J. Esterification of potato starch by a biocatalysed reaction in an ionic liquid. Carbohyd. Polym. 2016, 137, 657–663. [Google Scholar] [CrossRef]
- Li, M.; Karboune, S.; Light, K.; Kermasha, S. Oxidative cross-linking of potato proteins by fungal laccases: Reaction kinetics and effects on the structural and functional properties. Innov. Food Sci. Emerg. Technol. 2021, 71, 102723. [Google Scholar] [CrossRef]
- Isaschar-Ovdat, S.; Fishman, A. Crosslinking of food proteins mediated by oxidative enzymes—A review. Trends Food Sci. Technol. 2018, 72, 134–143. [Google Scholar] [CrossRef]
- Glusac, J.; Isaschar-Ovdat, S.; Fishman, A.; Kukavica, B. Partial characterization of bean and maize root peroxidases and their ability to crosslink potato protein. Arch. Biol. Sci. 2019, 71, 293–303. [Google Scholar] [CrossRef]
- Gui, Y.; Li, J.; Zhu, Y.; Guo, L. Roles of four enzyme crosslinks on structural, thermal and gel properties of potato proteins. LWT 2020, 123, 109116. [Google Scholar] [CrossRef]
- Li, M.; Blecker, C.; Karboune, S. Molecular and air-water interfacial properties of potato protein upon modification via laccase-catalyzed cross-linking and conjugation with sugar beet pectin. Food Hydrocoll. 2021, 112, 106236. [Google Scholar] [CrossRef]
- Zhu, Y.; Tao, H.; Janaswamy, S.; Zou, F.; Cui, B.; Guo, L. The functionality of laccase- or peroxidase-treated potato flour: Role of interactions between protein and protein/starch. Food Chem. 2021, 341, 128082. [Google Scholar] [CrossRef]
- Glusac, J.; Isaschar-Ovdat, S.; Kukavica, B.; Fishman, A. Oil-in-water emulsions stabilized by tyrosinase-crosslinked potato protein. Food Res. Int. 2017, 100, 407–415. [Google Scholar] [CrossRef]
- Gui, Y.; Zou, F.; Zhu, Y.; Li, J.; Wang, N.; Guo, L.; Cui, B. The structural, thermal, pasting and gel properties of the mixtures of enzyme-treated potato protein and potato starch. LWT 2022, 154, 112882. [Google Scholar] [CrossRef]
- Wang, R.; Liu, P.; Cui, B.; Kang, X.; Yu, B.; Qiu, L.; Sun, C. Effects of pullulanase debranching on the properties of potato starch-lauric acid complex and potato starch-based film. Int. J. Biol. Macromol. 2020, 156, 1330–1336. [Google Scholar] [CrossRef]
- Guo, L.; Deng, Y.; Lu, L.; Zou, F.; Cui, B. Synergistic effects of branching enzyme and transglucosidase on the modification of potato starch granules. Int. J. Biol. Macromol. 2019, 130, 499–507. [Google Scholar] [CrossRef]
- Ulbrich, M.; Asiri, S.A.; Bussert, R.; Flöter, E. Enzymatic modification of granular potato starch using isoamylase—Investigation of morphological, physicochemical, molecular, and techno-functional properties. Starch-Stärke 2021, 73, 2000080. [Google Scholar] [CrossRef]
- Asiri, S.A.; Ulbrich, M.; Flöter, E. Partial hydrolysis of granular potato starch using α-amylase—Effect on physicochemical, molecular, and functional properties. Starch-Stärke 2019, 71, 1800253. [Google Scholar] [CrossRef]
- Guo, L.; Li, J.; Li, H.; Zhu, Y.; Cui, B. The structure property and adsorption capacity of new enzyme-treated potato and sweet potato starches. Int. J. Biol. Macromol. 2020, 144, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Vafina, A.; Proskurina, V.; Vorobiev, V.; Evtugin, V.G.; Egkova, G.; Nikitina, E. Physicochemical and morphological characterization of potato starch modified by bacterial amylases for food industry applications. J. Chem. 2018, 2018, 1627540. [Google Scholar] [CrossRef] [Green Version]
- Akbari, N.; Mohammadzadeh Milani, J.; Biparva, P. Functional and conformational properties of proteolytic enzyme-modified potato protein isolate. J. Sci. Food Agric. 2020, 100, 1320–1327. [Google Scholar] [CrossRef]
- Galves, C.; Galli, G.; Miranda, C.G.; Kurozawa, L.E. Improving the emulsifying property of potato protein by hydrolysis: An application as encapsulating agent with maltodextrin. Innov. Food Sci. Emerg. Technol. 2021, 70, 102696. [Google Scholar] [CrossRef]
- Miedzianka, J.; Pęksa, A.; Pokora, M.; Rytel, E.; Tajner-Czopek, A.; Kita, A. Improving the properties of fodder potato protein concentrate by enzymatic hydrolysis. Food Chem. 2014, 159, 512–518. [Google Scholar] [CrossRef]
- Wang, S.; Guo, P.; Xiang, F.; Wang, J.; Yu, J.; Wang, S. Effect of dual modification by annealing and ultrahigh pressure on properties of starches with different polymorphs. Carbohyd. Polym. 2017, 174, 549–557. [Google Scholar] [CrossRef]
- Colussi, R.; Kringel, D.; Kaur, L.; da Rosa Zavareze, E.; Dias, A.R.G.; Singh, J. Dual modification of potato starch: Effects of heat-moisture and high pressure treatments on starch structure and functionalities. Food Chem. 2020, 318, 126475. [Google Scholar] [CrossRef]
- Liu, C.; Song, M.; Liu, L.; Hong, J.; Guan, E.; Bian, K.; Zheng, X. Effect of heat-moisture treatment on the structure and physicochemical properties of ball mill damaged starches from different botanical sources. Int. J. Biol. Macromol. 2020, 156, 403–410. [Google Scholar] [CrossRef]
- Wang, S.; Hu, X.; Wang, Z.; Bao, Q.; Zhou, B.; Li, T.; Li, S. Preparation and characterization of highly lipophilic modified potato starch by ultrasound and freeze-thaw treatments. Ultrason. Sonochem. 2020, 64, 105054. [Google Scholar] [CrossRef]
- Chi, C.; Li, X.; Lu, P.; Miao, S.; Zhang, Y.; Chen, L. Dry heating and annealing treatment synergistically modulate starch structure and digestibility. Int. J. Biol. Macromol. 2019, 137, 554–561. [Google Scholar] [CrossRef]
- Li, Y.-D.; Xu, T.-C.; Xiao, J.-X.; Zong, A.-Z.; Qiu, B.; Jia, M.; Liu, L.-N.; Liu, W. Efficacy of potato resistant starch prepared by microwave-toughening treatment. Carbohyd. Polym. 2018, 192, 299–307. [Google Scholar] [CrossRef]
- Cao, M.; Gao, Q. Effect of dual modification with ultrasonic and electric field on potato starch. Int. J. Biol. Macromol. 2020, 150, 637–643. [Google Scholar] [CrossRef]
- Ashogbon, A.O. Dual modification of various starches: Synthesis, properties and applications. Food Chem. 2021, 342, 128325. [Google Scholar] [CrossRef]
- Cao, M.; Gao, Q. Internal structure of high degree substitution acetylated potato starch by chemical surface gelatinization. Int. J. Biol. Macromol. 2020, 145, 133–140. [Google Scholar] [CrossRef]
- Chen, B.-R.; Wen, Q.-H.; Zeng, X.-A.; Abdul, R.; Roobab, U.; Xu, F.-Y. Pulsed electric field assisted modification of octenyl succinylated potato starch and its influence on pasting properties. Carbohyd. Polym. 2021, 254, 117294. [Google Scholar] [CrossRef]
- Hong, J.; Zeng, X.-A.; Han, Z.; Brennan, C.S. Effect of pulsed electric fields treatment on the nanostructure of esterified potato starch and their potential glycemic digestibility. Innov. Food Sci. Emerg. Technol. 2018, 45, 438–446. [Google Scholar] [CrossRef]
- Zhao, K.; Li, B.; Xu, M.; Jing, L.; Gou, M.; Yu, Z.; Zheng, J.; Li, W. Microwave pretreated esterification improved the substitution degree, structural and physicochemical properties of potato starch esters. LWT 2018, 90, 116–123. [Google Scholar] [CrossRef]
- Ulbrich, M.; Bai, Y.; Flöter, E. The supporting effect of ultrasound on the acid hydrolysis of granular potato starch. Carbohyd. Polym. 2020, 230, 115633. [Google Scholar] [CrossRef]
- Zhang, H.; He, F.; Wang, T.; Chen, G. Thermal, pasting, and rheological properties of potato starch dual-treated with CaCl2 and dry heat. LWT 2021, 146, 111467. [Google Scholar] [CrossRef]
- Zięba, T.; Wilczak, A.; Kobryń, J.; Musiał, W.; Kapelko-Żeberska, M.; Gryszkin, A.; Meisel, M. The annealing of acetylated potato starch with various substitution degrees. Molecules 2021, 26, 2096. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, Y.; Wu, J.; Ofori Donkor, P.; Li, T.; Ma, H. Improving the enzymolysis efficiency of potato protein by simultaneous dual-frequency energy-gathered ultrasound pretreatment: Thermodynamics and kinetics. Ultrason. Sonochem. 2017, 37, 351–359. [Google Scholar] [CrossRef]
- Mu, T.-H.; Zhang, M.; Raad, L.; Sun, H.-N.; Wang, C. Effect of α-amylase degradation on physicochemical properties of pre-high hydrostatic pressure-treated potato starch. PLoS ONE 2015, 10, e0143620. [Google Scholar] [CrossRef]
- Qi, X.; Tester, R.F. Heat and moisture modification of native starch granules on susceptibility to amylase hydrolysis. Starch-Stärke 2016, 68, 816–820. [Google Scholar] [CrossRef]
- Wang, J.; Ren, F.; Huang, H.; Wang, Y.; Copeland, L.; Wang, S.; Wang, S. Effect of CaCl2 pre-treatment on the succinylation of potato starch. Food Chem. 2019, 288, 291–296. [Google Scholar] [CrossRef]
- Li, L.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Synergistic effect of sodium dodecyl sulfate and salts on the gelation properties of acid-hydrolyzed-hydroxypropylated potato starch. LWT 2018, 93, 556–562. [Google Scholar] [CrossRef]
- He, X.; Gong, X.; Li, W.; Cao, W.; Yan, J.; Guo, R.; Niu, B.; Jia, L. Preparation and characterization of amphiphilic composites made with double-modified (etherified and esterified) potato starches. Starch-Stärke 2019, 71, 1900089. [Google Scholar] [CrossRef]
- González-Soto, R.A.; Núñez-Santiago, M.C.; Bello-Pérez, L.A. Preparation and partial characterization of films made with dual-modified (acetylation and crosslinking) potato starch. J. Sci. Food Agric. 2019, 99, 3134–3141. [Google Scholar] [CrossRef]
Amino Acid | Abbreviation | Range (%) | Reactive Groups |
---|---|---|---|
Cysteine | Cys | 0.2–1.3 | Sulfhydryl |
Tryptophan | Try | 0.3–1.9 | Indole |
Methionine | Met | 1.2–2.25 | Thioester |
Histidine | His | 2.0–2.5 | Imidazole |
Isoleucine | Iso | 3.7–5.8 | |
Glycine | Gly | 4.3–6.1 | |
Tyrosine | Tyr | 4.5–5.7 | Hydroxyl |
Threonine | Thr | 4.6–6.5 | Hydroxyl |
Alanine | Ala | 4.6–5.6 | |
Proline | Pro | 4.7–5.6 | |
Arginine | Arg | 4.7–5.7 | Guanidino |
Phenylalanine | Phe | 4.8–6.5 | |
Valine | Val | 4.9–7.4 | |
Serine | Ser | 4.9–5.9 | Hydroxyl |
Lysine | Lys | 6.7–10.1 | Amino |
Leucine | Leu | 9.6–10.7 | |
Glutamic acid | Glu | 9.6–11.8 | Carboxyl |
Aspartic acid | Asp | 11.7–13.9 | Carboxyl |
Starch | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Modification | Properties | ||||||||||||||
Structure | Crystallinity | Film forming properties | Hydration properties | Thermal properties | Pasting properties | ||||||||||
Damaging | Amylose content | Degree | Type | Viscosity | Solubility | Swelling power | Water absorption capacity | Moisture content | Thermal stability | Gelatinization temperatures | Melting enthalpy | Pasting temp. | Final viscosity | ||
Substitution | ↑ | - | loss | loss | - | - | - | - | - | ↓ | - | - | - | - | |
Branching | ↑ | ↓ | ↓ | B → C | ↑ | ↑ | - | - | - | - | ↓ | ↓ | - | - | |
Debranching | ↑ | - | - | → | → | → | - | - | - | → | → | - | - | - | |
Hydrolysis | ↗/↑ | ↓ | ↑ | - | ↓ | ↑ | - | - | → | ↓ | ↓/→ | → | → | ↓ | |
Protein | |||||||||||||||
Modification | Properties | ||||||||||||||
Enzyme | Structure | Crystallinity | Rheological properties | Hydration properties | Thermal properties | Foaming properties | Emulsifying properties | ||||||||
α-helix content | β-sheet content | Degree | Solubility | Stability | Ability/Capability | Stability | Activity | Stability | |||||||
Cross-linking | Transglucosidase | → | ↑ | ↓ | ↑ | - | ↑ | - | - | - | - | ||||
Peroxidase | ↘ | ↑ | ↓ | ↑ | - | ↑ | - | - | - | - | |||||
Tyrosinase | ↘ | ↑ | ↓ | ↑ | - | →/↗ | - | - | ↑ | ↑ | |||||
Laccase | ↘ | ↑ | ↓ | ↑ | - | → | - | - | - | - | |||||
Hydrolysis | Alcalase | ↑ | ↓ | - | - | ↑ | - | ↑ | ↓ | ↑ | ↑ | ||||
Protease | - | - | - | - | - | - | - | - | ↗ | - | |||||
Potato-based films | |||||||||||||||
Modification | Properties | ||||||||||||||
Crystallinity | Film forming properties | Hydration properties | Thermal properties | Tensile properties | |||||||||||
Degree | Viscosity | G’ | Smoothness | Solubility | Moisture content | Water absorption | WVP | Surface hydrophobicity | Tg/Thermal stability | Elongation modulus | Tensile strength | Elongation | |||
Debranching | - | - | - | ↑1 | - | - | - | ↓ 1 | - | - | - | ↑ 1 | ↓ 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, K.; Reichert, C.L.; Schmid, M.; Loeffler, M. Physical, Chemical and Biochemical Modification Approaches of Potato (Peel) Constituents for Bio-Based Food Packaging Concepts: A Review. Foods 2022, 11, 2927. https://doi.org/10.3390/foods11182927
Miller K, Reichert CL, Schmid M, Loeffler M. Physical, Chemical and Biochemical Modification Approaches of Potato (Peel) Constituents for Bio-Based Food Packaging Concepts: A Review. Foods. 2022; 11(18):2927. https://doi.org/10.3390/foods11182927
Chicago/Turabian StyleMiller, Katharina, Corina L. Reichert, Markus Schmid, and Myriam Loeffler. 2022. "Physical, Chemical and Biochemical Modification Approaches of Potato (Peel) Constituents for Bio-Based Food Packaging Concepts: A Review" Foods 11, no. 18: 2927. https://doi.org/10.3390/foods11182927
APA StyleMiller, K., Reichert, C. L., Schmid, M., & Loeffler, M. (2022). Physical, Chemical and Biochemical Modification Approaches of Potato (Peel) Constituents for Bio-Based Food Packaging Concepts: A Review. Foods, 11(18), 2927. https://doi.org/10.3390/foods11182927