Mathematical Modeling of the Effects of Temperature and Modified Atmosphere Packaging on the Growth Kinetics of Pseudomonas Lundensis and Shewanella Putrefaciens in Chilled Chicken
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Bacterial Suspension
2.2. Sample Preparation and Inoculation
2.3. Microbiological Analysis
2.4. Detection of Corruption Characteristics
2.4.1. Total Volatile Basic Nitrogen (TVB-N) Assay
2.4.2. Lipid Oxidation
2.5. Growth Kinetics and Mathematical Modeling
2.5.1. Primary Models
2.5.2. Secondary Models
2.5.3. Validation of the Predictive Models
2.6. Curve Fitting and Statistical Analysis
3. Results and Discussion
3.1. Microbiological Analyses of Chilled Chicken
3.2. Analysis of Spoilage Characteristics
3.2.1. TVB-N during Storage
3.2.2. Lipid Oxidation
3.3. Mathematical Modeling
3.3.1. Primary Models
3.3.2. Secondary Model
3.4. Model Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chmiel, M.; Hac-Szymanczuk, E.; Adamczak, L.; Pietrzak, D.; Florowski, T.; Cegielka, A. Quality changes of chicken breast meat packaged in a normal and in a modified atmosphere. J. Appl. Poult. Res. 2018, 27, 349–362. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, H.; Chen, L.; Zhang, S.; Wu, P.; Xie, K.; Pan, Z.; Zhang, G.; Dai, G.; Wu, H.; et al. Characterization of chilled chicken spoilage using an integrated microbiome and metabolomics analysis. Food Res. Int. 2021, 144, 110328. [Google Scholar] [CrossRef]
- Hilgarth, M.; Lehner, E.M.; Behr, J.; Vogel, R.F. Diversity and anaerobic growth of Pseudomonas spp. isolated from modified atmosphere packaged minced beef. J. Appl. Microbiol. 2019, 127, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Guillard, V.; Couvert, O.; Stahl, V.; Hanin, A.; Denis, C.; Huchet, V.; Chaix, E.; Loriot, C.; Vincelot, T.; Thuault, D. Validation of a predictive model coupling gas transfer and microbial growth in fresh food packed under modified atmosphere. Food Microbiol. 2016, 58, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Al-Nehlawi, A.; Saldo, J.; Vega, L.F.; Guri, S. Effect of high carbon dioxide atmosphere packaging and soluble gas stabilization pre-treatment on the shelf-life and quality of chicken drumsticks. Meat Sci. 2013, 94, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huang, J.; Sun, X.; Lu, Q.; Huang, M.; Zhou, G. Effect of normal and modified atmosphere packaging on shelf life of roast chicken meat. J. Food Saf. 2018, 38, e12493. [Google Scholar] [CrossRef]
- Guerra Monteiro, M.L.; Marsico, E.T.; Teixeira, C.E.; Mano, S.B.; Conte Junior, C.A.; Vital, H.d.C. Shelf life of refrigerated tilapia fillets (Oreochromis niloticus) packed in modified atmosphere and irradiated. Cienc. Rural 2012, 42, 737–743. [Google Scholar] [CrossRef]
- Jimenez, S.M.; Salsi, M.S.; Tiburzi, M.C.; Rafaghelli, R.C.; Tessi, M.A.; Coutaz, V.R. Spoilage microflora in fresh chicken breast stored at 4 degrees C: Influence of packaging methods. J. Appl. Microbiol. 1997, 83, 613–618. [Google Scholar] [CrossRef]
- Deng, S.; Han, Y.; Gao, T.; Ye, K.; Liu, J. Effect of temperature fluctuation during frozen storage on beef quality. J. Food Process. Preserv. 2021, 45, e15043. [Google Scholar] [CrossRef]
- Dominguez, S.A.; Schaffner, D.W. Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions. Int. J. Food Microbiol. 2007, 120, 287–295. [Google Scholar] [CrossRef]
- Yimenu, S.M.; Koo, J.; Kim, B.S.; Kim, J.H.; Kim, J.Y. Freshness-based real-time shelf-life estimation of packaged chicken meat under dynamic storage conditions. Poult. Sci. 2019, 98, 6921–6930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mao, Y.; Li, K.; Dong, P.; Liang, R.; Luo, X. Models of Pseudomonas Growth Kinetics and Shelf Life in Chilled Longissimus dorsi Muscles of Beef. Asian-Australas. J. Anim. Sci. 2011, 24, 713–722. [Google Scholar] [CrossRef]
- Li, M.; Niu, H.; Zhao, G.; Tian, L.; Huang, X.; Zhang, J.; Tian, W.; Zhang, Q. Analysis of mathematical models of Pseudomonas spp. growth in pallet-package pork stored at different temperatures. Meat Sci. 2013, 93, 855–864. [Google Scholar] [CrossRef]
- Leng, D.; Zhang, H.; Tian, C.; Xu, H. Low temperature preservation developed for special foods in East Asia: A review. J. Food Process. Preserv. 2022, 46, e16176. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Li, M.; Wu, N.; Xu, X. Near-Freezing Temperature Storage (-2C) for Extension of Shelf Life of Chilled Yellow-Feather Broiler Meat: A Special Breed in Asia. J. Food Process. Preserv. 2016, 40, 340–347. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; Holman, B.W.B.; Giteru, S.G.; Hopkins, D.L. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol. 2021, 109, 280–302. [Google Scholar] [CrossRef]
- Nikzade, V.; Sedaghat, N.; Yazdi, F.T.; Ghoddusi, H.B.; Saadatmand-Tarzjan, M. Development of shelf life kinetic model for fresh rainbow trout (Oncorhynchus mykiss) fillets stored under modified atmosphere packaging. J. Food Sci. Technol. Mysore 2019, 56, 663–673. [Google Scholar] [CrossRef]
- Balamatsia, C.C.; Patsias, A.; Kontominas, M.G.; Savvaidis, I.N. Possible role of volatile amines as quality-indicating metabolites in modified atmosphere-packaged chicken fillets: Correlation with microbiological and sensory attributes. Food Chem. 2007, 104, 1622–1628. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Zhang, D.; Li, H.; Wang, Z. Using oxidation kinetic models to predict the quality indices of rabbit meat under different storage temperatures. Meat Sci. 2020, 162, 108042. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, D.; Xiang, Q.; Li, K.; Wang, B.; Bai, Y. Effect of cinnamon essential oil nanoemulsions on microbiological safety and quality properties of chicken breast fillets during refrigerated storage. LWT 2021, 152, 112376. [Google Scholar] [CrossRef]
- Gatellier, P.; Gomez, S.; Gigaud, V.; Berri, C.; Le Bihan-Duval, E.; Sante-Lhoutellier, V. Use of a fluorescence front face technique for measurement of lipid oxidation during refrigerated storage of chicken meat. Meat Sci. 2007, 76, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Pongsetkul, J.; Benjakul, S. Development of modified atmosphere packaging (MAP) on shelf-life extension of pla-duk-ra (dried fermented catfish) stored at room temperature. Food Control 2021, 124, 107882. [Google Scholar] [CrossRef]
- Demirhan, B.; Candogan, K. Active packaging of chicken meats with modified atmosphere including oxygen scavengers. Poult. Sci. 2017, 96, 1394–1401. [Google Scholar] [CrossRef]
- Thomas, C.; Martin, A.; Sachsenroder, J.; Bandick, N. Effects of modified atmosphere packaging on an extended-spectrum beta-lactamase-producing Escherichia coli, the microflora, and shelf life of chicken meat. Poult. Sci. 2020, 99, 7004–7014. [Google Scholar] [CrossRef]
- Soyer, A.; Ozalp, B.; Dalmis, U.; Bilgin, V. Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chem. 2010, 120, 1025–1030. [Google Scholar] [CrossRef]
- Gospavic, R.; Kreyenschmidt, J.; Bruckner, S.; Popov, V.; Haque, N. Mathematical modelling for predicting the growth of Pseudomonas spp. in poultry under variable temperature conditions. Int. J. Food Microbiol. 2008, 127, 290–297. [Google Scholar] [CrossRef]
- Ghollasi-Mood, F.; Mohsenzadeh, M.; Hoseindokht, M.-R.; Varidi, M. Quality changes of air-packaged chicken meat stored under different temperature conditions and mathematical modelling for predicting the microbial growth and shelf life. J. Food Saf. 2017, 37, e12331. [Google Scholar] [CrossRef]
- Tarlak, F.; Perez-Rodriguez, F. Development and validation of a one-step modelling approach for the determination of chicken meat shelf-life based on the growth kinetics of Pseudomonas spp. Food Sci. Technol. Int. 2021, 10820132211049616. [Google Scholar] [CrossRef]
- Lianou, A.; Raftopoulou, O.; Spyrelli, E.; Nychas, G.-J.E. Growth of Listeria monocytogenes in Partially Cooked Battered Chicken Nuggets as a Function of Storage Temperature. Foods 2021, 10, 533. [Google Scholar] [CrossRef]
- Manthou, E.; Tarlak, F.; Lianou, A.; Ozdemir, M.; Zervakis, G.I.; Panagou, E.Z.; Nychas, G.-J.E. Prediction of indigenous Pseudomonas spp. growth on oyster mushrooms (Pleurotus ostreatus) as a function of storage temperature. LWT 2019, 111, 506–512. [Google Scholar] [CrossRef]
Temperature (°C) | P0 (lg CFU/g) | Pmax (lg CFU/g) | µmax (h−1) | λ (h) | MSE | Pseudo-R2 | |
---|---|---|---|---|---|---|---|
P. lundensis (NP) | 0 °C | 3.86 | 9 | 0.0351 | 39.28 | 0.0653 | 0.999 |
4 °C | 4.5 | 8.72 | 0.0796 | 19.35 | 0.0653 | 0.996 | |
8 °C | 4.04 | 9.08 | 0.1115 | 13.06 | 0.0673 | 0.996 | |
10 °C | 3.58 | 9.68 | 0.1381 | 7.56 | 0.0616 | 0.984 | |
P. lundensis (MAP) | 0 °C | 3.83 | 7.94 | 0.0171 | 82.07 | 0.00824 | 0.999 |
4 °C | 4.4 | 7.44 | 0.03 | 27.02 | 0.00833 | 0.986 | |
8 °C | 4.02 | 8.5 | 0.0519 | 17.85 | 0.00712 | 0.996 | |
10 °C | 3.65 | 10.77 | 0.0693 | 12.04 | 0.073 | 0.995 | |
S. putrefaciens (NP) | 0 °C | 3.52 | 7.82 | 0.022 | 46.1 | 0.00091 | 0.999 |
4 °C | 4 | 7.89 | 0.0379 | 23.13 | 0.00357 | 0.996 | |
8 °C | 4.11 | 9.63 | 0.0866 | 15.72 | 0.0467 | 0.985 | |
10 °C | 3.74 | 10.05 | 0.1045 | 8.99 | 0.054 | 0.999 | |
S. putrefaciens (MAP) | 0 °C | 3.55 | 6.97 | 0.0166 | 86.72 | 0.00045 | 0.999 |
4 °C | 4.05 | 7.69 | 0.0296 | 39.86 | 0.00324 | 0.998 | |
8 °C | 3.96 | 8.99 | 0.0449 | 21.17 | 0.0146 | 0.999 | |
10 °C | 3.74 | 9.08 | 0.0663 | 12.31 | 0.0897 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, X.; Wang, W.; Zhang, X.; Wang, D.; Liu, F.; Sun, Z. Mathematical Modeling of the Effects of Temperature and Modified Atmosphere Packaging on the Growth Kinetics of Pseudomonas Lundensis and Shewanella Putrefaciens in Chilled Chicken. Foods 2022, 11, 2824. https://doi.org/10.3390/foods11182824
Mai X, Wang W, Zhang X, Wang D, Liu F, Sun Z. Mathematical Modeling of the Effects of Temperature and Modified Atmosphere Packaging on the Growth Kinetics of Pseudomonas Lundensis and Shewanella Putrefaciens in Chilled Chicken. Foods. 2022; 11(18):2824. https://doi.org/10.3390/foods11182824
Chicago/Turabian StyleMai, Xutao, Wenzhuo Wang, Xinxiao Zhang, Daoying Wang, Fang Liu, and Zhilan Sun. 2022. "Mathematical Modeling of the Effects of Temperature and Modified Atmosphere Packaging on the Growth Kinetics of Pseudomonas Lundensis and Shewanella Putrefaciens in Chilled Chicken" Foods 11, no. 18: 2824. https://doi.org/10.3390/foods11182824
APA StyleMai, X., Wang, W., Zhang, X., Wang, D., Liu, F., & Sun, Z. (2022). Mathematical Modeling of the Effects of Temperature and Modified Atmosphere Packaging on the Growth Kinetics of Pseudomonas Lundensis and Shewanella Putrefaciens in Chilled Chicken. Foods, 11(18), 2824. https://doi.org/10.3390/foods11182824