Effects of Germination and Popping on the Anti-Nutritional Compounds and the Digestibility of Amaranthus hypochondriacus Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals
2.3. Popping and Germination
2.4. Seeds Size and Weight
2.5. Proximate Analysis
2.6. GC-MS Determination of the Fatty Acid Profile
2.7. Mineral’s Determination
2.8. In Vitro Protein Digestibility
2.9. Anti-Nutritional Compounds
2.10. Statistical Analysis
3. Results
3.1. Seed Size and Weight
3.2. Proximate Analysis
3.3. GC-MS Determination of the Fatty Acid Profile
3.4. Mineral Content Determination
3.5. Digestibility
3.6. Anti-Nutritional Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Venskutonis, P.R.; Kraujalis, P. Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Nutrients and antinutrient constituents of Amaranthus caudatus L. Cultivated on different soils. Saudi J. Biol. Sci. 2020, 27, 3570–3580. [Google Scholar] [CrossRef]
- Alegbejo, J.O. Nutritional Value and Utilization of Amaranthus (Amaranthus spp.)–A Review. Bayero J. Pure Appl. Sci. 2014, 6, 136. [Google Scholar] [CrossRef] [Green Version]
- Gamel, T.H.; Linssen, J.P.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A. Effect of seed treatments on the chemical composition of two amaranth species: Oil, sugars, fibres, minerals and vitamins. J. Sci. Food Agric. 2005, 86, 82–89. [Google Scholar] [CrossRef]
- Murakami, T.; Yutani, A.; Yamano, T.; Iyota, H.; Konishi, Y. Effects of Popping on Nutrient Contents of Amaranth Seed. Plant Foods Hum. Nutr. 2014, 69, 25–29. [Google Scholar] [CrossRef]
- El Anany, A.M. Nutritional Composition, Antinutritional Factors, Bioactive Compounds and Antioxidant Activity of Guava Seeds (Psidium Myrtaceae) as Affected by Roasting Processes. J. Food Sci. Technol. 2015, 52, 2175–2183. [Google Scholar] [CrossRef] [Green Version]
- Koch, W.; Czop, M.; Iłowiecka, K.; Nawrocka, A.; Wiącek, D. Dietary Intake of Toxic Heavy Metals with Major Groups of Food Products—Results of Analytical Determinations. Nutrients 2022, 14, 1626. [Google Scholar] [CrossRef]
- Akande, K.; Doma, U.; Agu, H.; Adamu, H. Major Antinutrients Found in Plant Protein Sources: Their Effect on Nutrition. Pak. J. Nutr. 2010, 9, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Valadez-Vega, C.; Lugo-Magaña, O.; Morales-González, J.A.; Delgado-Olivares, L.; Izquierdo-Vega, J.A.; Sánchez-Gutiérrez, M.; López-Contreras, L.; Bautista, M.; Velázquez-González, C. Phytochemical, cytotoxic, and genotoxic evaluation of protein extract of Amaranthus hypochondriacus seeds. CyTA-J. Food 2021, 19, 701–709. [Google Scholar] [CrossRef]
- Ensminger, L.G. The Association of Official Analytical Chemists. Clin. Toxicol. 1976, 9, 471. [Google Scholar] [CrossRef]
- Amare, E.; Mouquet-Rivier, C.; Rochette, I.; Adish, A.; Haki, G.D. Effect of popping and fermentation on proximate composition, minerals and absorption inhibitors, and mineral bioavailability of Amaranthus caudatus grain cultivated in Ethiopia. J. Food Sci. Technol. 2016, 53, 2987–2994. [Google Scholar] [CrossRef] [Green Version]
- Crowley, J.F.; Goldstein, I.J. Datura Stramonium Lectin. Methods Enzymol. 1982, 83, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Price, M.L.; Van Scoyoc, S.; Butler, L.G. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Martinez, T.F.; Moyano, F.J. Determination of Trypsin Inhibitor Activity of Soy Products: A Collaborative Analysis of an Improved Procedure. J. Sci. Food Agric. 2003, 83. [Google Scholar] [CrossRef]
- Giron-Martinez, M.C. Determinacion Semicuantitativa de Saponinas en Muestras Vegetales Aprovechando Su Capacidad Hemolitica; Universidad Nacional Autónoma de México: Mexico City, Mexico, 1992. [Google Scholar]
- Butler, G. The distribution of the cyanoglucosides linamarin and lotaustralin in higher plants. Phytochemistry 1965, 4, 127–131. [Google Scholar] [CrossRef]
- Gamel, T.H.; Linssen, J.P.; Mesallem, A.S.; Damir, A.A.; Shekib, L.A. Effect of seed treatments on the chemical composition and properties of two amaranth species: Starch and protein. J. Sci. Food Agric. 2005, 85, 319–327. [Google Scholar] [CrossRef]
- Abalone, R.; Cassinera, A.; Gastón, A.; Lara, M. Some Physical Properties of Amaranth Seeds. Biosyst. Eng. 2004, 89, 109–117. [Google Scholar] [CrossRef]
- De Bock, P.; Daelemans, L.; Selis, L.; Raes, K.; Vermeir, P.; Eeckhout, M.; Van Bockstaele, F. Comparison of the Chemical and Technological Characteristics of Wholemeal Flours Obtained from Amaranth (Amaranthus sp.), Quinoa (Chenopodium quinoa) and Buckwheat (Fagopyrum sp.) Seeds. Foods 2021, 10, 651. [Google Scholar] [CrossRef]
- Oteri, M.; Gresta, F.; Costale, A.; Lo Presti, V.; Meineri, G.; Chiofalo, B. Amaranthus Hypochondriacus l. As a Sustainable Source of Nutrients and Bioactive Compounds for Animal Feeding. Antioxidants 2021, 10, 876. [Google Scholar] [CrossRef]
- Szabóová, M.; Záhorský, M.; Gažo, J.; Geuens, J.; Vermoesen, A.; D’hondt, E.; Hricová, A. Differences in Seed Weight, Amino Acid, Fatty Acid, Oil, and Squalene Content in γ-Irradiation-Developed and Commercial Amaranth Varieties (Amaranthus spp.). Plants 2020, 9, 1412. [Google Scholar] [CrossRef]
- Valdez, G.; Uscanga, E.; Kohashi, J.; García, R.; Martínez, D.; Torres, J.; García, A. Tamaño De Semilla, Granulometría Del Sustrato Y Profundidad De Siembra En El Vigor De Semilla Y Plántula De Dos Malezas. Agrociencia 2015, 49, 899–915. [Google Scholar]
- Capriles, V.D.; Coelho, K.D.; Guerra-Matias, A.C.; Arêas, J.A.G. Effects of Processing Methods on Amaranth Starch Digestibility and Predicted Glycemic Index. J. Food Sci. 2008, 73, H160–H164. [Google Scholar] [CrossRef] [PubMed]
- Pavlík, V. The Revival of Amaranth as a Third-Millennium Food. Neuroendocrinol. Lett. 2012, 33 (Suppl. 3), 3–7. [Google Scholar]
- Aguilar, E.G.; de Jesús Albarracín, G.; Uñates, M.A.; Piola, H.D.; Camiña, J.M.; Escudero, N.L. Evaluation of the Nutritional Quality of the Grain Protein of New Amaranths Varieties. Plant Foods Hum. Nutr. 2015, 70, 21–26. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive Value of Pseudocereals and Their Increasing Use as Functional Gluten-Free Ingredients. Trends Food Sci. Technol. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Krulj, J.; Brlek, T.; Pezo, L.; Brkljača, J.; Popović, S.; Zeković, Z.; Bodroža Solarov, M. Extraction Methods of Amaranthus Sp. Grain Oil Isolation. J. Sci. Food Agric. 2016, 96, 3552–3558. [Google Scholar] [CrossRef]
- Acar, N.; Vohra, P.; Becker, R.; Hanners, G.D.; Saunders, R.M. Nutritional Evaluation of Grain Amaranth for Growing Chickens. Poult. Sci. 1988, 67, 1166–1173. [Google Scholar] [CrossRef]
- Friedman, M.; Brandon, D.L. Nutritional and Health Benefits of Soy Proteins. J. Agric. Food Chem. 2001, 49, 1069–1086. [Google Scholar] [CrossRef]
- Tang, Y.; Tsao, R. Phytochemicals in Quinoa and Amaranth Grains and Their Antioxidant, Anti-Inflammatory, and Potential Health Beneficial Effects: A Review. Mol. Nutr. Food Res. 2017, 61, 1600767. [Google Scholar] [CrossRef]
- Shukla, S.; Bhargava, A.; Chatterjee, A.; Srivastava, J.; Singh, N.; Singh, S.P. Mineral Profile and Variability in Vegetable Amaranth (Amaranthus Tricolor). Plant Foods Hum. Nutr. 2006, 61, 23–28. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Nutrients, Minerals, Pigments, Phytochemicals, and Radical Scavenging Activity in Amaranthus Blitum Leafy Vegetables. Sci. Rep. 2020, 10, 3868. [Google Scholar] [CrossRef] [Green Version]
- Palombini, S.V.; Claus, T.; Maruyama, S.A.; Gohara, A.K.; Souza, A.H.P.; de Souza, N.E.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Evaluation of Nutritional Compounds in New Amaranth and Quinoa Cultivars. Food Sci. Technol. 2013, 33, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Arêas, J.A.G.; Carlos-Menezes, A.C.C.C.; Soares, R.A.M. Amaranth. Encycl. Food Health 2015, 135–140. [Google Scholar] [CrossRef]
- Bozorov, S.S.; Berdiev, N.S.; Ishimov, U.J.; Olimjonov, S.S.; Ziyavitdinov, J.F.; Asrorov, A.M.; Salikhov, S.I. Chemical Composition and Biological Activity of Seed Oil of Amaranth Varieties. Nov. Biotechnol. Chim. 2018, 17, 66–73. [Google Scholar] [CrossRef]
- Martirosyan, D.M.; Miroshnichenko, L.A.; Kulakova, S.N.; Pogojeva, A.V.; Zoloedov, V.I. Amaranth Oil Application for Coronary Heart Disease and Hypertension. Lipids Health Dis. 2007, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C.; Sehgal, S. Development, Acceptability and Nutritional Value of Weaning Mixtures. Plant Foods Hum. Nutr. 1991, 41, 107–116. [Google Scholar] [CrossRef]
- Guzmán-Maldonado, H.; Paredes-López, O. Production of High-Protein Flour and Maltodextrins from Amaranth Grain. Process Biochem. 1994, 29, 289–293. [Google Scholar] [CrossRef]
- Muyonga, J.; Cole, C.G.; Duodu, K. Extraction and Physico-Chemical Characterisation of Nile Perch (Lates Niloticus) Skin and Bone Gelatin. Food Hydrocoll. 2004, 18, 581–592. [Google Scholar] [CrossRef]
- Ramesh, D.; Prakash, J. Nutritional and Functional Properties of Amaranth Grain Flour Fractions Obtained by Differential Sieving. Prog. Chem. Biochem. Res. 2020, 2020. [Google Scholar] [CrossRef]
- Najdi Hejazi, S.; Orsat, V.; Azadi, B.; Kubow, S. Improvement of the in Vitro Protein Digestibility of Amaranth Grain through Optimization of the Malting Process. J. Cereal Sci. 2016, 68, 59–65. [Google Scholar] [CrossRef]
- Bressani, R.; Kalinowski, L.S.; Ortiz, M.A.; Elias, L.G. Nutritional Evaluation of Roasted, Flaked and Popped. Arch. Latinoam. Nutr. 1987, 37, 525–531. [Google Scholar] [PubMed]
- Grundy, M.M.L.; Momanyi, D.K.; Holland, C.; Kawaka, F.; Tan, S.; Salim, M.; Boyd, B.J.; Bajka, B.; Mulet-Cabero, A.I.; Bishop, J.; et al. Effects of Grain Source and Processing Methods on the Nutritional Profile and Digestibility of Grain Amaranth. J. Funct. Foods 2020, 72, 104065. [Google Scholar] [CrossRef]
- Muyonga, J.H.; Andabati, B.; Ssepuuya, G. Effect of Heat Processing on Selected Grain Amaranth Physicochemical Properties. Food Sci. Nutr. 2014, 2, 9–16. [Google Scholar] [CrossRef]
- Lara, N.; Ruales, J. Popping of Amaranth Grain (Amaranthus Caudatus) and Its Effect on the Functional, Nutritional and Sensory Properties. J. Sci. Food Agric. 2002, 82, 797–805. [Google Scholar] [CrossRef]
- Van Lancker, F.; Adams, A.; De Kimpe, N. Chemical Modifications of Peptides and Their Impact on Food Properties. Chem. Rev. 2011, 111, 7876–7903. [Google Scholar] [CrossRef] [PubMed]
- Olawoye, B.T.; Gbadamosi, S.O. Effect of Different Treatments on in Vitro Protein Digestibility, Antinutrients, Antioxidant Properties and Mineral Composition of Amaranthus Viridis Seed. Cogent Food Agric. 2017, 3, 1296402. [Google Scholar] [CrossRef]
- Cornejo, F.; Novillo, G.; Villacrés, E.; Rosell, C.M. Evaluation of the Physicochemical and Nutritional Changes in Two Amaranth Species (Amaranthus Quitensis and Amaranthus Caudatus) after Germination. Food Res. Int. 2019, 121, 933–939. [Google Scholar] [CrossRef]
- Chaparro Rojas, D.C.; Pismag Portilla, R.Y.; Elizalde Correa, A.; Vivas Quila, N.J.; Erazo Caicedo, C.A. Efecto de la germinación sobre el contenido y digestibilidad de proteína en semillas de amaranto, quinua, soya y guandul. Rev. Bio Agro 2010, 8, 35–42. [Google Scholar]
- Mengs, U. Toxic Effects of Sennosides in Laboratory Animals and in Vitro. Pharmacology 1988, 36 (Suppl. 1), 180–187. [Google Scholar] [CrossRef]
- Popova, A.; Mihaylova, D. Antinutrients in Plant-Based Foods: A Review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Ozeki, M.; Kamemura, K.; Moriyama, K.; Itoh, Y.; Furuichi, Y.; Umekawa, H.; Takahashi, T. Purification and Characterization of a Lectin from Amaranthus Hypochondriacus Var. Mexico Seeds. Biosci. Biotechnol. Biochem. 1996, 60, 2048–2051. [Google Scholar] [CrossRef] [PubMed]
- Santaella-Verdejo, A.; Gallegos, B.; Pérez-Campos, E.; Hernández, P.; Zenteno, E. Use of Amaranthus Leucocarpus Lectin to Differentiate Cervical Dysplasia (CIN). Prep. Biochem. Biotechnol. 2007, 37, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Gamel, T.H.; Linssen, J.P.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A. Seed Treatments Affect Functional and Antinutritional Properties of Amaranth Flours. J. Sci. Food Agric. 2006, 86, 1095–1102. [Google Scholar] [CrossRef]
- Reynoso-Camacho, R.; González De Mejía, E.; Loarca-Piña, G. Purification and Acute Toxicity of a Lectin Extracted from Tepary Bean (Phaseolus Acutifolius). Food Chem. Toxicol. 2003, 41, 21–27. [Google Scholar] [CrossRef]
- Valadez-Vega, C.; Guzmán-Partida, A.M.; Soto-Cordova, F.J.; Álvarez-Manilla, G.; Morales-González, J.A.; Madrigal-Santillán, E.; Villagómez-Ibarra, J.R.; Zúniga-Pérez, C.; Gutiérrez-Salinas, J.; Becerril-Flores, M.A. Purification, Biochemical Characterization, and Bioactive Properties of a Lectin Purified from the Seeds of White Tepary Bean (Phaseolus Acutifolius Variety Latifolius). Molecules 2011, 16, 2561–2582. [Google Scholar] [CrossRef] [Green Version]
- Peumans, W.J.; Van Damme, E.J.M. Plant Lectins: Versatile Proteins with Important Perspectives in Biotechnology. Biotechnol. Genet. Eng. Rev. 1998, 15, 199–228. [Google Scholar] [CrossRef] [Green Version]
- Koeppe, S.J.; Rupnow, J.H.; Walker, C.E.; Davis, A. Isolation and Heat Stability of Trypsin Inhibitors in Amaranth (Amaranthus Hypochondriacus). J. Food Sci. 1985, 50, 1519–1521. [Google Scholar] [CrossRef]
- Marcone, M.F. First Report of the Characterization of the Threatened Plant Species Amaranthus Pumilus (Seabeach Amaranth). J. Agric. Food Chem. 2000, 48, 378–382. [Google Scholar] [CrossRef]
- Escudero, N.L.; Albarracín, G.; Fernández, S.; De Arellano, L.M.; Mucciarelli, S. Nutrient and Antinutrient Composition of Amaranthus Muricatus. Plant Foods Hum. Nutr. 1999, 54, 327–336. [Google Scholar] [CrossRef]
- Bau, H.M.; Villaume, C.; Nicolas, J.P.; Méjean, L. Effect of Germination on Chemical Composition, Biochemical Constituents and Antinutritional Factors of Soya Bean (Glycine Max) Seeds. J. Sci. Food Agric. 1997, 73, 1–9. [Google Scholar] [CrossRef]
- Mojib, N.; Amad, M.; Thimma, M.; Aldanondo, N.; Kumaran, M.; Irigoien, X. Carotenoid Metabolic Profiling and Transcriptome-Genome Mining Reveal Functional Equivalence among Blue-Pigmented Copepods and Appendicularia. Mol. Ecol. 2014, 23, 2740–2756. [Google Scholar] [CrossRef] [Green Version]
- Jalgaonkar, K.; Jha, S.K.; Sharma, D.K. Effect of Thermal Treatments on the Storage Life of Pearl Millet (Pennisetum Glaucum) Flour. Indian J. Agric. Sci. 2016, 86, 762–767. [Google Scholar]
- Oleszek, W.; Junkuszew, M.; Stochmal, A. Determination and Toxicity of Saponins from Amaranthus Cruentus Seeds. J. Agric. Food Chem. 1999, 47, 3685–3687. [Google Scholar] [CrossRef]
- Bolarinwa, I.F.; Oke, M.O.; Olaniyan, S.A.; Ajala, A.S. A Review of Cyanogenic Glycosides in Edible Plants. In Toxicology—New Aspects to This Scientific Conundrum; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Medini, F.; Fellah, H.; Ksouri, R.; Abdelly, C. Total Phenolic, Flavonoid and Tannin Contents and Antioxidant and Antimicrobial Activities of Organic Extracts of Shoots of the Plant Limonium Delicatulum. J. Taibah Univ. Sci. 2014, 8, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Francisco, I.A.; Pinotti, M.H.P. Cyanogenic Glycosides in Plants. Brazilian Arch. Biol. Technol. 2000, 43, 487–492. [Google Scholar] [CrossRef]
Samples | Dimensions (mm) | Weight (g/100 Seeds) | ||
---|---|---|---|---|
Width | Length | Thickness | ||
PR | 0.94 ± 0.069 b | 1.21 ± 0.128 b | 0.790 ± 0.034 a | 0.69 ± 0.157 a |
MX1 | 0.95 ± 0.07 b | 1.17 ± 0.048 ab | 0.792 ± 0.023 a | 1.03 ± 0.17 c |
MX2 | 0.87 ± 0.054 a | 1.11 ± 0.031 a | 0.791 ± 0.013 a | 0.62 ± 0.063 d |
EM | 0.92 ± 0.064 a | 1.160 ± 0.107 ab | 0.821 ± 0.015 b | 0.69 ± 0.128 d |
PU | 0.94 ± 0.064 b | 1.180 ± 0.079 ab | 0.822 ± 0.019 b | 0.95 ± 0.195 b |
Samples (%) | Protein | Ether Extract | Crude Fiber | Moisture | Ash | Carbohydrates |
---|---|---|---|---|---|---|
PR | 12.29 ± 1.31 a | 2.98 ± 0.04 a | 7.17 ± 0.41 a | 10.55 ± 0.07 a | 3.34 ± 0.1 a | 63.65 ± 1.287 a |
MX1 | 18.80 ± 2.2 b | 4.67 ± 0.014 b | 7.35 ± 0.03 a | 10.37 ± 0.15 a | 3.29 ± 0.04 a | 55.50 ± 1.822 b |
MX2 | 18.63 ± 1.99 b | 13.39 ± 2.03 c | 7.01 ± 0.07 a | 10.53 ± 0.06 a | 2.96 ± 0.13 b | 47.45 ± 0.507 b |
EM | 11.35 ± 1.05 a | 0.26 ± 0.01 d | 8.09 ± 1.58 a | 10.48 ± 0.1 a | 2.73 ± 0.15 b | 67.06 ± 0.595 d |
PU | 13.55 ± 1.17 a | 0.27 ± 0.3 d | 10.85 ± 0.78 a | 10.50 ± 0.41 a | 2.70 ± 0.23 b | 62.10 ± 0.422 a |
Fatty Acid Concentrations % | Amaranth Samples | ||||
---|---|---|---|---|---|
PR | MX1 | MX2 | EM | PU | |
Myristic (14:0) | ND | 0.63 ± 0.06 b | 1.14 ± 0.14 a | 0.38±0.07c | 0.19 ± 0.01 c |
Myristoleic (14:1) | ND | ND | ND | 0.16±0.01a | 0.16 ± 0.04 a |
Palmitic (16:0) | 17.15 ± 0.95 a | 18.61 ± 1.44 a | 15.45 ± 1.45 a | 17.00±2.47a | 16.01 ± 2.58 a |
Palmitoleic (16:2) | ND | ND | ND | 0.8 ±0.06a | 0.89 ± 0.02 a |
Palmitolenic (16:3) | ND | ND | ND | 0.85±0.12a | 0.92 ± 0.06 a |
Stearic (18:0) | 11.9 ± 1.61 a | 3.47 ± 0.16 b | 1.81 ± 0.11 b | 2.80±0.40b | 3.08 ± 1.02 b |
Oleic (18:1) | 31.60 ± 0.35 a | 29.27 ± 1. 98 a | 31.51 ± 1.49 a | 29.41±0.66a | 29.60 ± 1.29 a |
Linoleic (18:2) | 45.96 ± 0.32 a | 45.33 ± 0.39 a | 46.05 ± 1.79 a | 45.78±1.09a | 46.45 ± 2.30 a |
Linolenic (18:3) | 1.56 ± 0.41 a | 1.14 ± 0.03 a | 1.43 ± 0.05 a | 1.22±0.20a | 1.16 ± 0.22 a |
Arachidonic (20:4) | 1.02 ± 0.12 a | 0.51 ± 0.19 b | 0.87 ± 0.07 c | 1.19±0.36b | 0.83 ± 0.06 c |
Minerals (ppm) | Amaranth Samples | LOD (mg L−1 ) | Slopes of the Calibration Curves | ||||
---|---|---|---|---|---|---|---|
PR | MX1 | MX2 | EM | PU | |||
B3+ | 5.30 ± 1.07 a | 5.39 ± 1.16 a | 5.99 ± 1.76 ab | 6.61 ± 2.38 bc | 7.33 ± 3.1 c | 0.970 | 0.9999 |
Ca2+ | 12.26 ± 0.012 b | 16.40 ± 0.006 c | 11.80 ± 0.014 b | 10.06 ± 0.016 a | 11.65 ± 0.004 b | 0.087 | 0.9998 |
Fe2+ | 0.34 ± 0.021 a | 0.70 ± 0.043 b | 0.33 ± 0.03 a | 0.36 ±0.088 a | 0.38 ± 0.014 a | 0.015 | 0.9998 |
K+ | 43.10 ± 4.2 b | 49.13 ± 3.88 c | 44.96 ± 2.4 bc | 32.66 ± 0.006 a | 32.98 ± 0.005 a | 0.025 | 0.9999 |
Mg2+ | 21.23 ± 1.38 ab | 25.03 ± 1.88 c | 23.23 ± 1.31 bc | 20.40 ± 0.043 a | 20.25 ± 0.065 a | 0.034 | 0.9999 |
Mn2+ | 0.01 ± 0.11 a | 0.06 ± 0.017 ab | 0.11 ± 0.08 b | 0.31 ± 0.04 c | 0.36 ± 0.066 c | 0.011 | 0.9998 |
Na+ | 2.28 ± 1.2 a | 1.75 ± 0.028 a | 1.49 ± 0.023 a | 1.49 ± 0.055 a | 1.46 ± 0.005 a | 0.045 | 0.9997 |
Zn2+ | 0.09 ± 0.011 a | 0.06 ± 0.017 a | 0.03 ± 0.08 a | 0.02 ± 0.04 a | 0.07 ± 0.006 a | 0.023 | 0.9997 |
Units | Treatment | Amaranthus hypochondriacus Resources | ||||
---|---|---|---|---|---|---|
PR | MX1 | MX2 | EM | PU | ||
Lectins concentration Erythrocytes Type A(HAU/mg protein) | Raw | 91.03 ± 0.99 a | 11.24 ± 0.14 b | 31.50 ± 0.14 c | 59.19 ± 0.81 d | 65.19 ± 2.45 e |
Popped | 1.71 ± 0.012 b | 3.32 ± 0.013 d | 1.74 ± 0.0.32 bc | 1.66 ± 0.025 a | 1.78 ± 0.017 c | |
Germinated | 6.51 ± 0.011 bc | 3.25 ± 0.005 a | 6.52 ± 0.013 c | 6.49 ± 0.016 b | 6.52 ± 0.015 bc | |
Lectins concentration Erythrocytes Type O(HAU/mg protein) | Raw | 22.77 ± 0.25 a | 22.48 ± 0.29 a | 31.51 ± 0.14 b | 118.38 ± 1.62 c | 130.58 ± 1.09 d |
Popped | 1.72 ± 0.012 b | 3.33 ± 0.014 d | 1.77 ± 0.032 bc | 1.63 ± 0.025 a | 1.79 ± 0.0177 c | |
Germinated | 6.51 ± 0.01 bc | 3.26 ± 0.006 a | 6.25 ± 0.014 c | 6.49 ± 0.014 b | 6.52 ± 0.015 bc | |
Tannins concentration (mg catechin/g) | Raw | 0.105 ± 0.005 ab | 0.086 ± 0.004 a | 0.0933 ± 0.038 ab | 0.210 ± 0.033 c | 0.111 ± 0.001 b |
Popped | 1.671 ± 0.051 bc | 1.517 ± 0.034 a | 1.5967 ± 0.070 ab | 1.802 ± 0.051 c | 1.969 ± 0.032 d | |
Germinated | 1.554 ± 0.036 b | 1.907 ± 0.065 c | 1.9592 ± 0.008 c | 1.407 ± 0.006 a | 1.382 ± 0.083 a | |
Trypsin inhibitors (UTI/mg) | Raw | 0.831 ± 0.123 ab | 0.868 ± 0.01 ab | 1.016 ± 0.43 b | 0.848 ± 0.05 ab | 0.519 ± 0.08 a |
Popped | ND | ND | ND | ND | ND | |
Germinated | ND | ND | ND | ND | ND | |
Saponins (HU/mg) | Raw | 5.33 ± 0 a | 10.66 ± 0 b | 10.66 ± 0 b | 10.66 ± 0 b | 10.66 ± 0 b |
Popped | ND | ND | ND | ND | ND | |
Germinated | ND | ND | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valadez-Vega, C.; Lugo-Magaña, O.; Figueroa-Hernández, C.; Bautista, M.; Betanzos-Cabrera, G.; Bernardino-Nicanor, A.; González-Amaro, R.M.; Alonso-Villegas, R.; Morales-González, J.A.; González-Cruz, L. Effects of Germination and Popping on the Anti-Nutritional Compounds and the Digestibility of Amaranthus hypochondriacus Seeds. Foods 2022, 11, 2075. https://doi.org/10.3390/foods11142075
Valadez-Vega C, Lugo-Magaña O, Figueroa-Hernández C, Bautista M, Betanzos-Cabrera G, Bernardino-Nicanor A, González-Amaro RM, Alonso-Villegas R, Morales-González JA, González-Cruz L. Effects of Germination and Popping on the Anti-Nutritional Compounds and the Digestibility of Amaranthus hypochondriacus Seeds. Foods. 2022; 11(14):2075. https://doi.org/10.3390/foods11142075
Chicago/Turabian StyleValadez-Vega, Carmen, Olivia Lugo-Magaña, Claudia Figueroa-Hernández, Mirandeli Bautista, Gabriel Betanzos-Cabrera, Aurea Bernardino-Nicanor, Rosa María González-Amaro, Rodrigo Alonso-Villegas, José A. Morales-González, and Leopoldo González-Cruz. 2022. "Effects of Germination and Popping on the Anti-Nutritional Compounds and the Digestibility of Amaranthus hypochondriacus Seeds" Foods 11, no. 14: 2075. https://doi.org/10.3390/foods11142075