Effect of Staphylococcus aureus Contamination on the Microbial Diversity and Metabolites in Wholewheat Sourdough
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture of S. aureus
2.2. Preparation of Sourdough and Contamination with S. aureus
2.3. Growth of S. aureus in Sourdough
2.4. Determination of Total Titratable Acidity (TTA) and pH of Sourdough
2.5. Analysis of Bacterial Composition
2.6. Analysis of Metabolites
2.7. Analysis of Volatile Metabolites (VOMs) in Sourdough
2.8. Data Analysis
3. Results and Discussion
3.1. The Composition of LAB in Sourdough
3.2. Growth of S. aureus in Sourdough
3.3. The Effect of S. aureus Contamination on pH and TTA
3.4. The Effect of S. aureus Contamination on Metabolites
3.5. Analysis of VOMs
3.5.1. Effect of S. aureus Contamination on VOMs in Sourdough
3.5.2. PCA Analysis of VOMs
3.5.3. Identification of Characteristic VOMs in Sourdough Contaminated by S. aureus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corsetti, A.; Settanni, L. Lactobacilli in sourdough fermentation, Review. Food Res. Int. 2007, 40, 539–558. [Google Scholar] [CrossRef]
- Poutanen, K.; Flander, L.; Katina, K. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol. 2009, 26, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, Z.; Guo, X.F.; Wang, F.C.; Huang, J.H.; Sun, B.H. Sourdough improves the quality of whole-wheat flour products: Mechanisms and challenges—A review. Food Chem. 2021, 360, 130038. [Google Scholar] [CrossRef] [PubMed]
- García-Mantrana, I.; Monedero, V.; Haros, M. Myo-inositol hexakisphosphate degradation by Bifidobacterium pseudocatenulatum ATCC 27919 improves mineral availability of high fibre rye-wheat sour bread. Food Chem. 2015, 178, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koistinen, V.M.; Mattila, O.; Katina, K.; Poutanen, K.; Aura, A.M.; Hanhineva, K. Metabolic profling of sourdough fermented wheat and rye bread. Sci. Rep. 2018, 8, 5684. [Google Scholar] [CrossRef]
- Valik, L.; Görner, F. Growth of Staphylococcus aureus in pasta in relation to its water activity. Int. J. Food Microbiol. 1993, 20, 45–48. [Google Scholar] [CrossRef]
- Bencardino, D.; Vitali, L.A. Staphylococcus aureus carriage among food handlers in a pasta company: Pattern of virulence and resistance to linezolid. Food Control 2019, 96, 351–356. [Google Scholar] [CrossRef]
- GB 19295-2011; Food Safety National Standard: Quick-Frozen Rice and Flour Products. National Health Ministry of the People’s Republic of China: Beijing, China, 2011.
- Wang, J.; Koseki, S.; Chung, M.J.; Oh, D.H. A novel approach to predict the growth of Staphylococcus aureus on rice cake. Front. Microbiol. 2017, 8, 1140. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Yu, X.; Chen, J.; Tang, J.; Wang, L.; Li, Y.; Tang, C. Production of characteristic volatile markers and their relation to Staphylococcus aureus growth status in pork. Meat Sci. 2020, 160, 107956. [Google Scholar] [CrossRef]
- Chen, J.; Tang, J.; Hu, K.; Zhao, Y.; Tang, C. The production characteristics of volatile organic compounds and their relation to growth status of Staphylococcus aureus in milk environment. J. Dairy Sci. 2018, 101, 4983–4991. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Xu, G. Mass-spectrometry-based microbial metabolomics: Recent developments and applications. Anal. Bioanal. Chem. 2015, 407, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Liu, S.; Song, J.; Huang, Q.; Xiang, Z. Recognition of pathogens in food matrixes based on the untargeted in vivo microbial metabolite profiling via a novel spme/gc×gc-qtofms approach. Food Res. Int. 2021, 142, 110213. [Google Scholar] [CrossRef] [PubMed]
- GB 4789.10-2016; Food Safety National Standard: Food Microbiology Test for Staphylococcus Aureus. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China; State Administration of Food and Drug Administration: Beijing, China, 2016.
- Wang, M.P.; Gong, S.J.; Du, S.W.; Zhu, Y.L.; Rong, F.J.; Pan, R.R.; Di, Y.; Li., C.; Ren, D.; Jin, N. The effect of immunoregulation of Streptococcus lactis L16 strain upon Staphylococcus aureus infection. BMC Microbiol. 2017, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Mu, T.; Sun, H. Microbial characterization of five Chinese traditional sourdoughs by high-throughput sequencing and their impact on the quality of potato steamed bread. Food Chem. 2019, 274, 710–717. [Google Scholar] [CrossRef]
- Majcher, M.A.; Olszak-Ossowska, D.; Szudera-Konczal, K.; Jeleń, H.H. Formation of key aroma compounds during preparation of pumpernickel bread. J. Agric. Food Chem. 2020, 68, 10352–10360. [Google Scholar] [CrossRef]
- Venturi, M.; Galli, V.; Pini, N.; Guerrini, S.; Granchi, L. Use of selected lactobacilli to increase γ-aminobutyric acid (GABA) content in sourdough bread enriched with amaranth flour. Foods 2019, 8, 218. [Google Scholar] [CrossRef] [Green Version]
- Harilal, D.; Ramaswamy, S.; Loney, T.; Suwaidi, H.A.; Khansaheb, H.; Alkhaja, A. SARS-CoV-2 whole genome amplification and sequencing for effective population-based surveillance and control of viral transmission. Clin. Chem. 2020, 66, 1450–1458. [Google Scholar] [CrossRef]
- Xu, L.; Guo, W.; Liu, W.; Fu, X.; Wu, Y.; Luo, F.; Xu, Y. Metabolites analysis for cold-resistant yeast (Wickerhamomyces anomalus) strains own antioxidant activity on cold stored fish mince. Food Chem. 2020, 303, 125368. [Google Scholar] [CrossRef]
- Nie, Y.; Luo, F.; Lin, Q. Dietary nutrition and gut microflora: A promising target for treating diseases. Trends Food Sci. Technol. 2018, 75, 72–80. [Google Scholar] [CrossRef]
- Menezes, L.A.A.; Savo Sardaro, M.L.; Duarte, R.T.D.; Mazzon, R.R.; Neviani, E.; Gatti, M.; De Dea Lindner, J. Sourdough bacterial dynamics revealed by metagenomic analysis in Brazil. Food Microbiol. 2020, 85, 103302. [Google Scholar] [CrossRef]
- Ventimiglia, G.; Alfonzo, A.; Galluzzo, P.; Corona, O.; Francesca, N.; Caracappa, S.; Moschetti, G.; Settanni, L. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiol. 2015, 51, 57–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pao, S.; Kim, C.; Jordan, L.; Long, W.; Inserra, P.; Sayre, B. Growth of Salmonella enterica and Staphylococcus aureus in no-knead bread dough during prolonged yeast fermentation. J. Food Prot. 2011, 74, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Otgonbayar, G.E.; Eom, H.J.; Kim, B.S.; Ko, J.H.; Han, N.S. Mannitol production by Leuconostoc citreum kacc 91348p isolated from kimchi. J. Microbiol. Biotechnol. 2011, 21, 968–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vuyst, L.; Van Kerrebroeck, S.; Harth, H.; Huys, G.; Daniel, H.M.; Weckx, S. Microbial ecology of sourdough fermentations: Diverse or uniform? Food Microbiol. 2014, 37, 11–29. [Google Scholar] [CrossRef]
- Cizeikiene, D.; Juodeikiene, G.; Paskevicius, A.; Bartkiene, E. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control 2013, 31, 539–545. [Google Scholar] [CrossRef]
- Ripari, V.; Cecchi, T.; Berardi, E. Microbiological characterization and volatiles profile of model, ex-novo, and traditional Italian white wheat sourdoughs. Food Chem. 2016, 205, 297–307. [Google Scholar] [CrossRef]
- Menezes, L.A.A.; Minervini, F.; Filannino, P.; Sardaro, M.L.S.; Gatti, M.; De Dea Lindner, J. Effects of sourdough on FODMAPs in bread and potential outcomes on irritable bowel syndrome patients and healthy subjects. Front. Microbiol. 2018, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ghoora, M.D.; Babu, D.R.; Srividya, N. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. J. Food Compos. Anal. 2020, 91, 103495. [Google Scholar] [CrossRef]
- Oh, S.; Kim, H.S.; Lim, S.; Reddy, C.K. Enhanced accumulation of γ -aminobutyric acid in rice bran using anaerobic incubation with various additives. Food Chem. 2019, 271, 187–192. [Google Scholar] [CrossRef]
- GB 2763-2019; Food Safety National Standard: Maximum Residue Limits for Pesticides. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China; State Administration of Food and Drug Administration: Beijing, China, 2019.
- Friedman, S.A.; Hays, J.B. Initial characterization of hexose and hexitol phosphoenol pyruvate-dependent phosphotransferases of Staphylococcus aureus. J. Bacteriol. 1997, 130, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Qiao, H.; Sit, B.; Yin, K.; Yang, G.; Ma, R.; Ma, J.; Yang, C.; Yao, J.; Ma, Y.; et al. A bacterial pathogen senses host mannose to coordinate virulence. iScience 2019, 20, 310–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphey, W.H.; Rosenblum, E.D. Mannitol catabolism by Staphylococcus aureus. Arch. Biochem. Biophys. 1964, 107, 292–297. [Google Scholar] [CrossRef]
- Ravyts, F.; De Vuyst, L. Prevalence and impact of single-strain starter cultures of LAB on metabolite formation in sourdough. Food Microbiol. 2011, 28, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Luo, Y.; Fu, X.; Luo, F.; Xu, Y.; Sun, S. Effect of Saccharomyces uvarum on lipid oxidation and carbonyl compounds in silver carp mince during cold storage. Food Sci. Nutr. 2019, 7, 2404–2411. [Google Scholar] [CrossRef]
- Cécile, P.; Bernard, O.; Carole, P. Sourdough volatile compounds and their contribution to bread: A review. Trends Food Sci. Technol. 2017, 59, 105–123. [Google Scholar] [CrossRef]
- Mandin, O.; Duckham, S.C.; Ames, J.M. Volatile components from potato like model systems. J. Agric. Food Chem. 1999, 47, 2355–2359. [Google Scholar] [CrossRef]
- Tait, E.; Perry, J.D.; Stanforth, S.P.; Dean, J.R. Use of volatile compounds as a diagnostic tool for the detection of pathogenic bacteria. Trends Anal. Chem. 2014, 53, 117–125. [Google Scholar] [CrossRef]
- Chen, J.; Tang, J.; Shi, H.; Tang, C.; Zhang, R. Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry. J. Basic Microbiol. 2017, 57, 228–237. [Google Scholar] [CrossRef]
Metabolites | Flo | Co16 | S16 |
---|---|---|---|
Fructose | 1.041 ± 0.022 b | 5.225 ± 0.432 a | 5.488 ± 1.339 a |
Glycolic acid | 0.008 ± 0.001 b | 3.989 ± 0.313 a | 4.870 ± 1.370 a |
Myo-inositol | 0.166 ± 0.011 b | 1.741 ± 0.151 a | 2.044 ± 0.356 a |
Phosphate | 0.122 ± 0.006 b | 1.126 ± 0.079 a | 1.173 ± 0.148 a |
Sorbitol | 0.027 ± 0.002 c | 0.463 ± 0.038 b | 1.010 ± 0.231 a |
Glucose | 0.033 ± 0.000 b | 0.649 ± 0.042 a | 0.757 ± 0.182 a |
Xylose | 0.014 ± 0.001 b | 0.659 ± 0.056 a | 0.751 ± 0.128 a |
Lactose | 0.009 ± 0.001 b | 0.326 ± 0.065 a | 0.345 ± 0.124 a |
Kestose | 0.933 ± 0.166 a | 0.422 ± 0.034 b | 0.353 ± 0.017 c |
γ-Aminobutyric acid (GABA) | 0.024 ± 0.001 b | 0.241 ± 0.017 a | 0.235 ± 0.016 a |
Succinic acid | 0.028 ± 0.001 c | 0.144 ± 0.014 b | 0.186 ± 0.020 a |
Linoleic acid | 0.234 ± 0.006 a | 0.112 ± 0.011 b | 0.131 ± 0.006 b |
Ribose | 0.002 ± 0.001 c | 0.106 ± 0.002 a | 0.099 ± 0.003 b |
Mannose | 0.134 ± 0.003 b | 0.278 ± 0.086 a | 0.057 ± 0.014 c |
Oxoproline | 0.114 ± 0.005 a | 0.065 ± 0.002 b | 0.064 ± 0.003 b |
L-Malic acid | 1.154 ± 0.034 a | 0.003 ± 0.001 b | 0.001 ± 0.001 b |
Sucrose | 0.218 ± 0.015 a | 0.054 ± 0.004 b | 0.037 ± 0.005 c |
Galactinol | 0.110 ± 0.008 a | 0.032 ± 0.002 b | 0.034 ± 0.005 b |
Atrazine-2-hydroxy | 0.018 ± 0.001 a | 0.005 ± 0.001 b | 0.003 ± 0.005 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Li, Z.; Fu, X.; Zhou, W.; Ren, J.; Wu, Y. Effect of Staphylococcus aureus Contamination on the Microbial Diversity and Metabolites in Wholewheat Sourdough. Foods 2022, 11, 1960. https://doi.org/10.3390/foods11131960
Guo W, Li Z, Fu X, Zhou W, Ren J, Wu Y. Effect of Staphylococcus aureus Contamination on the Microbial Diversity and Metabolites in Wholewheat Sourdough. Foods. 2022; 11(13):1960. https://doi.org/10.3390/foods11131960
Chicago/Turabian StyleGuo, Weidan, Zhengwen Li, Xiangjin Fu, Wenhua Zhou, Jiali Ren, and Yue Wu. 2022. "Effect of Staphylococcus aureus Contamination on the Microbial Diversity and Metabolites in Wholewheat Sourdough" Foods 11, no. 13: 1960. https://doi.org/10.3390/foods11131960
APA StyleGuo, W., Li, Z., Fu, X., Zhou, W., Ren, J., & Wu, Y. (2022). Effect of Staphylococcus aureus Contamination on the Microbial Diversity and Metabolites in Wholewheat Sourdough. Foods, 11(13), 1960. https://doi.org/10.3390/foods11131960