Frozen-Phase High-Pressure Destruction Kinetics of Escherichia coli as Influenced by Application Mode, Substrate, and Enrichment Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. E. coli Culture Preparation
2.2. Sample Preparation
2.3. HP Treatment
2.4. Enumeration
2.5. Kinetic Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Temperature of Frozen Samples at Different Pressures
3.2. High-Pressure Inactivation Effect on E. coli in Culture Suspension
3.3. High-Pressure Inactivation Effect on E. coli in Chinese Bayberry Juice
3.4. Pressure Pulse Destruction Kinetics of E. coli in Frozen Carrot Juice
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, G.; Ren, P.; Cao, X.; Yan, B.; Liao, X.; Sun, Z.; Wang, Y. Comparing quality changes of cupped strawberry treated by high hydrostatic pressure and thermal processing during storage. Food Bioprod. Process. 2016, 100, 221–229. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and black-berry purees. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Wang, C.; Lin, Y.; Ramaswamy, H.S.; Ge, L.; Hu, F.; Zhu, S.; Yu, Y. Storage stability of Chinese bayberry juice after high pressure or thermal treatment. J. Food Process. Preserv. 2015, 39, 2259–2266. [Google Scholar] [CrossRef]
- Ramaswamy, H.S.; Riahi, E.; Idziak, E. High-pressure destruction kinetics of E. coli (29055) in apple juice. J. Food Sci. 2003, 68, 1750–1756. [Google Scholar] [CrossRef]
- Pokhrel, P.R.; Toniazzo, T.; Boulet, C.; Oner, M.E.; Sablani, S.S.; Tang, J.; Barbosa-Cánovas, G.V. Inactivation of Listeria innocua and Escherichia coli in carrot juice by combining high pressure processing, nisin, and mild thermal treatments. Innov. Food Sci. Emerg. Technol. 2019, 54, 93–102. [Google Scholar] [CrossRef]
- Scolari, G.; Zacconi, C.; Busconi, M.; Lambri, M. Effect of the combined treatments of high hydrostatic pressure and temperature on Zygosaccharomyces bailii and Listeria monocytogenes in smoothies. Food Control 2015, 47, 166–174. [Google Scholar] [CrossRef]
- Shen, T.; Urrutia Benet, G.; Brul, S.; Knorr, D. Influence of high-pressure–low-temperature treatment on the inactivation of Bacillus subtilis cells. Innov. Food Sci. Emerg. Technol. 2005, 6, 271–278. [Google Scholar] [CrossRef]
- Ponce, E.; Pla, R.; Sendra, E.; Guamis, B.; Mor-Mur, M. Destruction of Salmonella enteritidis inoculated in liquid whole egg by high hydrostatic pressure: Comparative study in selective and non-selective media. Food Microbiol. 1999, 16, 357–365. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, C.; Ramaswamy, H.S.; Yu, Y. Phase transitions during high pressure treatment of frozen carrot juice and influence on Escherichia coli inactivation. LWT-Food Sci. Technol. 2017, 79, 119–125. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Z.; Zhu, S.; Ramaswamy, H.S.; Yu, Y. Effect of low-temperature-high-pressure treatment on the reduction of Escherichia coli in milk. Foods 2020, 9, 1742. [Google Scholar] [CrossRef]
- Bulut, S.; Karatzas, K. Inactivation of Escherichia coli K12 in phosphate buffer saline and orange juice by high hydrostatic pressure processing combined with freezing. LWT-Food Sci. Technol. 2021, 136, 110313. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Bulut, S.; Karatzas, K.; Boziaris, I.S. Inactivation of Listeria monocytogenes in raw and hot smoked trout fillets by high hydrostatic pressure processing combined with liquid smoke and freezing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102427. [Google Scholar] [CrossRef]
- Basak, S. Studies on High Pressure Processing of Orange Juice: Enzyme Inactivation, Microbial Destruction, and Quality Changes, Process Verification and Storage. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 2001. [Google Scholar]
- Rigaldie, Y.; Largeteau, A.; Demazeau, G.; Lemagnen, G.; Grislain, L. Inactivation of Staphylococcus aureus using high hydrostatic pressure. High Press. Res. 2007, 27, 125–128. [Google Scholar] [CrossRef]
- Buzrul, S.; Alpas, H.; Largeteau, A.; Demazeau, G. Efficiency of pulse pressure treatment for inactivation of Escherichia coli and Listeria innocua in whole milk. Eur. Food Res. Technol. 2008, 229, 127–131. [Google Scholar] [CrossRef]
- Fioretto, F.; Cruz, C.; Largeteau, A.; Sarli, T.A.; Demazeau, G.; El Moueffak, A. Inactivation of Staphylococcus aureus and Salmonella enteritidis in tryptic soy broth and caviar samples by high pressure processing. Braz. J. Med. Biol. Res. 2005, 38, 1259–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuste, J.; Pla, R.; Capellas, M.; Sendra, E.; Beltran, E.; Mor-Mur, M. Oscillatory high pressure processing applied to mechanically recovered poultry meat for bacterial inactivation. J. Food Sci. 2001, 66, 482–484. [Google Scholar] [CrossRef]
- Lopez-Caballero, M.E.; Pérez-Mateos, M.; Montero, P.; Borderías, A.J. Oyster preservation by high-pressure treatment. J. Food Protect. 2000, 63, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Donsì, G.; Ferrari, G.; Maresca, P. Pasteurization of fruit juices by means of a pulsed high pressure process. J. Food Sci. 2010, 75, E169–E177. [Google Scholar] [CrossRef]
- Chilton, P.; Isaacs, N.S.; Manias, P.; Mackey, B.M. Biosynthetic requirements for the repair of membrane damage in pressure-treated Escherichia coli. Int. J. Food Microbiol. 2001, 71, 101–104. [Google Scholar] [CrossRef]
- Wuytack, E.Y.; Phuong, L.D.T.; Aertsen, A.; Reyns, K.; Marquenie, D.; De Ketelaere, B.; Michiels, C.W. Comparison of sublethal injury induced in Salmonella enterica serovar Typhimurium by heat and by different nonthermal treatments. J. Food Protect. 2003, 66, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Pilavtepe-Çelik, M.; Buzrul, S.; Alpas, H.; Largeteau, A.; Demazeau, G. Multi-pulsed high hydrostatic pressure treatment for inactivation and injury of Escherichia coli. J. Verbrauch. Lebensm. 2011, 6, 343–348. [Google Scholar] [CrossRef]
- Molina-Hoppner, A.; Doster, W.; Vogel, R.F.; Ganzle, M.G. Protective effect of sucrose and sodium chloride for Lactococcuslactis during sublethal and lethal high-pressure treatments. Appl. Environ. Microb. 2004, 70, 2013–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, E.P.; Huppertz, T.; Fitzgerald, G.F.; Kelly, A.L. Baroprotection of vegetative bacteria by milk constituents: A study of Listeria innocua. Int. Dairy J. 2007, 17, 104–110. [Google Scholar] [CrossRef]
- Sun, C.; Huang, H.; Xu, C.; Li, X.; Chen, K. Biological activities of extracts from Chinese Bayberry (Myrica rubra Sieb. et Zucc.): A Review. Plant Food. Hum. Nutr. 2013, 68, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Yu, Y.; Ramaswamy, H.S.; Hu, F.; Xu, M.; Zhu, S. Kinetics of Escherichia coli inactivation in frozen aqueous suspensions by high pressure and its application to frozen chicken meat. J. Food Eng. 2014, 142, 23–30. [Google Scholar] [CrossRef]
- Sun, W.; Li, J.; Ramaswamy, H.S.; Yu, Y.; Wang, C.; Zhu, S. Adiabatic compression heating of selected organic solvents under high pressure processing. High Press. Res. 2018, 38, 325–336. [Google Scholar]
- Shao, Y.; Ramaswamy, H.S.; Zhu, S. High-pressure destruction kinetics of spoilage and pathogenic bacteria in raw milk cheese. J. Food Process Eng. 2007, 30, 357–374. [Google Scholar] [CrossRef]
- Li, T.; Xiao, T.; Zheng, Z.; Li, Y.; Zhu, S.; Ramaswamy, H.S.; Hu, L.; Yu, Y. Facilitating high pressure phase-transition research and kinetics studies at subzero temperatures using self-cooling laboratory units. Food Res. Int. 2022, 151, 110857. [Google Scholar] [CrossRef]
- Van Buggenhout, S.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Effect of high-pressure induced ice I/ice III-transition on the texture and microstructure of fresh and pretreated carrots and strawberries. Food Res. Int. 2007, 40, 1276–1285. [Google Scholar] [CrossRef]
- Xiao, T.; Li, Y.; Hu, L.; Nie, P.; Ramaswamy, H.S.; Yu, Y. Demonstration of Escherichia coli inactivation in sterile physiological saline under high pressure (HP) phase transition conditions and analysis of probable contribution of HP metastable positions using model solutions and apple juice. Foods 2022, 11, 1080. [Google Scholar] [CrossRef]
- Malinowska-Pańczyk, E.; Kołodziejska, I. Effect of pH and high pressure at sub-zero temperature on the viability of some bacteria. High Press. Res. 2009, 29, 443–448. [Google Scholar] [CrossRef]
- Koseki, S.; Yamamoto, K. Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int. J. Food Microbiol. 2006, 110, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.L.; Pascual, C.; Bracey, E.; Mackey, B.M. Inactivation and injury of pressure-resistant strains of Escherichia coli O157 and Listeria monocytogenes in fruit juice. J. Appl. Microbiol. 2001, 91, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Nasiłowska, J.; Sokołowska, B.; Fonberg-Broczek, M. Long term storage of vegetable juices treated by high hydrostatic pressure: Assurance of the microbial safety. BioMed Res. Int. 2018, 2018, 7389381. [Google Scholar] [CrossRef] [PubMed]
- Donsì, G.; Ferrari, G.; Maresca, P. Pulsed high pressure treatment for the inactivation of Saccharomyces cerevisiae: The effect of process parameters. J. Food Eng. 2007, 78, 984–990. [Google Scholar] [CrossRef]
Samples\Temperature (°C) | Pressure (MPa) | ||||
---|---|---|---|---|---|
170 | 210 | 250 | 290 | 330 | |
Culture suspension | — | — | −28.3 ± 0.6 | — | −18.7 ± 0.6 |
Chinese bayberry juice | −20.7 ± 0.4 | — | −29.8 ± 0.3 | — | −20.3 ± 0.5 |
Carrot juice | — | −21.7 ± 0.1 | −26.8 ± 0.2 | −18.6 ± 0.6 | — |
Pressure (MPa) | ND | PE Value (log CFU/mL) | R2Adj | Zp Value |
---|---|---|---|---|
210 | 1.45 ± 0.03 1 | 0.69 ± 0.01 | 0.990 | 267 ± 28 MPa R2 = 0.978 |
250 | 0.96 ± 0.02 | 1.03 ± 0.02 | 0.978 | |
290 | 0.73 ± 0.02 | 1.37 ± 0.04 | 0.972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Liu, H.; Yu, Y.; Qiao, Y. Frozen-Phase High-Pressure Destruction Kinetics of Escherichia coli as Influenced by Application Mode, Substrate, and Enrichment Medium. Foods 2022, 11, 1801. https://doi.org/10.3390/foods11121801
Wang C, Liu H, Yu Y, Qiao Y. Frozen-Phase High-Pressure Destruction Kinetics of Escherichia coli as Influenced by Application Mode, Substrate, and Enrichment Medium. Foods. 2022; 11(12):1801. https://doi.org/10.3390/foods11121801
Chicago/Turabian StyleWang, Chunfang, Hongru Liu, Yong Yu, and Yongjin Qiao. 2022. "Frozen-Phase High-Pressure Destruction Kinetics of Escherichia coli as Influenced by Application Mode, Substrate, and Enrichment Medium" Foods 11, no. 12: 1801. https://doi.org/10.3390/foods11121801
APA StyleWang, C., Liu, H., Yu, Y., & Qiao, Y. (2022). Frozen-Phase High-Pressure Destruction Kinetics of Escherichia coli as Influenced by Application Mode, Substrate, and Enrichment Medium. Foods, 11(12), 1801. https://doi.org/10.3390/foods11121801