Evaluation of the Putative Duplicity Effect of Novel Nutraceuticals Using Physico-Chemical and Biological In Vitro Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nutritional Profiling of Novel Nutraceutic Formula
2.1.1. Formulation Rationale
2.1.2. Determination of Total Proteins
2.1.3. Determination of Extractible and Total Fats
2.1.4. Determination of Ash Contents Insoluble in Hydrochloric Acid
2.1.5. Determination of Moisture Content and Dry Matter
2.1.6. Calorific Value
2.1.7. Fourier-Transform Infrared (FT-IR) Spectroscopy
2.1.8. Determination of Micromineral Content
2.2. Assessment of the Physico-Chemical Properties
2.2.1. Sample Preparation
2.2.2. Determination of Total Phenolic Content (TPC)
2.2.3. Determination of Flavonoid Content (TFC)
2.2.4. Total Anthocyanins Content
2.3. Assessment of Antioxidant Activity
2.3.1. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Assay
2.3.2. Cupric Ion Reducing Antioxidant Capacity Assay (CUPRAC)
2.3.3. Ferric Reducing Antioxidant Power Assay
2.3.4. Trolox Equivalent Antioxidant Capacity (TEAC) Assay
2.4. Hazard Analysis for Food Safety Assurance
2.4.1. Determination of the Total Number of Aerobic Bacteria (Based on ISO 4833-1/2014 Standard)
2.4.2. Determination of the Total Number of Fungi (Based on ISO 21527-2:2009 Standard)
2.4.3. Determination of Heavy Metals
2.5. Evaluation of Putative Duplicity Effect on Probiotic and Pathogenic Bacteria
2.6. Cytotoxicity
2.7. Adherence and Invasion of Bacteria on HT-29 Cells
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, X.; Song, M.; Wang, A.; Zhao, Y.; Wei, Z.; Lu, Y. Microbiome Crosstalk in Immunotherapy and Antiangiogenesis Therapy. Front. Immunol. 2021, 12, 4310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tang, H.; Chen, P.; Xie, H.; Tao, Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct. Target. Ther. 2019, 4, 41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Li, S.; Gan, R.Y.; Zhou, T.; Xu, D.P.; Li, H. Bin Impacts of Gut Bacteria on Human Health and Diseases. Int. J. Mol. Sci. 2015, 16, 7493–7519. [Google Scholar] [CrossRef] [PubMed]
- Kho, Z.Y.; Lal, S.K. The human gut microbiome—A potential controller of wellness and disease. Front. Microbiol. 2018, 9, 1835. [Google Scholar] [CrossRef] [Green Version]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in Food Systems: Significance and Emerging Strategies towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef] [Green Version]
- Cronin, P.; Joyce, S.A.; O’toole, P.W.; O’connor, E.M. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef]
- Quigley, E.M.M. Nutraceuticals as modulators of gut microbiota: Role in therapy. Br. J. Pharmacol. 2020, 177, 1351. [Google Scholar] [CrossRef] [Green Version]
- Răducanu, A.E.; Tihăuan, B.M.; Marinaș, I.C.; Ciupercă, O.T.; Țebrencu, C.E.; Ionescu, E.; Onisei, T. The Biological Effects of Novel Nutraceuticals with Curcuminoids and Other Plant-Derived Immunomodulators and Pre-Probiotics. Pharmaceutics 2021, 13, 666. [Google Scholar] [CrossRef]
- Popovici, I.; Lupuleasa, D. Tehnologie Farmaceutica; Polirom: Bucharest, Romania, 2017. [Google Scholar]
- George, W.L. AOAC International Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes. Dinglers Polytech. J. 1879, 232, 461–465. [Google Scholar]
- FAO. FAO Food and Nutrition paper 77. In Food Energy—Methods of Anlysis and Conversion Factors; FAO: Rome, Italy, 2003. [Google Scholar]
- Corbu, V.M.; Gheorghe, I.; Marinaș, I.C.; Geană, E.I.; Moza, M.I.; Csutak, O.; Chifiriuc, M.C. Demonstration of Allium sativum Extract Inhibitory Effect on Biodeteriogenic Microbial Strain Growth, Biofilm Development, and Enzymatic and Organic Acid Production. Molecules 2021, 26, 7195. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Chiou, A.; Panagopoulou, E.A.; Gatzali, F.; De Marchi, S.; Karathanos, V.T. Anthocyanins content and antioxidant capacity of Corinthian currants (Vitis vinifera L., var. Apyrena). Food Chem. 2014, 146, 157–165. [Google Scholar] [CrossRef] [PubMed]
- MohdMaidin, N.; Oruna-Concha, M.J.; Jauregi, P. Surfactant TWEEN20 provides stabilisation effect on anthocyanins extracted from red grape pomace. Food Chem. 2019, 271, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Madhu, G.; Bose, V.C.; Aiswaryaraj, A.S.; Maniammal, K.; Biju, V. Defect dependent antioxidant activity of nanostructured nickel oxide synthesized through a novel chemical method. Colloids Surf. A Physicochem. Eng. Asp. 2013, 429, 44–50. [Google Scholar] [CrossRef]
- Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Determination of antioxidants by a novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) assay with post-column detection. Anal. Chim. Acta 2010, 674, 79–88. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI Supplement for Global Application. Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 1 January 2022).
- StatPearls [Internet]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562156/ (accessed on 1 January 2022).
- Socrates, G. Infrared and Raman characteristic group frequencies. Tables and charts. J. Raman Spectrosc. 2001, 124, 347. [Google Scholar]
- Guan, X.H.; Shang, C.; Chen, G.H. ATR-FTIR investigation of the role of phenolic groups in the interaction of some NOM model compounds with aluminum hydroxide. Chemosphere 2006, 65, 2074–2081. [Google Scholar] [CrossRef] [PubMed]
- Wahyono, T.; Astuti, D.A.; Komang, I.; Wiryawan, G.; Sugoro, I.; Jayanegara, A. Fourier Transform Mid-Infrared (FTIR) Spectroscopy to Identify Tannin Compounds in The Panicle of Sorghum Mutant Lines. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 546. [Google Scholar]
- Garside, P.; Wyeth, P. Identification of Cellulosic Fibres by FTIR Spectroscopy: Differentiation of Flax and Hemp by Polarized ATR FTIR. Stud. Conserv. 2006, 51, 205–211. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Gegechkori, V.; Petrovich, D.S.; Ilinichna, K.T.; Morton, D.W. HPTLC and FTIR Fingerprinting of Olive Leaves Extracts and ATR-FTIR Characterisation of Major Flavonoids and Polyphenolics. Molecules 2021, 26, 6892. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, J.; Zhang, R. Thermal properties and stability of boron-containing phenol-formaldehyde resin formed from paraformaldehyde. Polym. Degrad. Stab. 2002, 77, 495–501. [Google Scholar] [CrossRef]
- Vu, C.M.; Nguyen, D.D.; Sinh, L.H.; Choi, H.J.; Pham, T.D. Improvement the mode I interlaminar fracture toughness of glass fiber reinforced phenolic resin by using epoxidized soybean oil. Polym. Bull. 2018, 75, 4769–4782. [Google Scholar] [CrossRef]
- Sharma, G.; Lakhawat, S. Development, Quality Evaluation and Acceptability of Pumpkin Seed Flour Incorporated in Gravy. J. Nutr. Food Sci. 2017, 7, 4. [Google Scholar]
- European Commission. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (Text with EEA relevance). Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- European Food Safety Authority (EFSA). Dietary Reference Values for Nutrients Summary Report; EFSA Supporting Publications: Parma, Italy, 2017; Volume 14. [Google Scholar]
- Magalhães, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L.F.C.; Rangel, A.O.S.S. Automatic Method for the Determination of Folin−Ciocalteu Reducing Capacity in Food Products. J. Agric. Food Chem. 2006, 54, 5241–5246. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem. Rev. 2020, 19, 63–103. [Google Scholar] [CrossRef]
- Rodríguez-Daza, M.C.; Pulido-Mateos, E.C.; Lupien-Meilleur, J.; Guyonnet, D.; Desjardins, Y.; Roy, D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front. Nutr. 2021, 8, 689456. [Google Scholar] [CrossRef]
- Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. Methods Mol. Biol. 2017, 1601, 1–17. [Google Scholar] [PubMed]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials 2013, 34, 8018–8029. [Google Scholar] [CrossRef] [PubMed]
- Sarbu, I.; Vassu, T.; Stoica, I.; Dascalu, L.; Chifiriuc, C.; Pelinescu, D. Phenotypic and genotypic assessment of Lactobacillus plantarum influence on Candida albicans fluconazole resistance. Ann. Microbiol. 2016, 66, 817–823. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global epidemiology of campylobacter infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulati, O.P.; Berry Ottaway, P. Legislation relating to nutraceuticals in the European Union with a particular focus on botanical-sourced products. Toxicology 2006, 221, 75–87. [Google Scholar] [CrossRef] [PubMed]
- DeFelice, S.L. The nutraceutical revolution: Its impact on food industry R&D. Trends Food Sci. Technol. 1995, 6, 59–61. [Google Scholar]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.K.; Estaki, M.; Gibson, D.L. Clinical consequences of diet-induced dysbiosis. Ann. Nutr. Metab. 2013, 63, 28–40. [Google Scholar] [CrossRef]
- Schmidt, T.S.B.; Raes, J.; Bork, P. The Human Gut Microbiome: From Association to Modulation. Cell 2018, 172, 1198–1215. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Liang, Q.; Balakrishnan, B.; Belobrajdic, D.P.; Feng, Q.J.; Zhang, W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020, 12, 381. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Chen, O.; Martins, I.M.; Hou, H.; Zhao, X.; Blumberg, J.B.; Li, B. Collagen peptides ameliorate intestinal epithelial barrier dysfunction in immunostimulatory Caco-2 cell monolayers via enhancing tight junctions. Food Funct. 2017, 8, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Sugano, M.; Matsuoka, R. Nutritional Viewpoints on Eggs and Cholesterol. Foods 2021, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Habryka, C.; Socha, R.; Juszczak, L. Effect of Bee Pollen Addition on the Polyphenol Content, Antioxidant Activity, and Quality Parameters of Honey. Antioxidants 2021, 10, 810. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Ursachi, F.; Dranca, F. Ultrasound-Assisted Extraction of Polyphenols from Crude Pollen. Antioxidants 2020, 9, 322. [Google Scholar] [CrossRef] [PubMed]
- Prdun, S.; Svečnjak, L.; Valentić, M.; Marijanović, Z.; Jerković, I. Characterization of Bee Pollen: Physico-Chemical Properties, Headspace Composition and FTIR Spectral Profiles. Foods 2021, 10, 2103. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Nayik, G.A.; Shah, T.R.; Muzaffar, K.; Wani, S.A.; Gull, A.; Majid, I.; Bhat, F.M. Honey: Its history and religious significance: A review. Univers. J. Pharm. 2014, 3, 5–8. [Google Scholar]
- Damar, I.; Ekşi, A. Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chem. 2012, 135, 2910–2914. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, C.; Li, J. Comparison of vitamin c and its derivative antioxidant activity: Evaluated by using density functional theory. ACS Omega 2020, 5, 25467–25475. [Google Scholar] [CrossRef] [PubMed]
- Craft, B.D.; Kerrihard, A.L.; Amarowicz, R.; Pegg, R.B. Phenol-Based Antioxidants and the In Vitro Methods Used for Their Assessment. Compr. Rev. Food Sci. Food Saf. 2012, 11, 148–173. [Google Scholar] [CrossRef]
- Segers, M.E.; Lebeer, S. Towards a better understanding of Lactobacillus rhamnosus GG-host interactions. Microb. Cell Factories 2014, 13, S7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.; Chen, Q.; Wang, Y.; Han, Y.; Zhang, H.; Li, B.; Yu, G. Identification and Structure–Activity Relationship of Intestinal Epithelial Barrier Function Protective Collagen Peptides from Alaska Pollock Skin. Mar. Drugs 2019, 17, 450. [Google Scholar] [CrossRef] [Green Version]
- Yazaki, M.; Ito, Y.; Yamada, M.; Goulas, S.; Teramoto, S.; Nakaya, M.A.; Ohno, S.; Yamaguchi, K. Oral Ingestion of Collagen Hydrolysate Leads to the Transportation of Highly Concentrated Gly-Pro-Hyp and Its Hydrolyzed Form of Pro-Hyp into the Bloodstream and Skin. J. Agric. Food Chem. 2017, 65, 2315–2322. [Google Scholar] [CrossRef] [Green Version]
- Sibilla, S.; Godfrey, M.; Brewer, S.; Budh-Raja, A.; Genovese, L. An overview of the beneficial effects of hydrolysed collagen as a nutraceutical on skin properties: Scientific background and clinical studies. Open Nutraceuticals J. 2015, 8, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Cróinín, T.O.; Backert, S. Host Epithelial Cell Invasion by Campylobacter jejuni: Trigger or Zipper Mechanism? Front. Cell. Infect. Microbiol. 2012, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Colantonio, A.G.; Werner, S.L.; Brown, M. The Effects of Prebiotics and Substances with Prebiotic Properties on Metabolic and Inflammatory Biomarkers in Individuals with Type 2 Diabetes Mellitus: A Systematic Review. J. Acad. Nutr. Diet. 2020, 120, 587–607.e2. [Google Scholar] [CrossRef] [Green Version]
- Huda, M.N.; Kim, M.; Bennett, B.J. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front. Endocrinol. 2021, 12, 153. [Google Scholar] [CrossRef]
Samples | Total Proteins % | Total Lipids % | Ash Insoluble in HCl % | Moisture Content % | Dry Matter % | Fiber % |
---|---|---|---|---|---|---|
Hydrolyzed Collagen | 90.30 | - | 0.28 | 7.74 | 92.26 | - |
Egg white | 82.05 | 0.37 | 0.54 | 9.85 | 90.15 | - |
Pollen | 24.75 | 5.16 | 0.20 | 7.24 | 92.76 | 13 * |
Cherries powder | 0.93 | 0.39 | 0.14 | 4.43 | 95.57 | 3 * |
Orange flavor | - | - | 0.02 | 6.80 | 93.20 | - |
Vitamin C | - | - | 0.08 | 0.80 | 99.20 | - |
Patience dock | - | - | 0.02 | 0.42 | 99.58 | - |
Electuary | - | - | 0.01 | 0.80 | 99.20 | - |
Final product SAN | 80.97 | 0.87 | 0.27 | 7.37 | 92.63 | 2.1 ** |
Al | V | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|
(µg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) |
16.69 ± 0.19 | 1.13 ± 0.02 | 17.17 ± 1.27 | 22.63 ± 0.37 | 1.88 ± 0.05 | 8.41 ± 0.23 |
As | Se | Rb | Cd | Hg | Pb |
(µg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) |
0.0406 ± 0.0009 | 0.4744 ± 0.0063 | 5.96 ± 0.06 | 0.0266 ± 0.0010 | n.d | 0.0534 ± 0.0176 |
Ingredients | Total Phenolic Content (mg GAE/g) | Total Flavonoid Content (mg QE/g) | Total Anthocyanins Content (µg ME/g) |
---|---|---|---|
Vitamin C | 1137.85 ± 0.91 | - | - |
Patience dock | 0.03 ± 0.00 | - | - |
Pollen | 98.15 ± 2.70 | 33.88 ± 0.19 | - |
Hydrolysis collagen | 1.62 ± 0.10 | - | - |
Egg white | 0.17 ± 0.02 | 0.05 ± 0.00 | - |
Sour cherries | 1.28 ± 0.11 | 0.51 ± 0.03 | 163.95 ± 2.75 |
Orange flavor | 0.56 ± 0.01 | 1.38 ± 0.12 | - |
Electuary | 3.03 ± 0.04 | 4.71 ± 0.09 | - |
Sum of the compounds to the mass ratio of ingredients | 44.14 ± 0.12 | 5.25 ± 0.00 | 8.10 ± 0.27 |
Final product | 35.95 ± 0.91 | 4.52 ± 0.08 | 8.27 ± 0.18 |
p-value | <0.001 | <0.0001 | >0.05 |
Percentages of compounds in final formulation (%) | 81.44 | 86.07 | 102.10 |
Ingredients | TEAC (mg Trolox/g) | DPPH (mg Trolox/g) | FRAP (mg Trolox/g) | CUPRAC (mg Trolox/g) |
---|---|---|---|---|
Vitamin C | 3818.33 ± 5.88 | 3547.04 ± 14.84 | 3044.55 ± 104.51 | 3144.61 ± 36.78 |
Patience dock | 0.02 ± 0.01 | n.d. | n.d. | n.d. |
Pollen | 175.19 ± 16.74 | 122.76 ± 6.20 | 153.67 ± 3.72 | 147.90 ± 2.71 |
Hydrolysis collagen | 4.26 ± 0.75 | 1.91 ± 0.26 | 0.96 ± 0.04 | 1.06 ± 0.01 |
Egg white | 4.58 ± 0.44 | n.d. | 0.36 ± 0.05 | 0.35 ± 0.02 |
Sour cherries | 22.25 ± 2.73 | 26.81 ± 1.62 | 36.52 ± 0.32 | 29.57 ± 1.34 |
Orange flavor | 2.07 ± 0.01 | 0.31 ± 0.04 | 1.31 ± 0.15 | 1.48 ± 0.03 |
Electuary | 3.45 ± 0.26 | n.d. | 8.35 ± 0.73 | n.d. |
The sum of the antioxidant activities related to the mass ratio of ingredients | 126.17 ± 3.28 | 109.36 ± 2.04 | 101.74 ± 3.24 | 102.90 ± 1.99 |
Final product | 147.40 ± 1.78 | 139.03 ± 16.22 | 130.69 ± 9.66 | 137.52 ± 7.71 |
p-value | <0.001 | <0.05 | <0.01 | <0.01 |
Synergistic effect (%) | 116.83 | 127.13 | 128.46 | 133.65 |
Total Aerobic Count CFU/g | Yeast and Molds cfu/g | Water Activity Value | |
---|---|---|---|
NN sample 1 | <10 | <10 | 0.345 |
NN Sample 2 | <10 | <10 | 0.404 |
NN Sample 3 | <10 | <10 | 0.353 |
Strains | Salmonella enterica subsp. enterica ATCC 14028 | Escherichia coli ATCC 25922 | Lactococcus lactis DNS | Enterococcus faecalis ATCC 19433 | Lacticaseibacillus rhamnosus ATCC 53103 |
---|---|---|---|---|---|
AICS1(%) | |||||
NN | 92.12 | 82.03 | 98.03 | 96.44 | 95.57 |
PBS | 97.22 | 99.10 | 100 | 99.17 | 99.01 |
Positive control | 98.75 | 99.02 | 99.55 | 98.41 | 100 |
AP2 | |||||
PBS | 1 | 1 | 1 | 1 | 1 |
NN | 2 | 2 | 2 | 2 | 2 |
Positive control | 2 | 1 | 2 | 2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tihăuan, B.-M.; Axinie, M.; Marinaș, I.-C.; Avram, I.; Nicoară, A.-C.; Grădișteanu-Pîrcălăbioru, G.; Dolete, G.; Ivanof, A.-M.; Onisei, T.; Cășărică, A.; et al. Evaluation of the Putative Duplicity Effect of Novel Nutraceuticals Using Physico-Chemical and Biological In Vitro Models. Foods 2022, 11, 1636. https://doi.org/10.3390/foods11111636
Tihăuan B-M, Axinie M, Marinaș I-C, Avram I, Nicoară A-C, Grădișteanu-Pîrcălăbioru G, Dolete G, Ivanof A-M, Onisei T, Cășărică A, et al. Evaluation of the Putative Duplicity Effect of Novel Nutraceuticals Using Physico-Chemical and Biological In Vitro Models. Foods. 2022; 11(11):1636. https://doi.org/10.3390/foods11111636
Chicago/Turabian StyleTihăuan, Bianca-Maria, Mădălina Axinie (Bucos), Ioana-Cristina Marinaș, Ionela Avram, Anca-Cecilia Nicoară, Grațiela Grădișteanu-Pîrcălăbioru, Georgiana Dolete, Ana-Maria Ivanof, Tatiana Onisei, Angela Cășărică, and et al. 2022. "Evaluation of the Putative Duplicity Effect of Novel Nutraceuticals Using Physico-Chemical and Biological In Vitro Models" Foods 11, no. 11: 1636. https://doi.org/10.3390/foods11111636
APA StyleTihăuan, B.-M., Axinie, M., Marinaș, I.-C., Avram, I., Nicoară, A.-C., Grădișteanu-Pîrcălăbioru, G., Dolete, G., Ivanof, A.-M., Onisei, T., Cășărică, A., & Pîrvu, L. (2022). Evaluation of the Putative Duplicity Effect of Novel Nutraceuticals Using Physico-Chemical and Biological In Vitro Models. Foods, 11(11), 1636. https://doi.org/10.3390/foods11111636