Association of Seaweed Consumption with Metabolic Syndrome and Its Components: Findings from the Korean Genome and Epidemiology Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Assessment of Metabolic Syndrome and Its Components
2.3. Assessment of Seaweed Consumption
2.4. Assessment of Other Variables
2.5. Statistical Analyses
3. Results
3.1. General Characteristics According to Total Seaweed Consumption
3.2. Dietary Intake and Clinical Characteristics According to Total Seaweed Consumption
3.3. Association between Seaweed Consumption and the Odds of Developing Metabolic Syndrome and Its Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghodsi, S.; Meysamie, A.; Abbasi, M.; Ghalehtaki, R.; Esteghamati, A.; Malekzadeh, M.M.; Asgari, F.; Gouya, M.M. Non–high-density lipoprotein fractions are strongly associated with the presence of metabolic syndrome independent of obesity and diabetes: A population-based study among Iranian adults. Diabetes Metab. J. 2017, 16, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.K. The impact of metabolic syndrome and its components on pulse wave velocity. Korean J. Med. 2005, 68, 140–148. [Google Scholar] [CrossRef]
- Klempfner, R.; Erez, A.; Sagit, B.-Z.; Goldenberg, I.; Fisman, E.; Kopel, E.; Shlomo, N.; Israel, A.; Tenenbaum, A. Elevated triglyceride level is independently associated with increased all-cause mortality in patients with established coronary heart disease: Twenty-two–year follow-up of the bezafibrate infarction prevention study and registry. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.W.; Kim, S.; Ke, S.S.; Cho, B.l. The prevalence of obesity, abdominal obesity and metabolic syndrome among elderly in general population. Korean J. Fam. Med. 2011, 32, 128–134. [Google Scholar] [CrossRef]
- Park, H.S.; Park, C.Y.; Oh, S.W.; Yoo, H.J. Prevalence of obesity and metabolic syndrome in Korean adults. Obes. Rev. 2008, 9, 104–107. [Google Scholar] [CrossRef]
- Kim, M.H.; Lee, S.H.; Shin, K.S.; Son, D.Y.; Kim, S.H.; Joe, H.; Yoo, B.W.; Hong, S.H.; Cho, C.Y.; Shin, H.S.; et al. The change of metabolic syndrome prevalence and its risk factors in Korean adults for decade: Korea National Health and Nutrition Examination Survey for 2008–2017. Korean J. Fam. Med. 2020, 10, 44–52. [Google Scholar] [CrossRef]
- Biadgo, B.; Melak, T.; Ambachew, S.; Baynes, H.W.; Limenih, M.A.; Jaleta, K.N.; Tachebele, B.; Melku, M.; Abebe, M. The prevalence of metabolic syndrome and its components among type 2 diabetes mellitus patients at a tertiary hospital, northwest Ethiopia. Ethiop. J. Health Sci. 2018, 28, 645–654. [Google Scholar] [CrossRef]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Zhu, S.; St-Onge, M.-P.; Heshka, S.; Heymsfield, S.B. Lifestyle behaviors associated with lower risk of having the metabolic syndrome. Metabolism 2004, 53, 1503–1511. [Google Scholar] [CrossRef]
- Maki, K.C. Dietary factors in the prevention of diabetes mellitus and coronary artery disease associated with the metabolic syndrome. Am. J. Card. 2004, 93, 12–17. [Google Scholar] [CrossRef]
- Jung, C.H.; Park, J.S.; Lee, W.Y.; Kim, S.W. Effects of smoking, alcohol, exercise, level of education, and family history on the metabolic syndrome in Korean adults. Korean J. Med. 2002, 63, 649–659. [Google Scholar]
- Kang, H.S.; Hong, H.R. The effects of body mass index, cardio/respiratory fitness, and smoking on the clustering of the metabolic syndrome risk factors in college male student. J. Leis. Res. 2011, 45, 709–720. [Google Scholar]
- Nam, S.M.; Yu, H.Y.; Lee, M.Y.; Koh, J.H.; Shin, J.H.; Shin, J.Y.; Shin, Y.G.; Chung, C.H. Alcohol consumption, liver enzymes, and prevalence of metabolic syndrome in Korean adult men. Hypertension 2007, 16, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Park, J.K.; Kweon, S.H.; Kim, Y.H.; Jang, M.J.; Oh, K.W. Dietary behaviors related to metabolic syndrome in Korean adults. Korean J. Community Nutr. 2012, 17, 664–675. [Google Scholar] [CrossRef]
- Bae, Y.J. Relationship among practicing healthy diet and metabolic syndrome indicators in adults-from the Korea National Health and Nutrition Examination Survey, 2013~2014. J. Nutr. Health 2016, 49, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Miedico, O.; Pompa, C.; Tancredi, C.; Cera, A.; Pellegrino, E.; Tarallo, M.; Chiaravalle, A.E. Characterisation and chemometric evaluation of 21 trace elements in three edible seaweed species imported from south-east Asia. J. Food Compos. Anal. 2017, 64, 188–197. [Google Scholar] [CrossRef]
- Kumar, S.A.; Brown, L. Seaweeds as potential therapeutic interventions for the metabolic syndrome. Rev. Endocr. Metab. Disord. 2013, 14, 299–308. [Google Scholar] [CrossRef]
- Korean Statistical Information Service (KOSIS). Daily Intake Trend by Food Group (Standardized). Available online: https://kosis.kr/statHtml/statHtml.do?orgId=177&tblId=DT_11702_N221&vw_cd=MT_OTITLE&list_id=117_11702_A01_033_001&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=K2&path=%252Fcommon%252Fmeta_onedepth.jsp (accessed on 25 January 2022).
- Choi, M.K. Analysis of seaweed consumption in Korean adults using the 2016 Korea National Health and Nutrition Examination Survey. Korean J. Food Sci. Technol. 2019, 48, 597–604. [Google Scholar] [CrossRef]
- Korea Health Industry Development Institute (KHIDI). Consumption by Food Group. Available online: https://www.khidi.or.kr/kps/dhraStat/result1?menuId=MENU01652&year=2019 (accessed on 25 January 2022).
- Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs 2011, 9, 1056. [Google Scholar] [CrossRef] [Green Version]
- Rajapakse, N.; Kim, S.K. Nutritional and digestive health benefits of seaweed. Adv. Food Nutr. Res. 2011, 64, 17–28. [Google Scholar] [CrossRef]
- Parnell, J.A.; Reimer, R.A. Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes 2012, 3, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, F.-P.J.; Wang, Y.; Sprenger, N.; Yap, I.K.S.; Lundstedt, T.; Lek, P.; Rezzi, S.; Ramadan, Z.; Bladeren, P.v.; Fay, L.B.; et al. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 2008, 4, 157. [Google Scholar] [CrossRef] [Green Version]
- Park, J.K.; Woo, H.W.; Kim, M.K.; Shin, J.H.; Lee, Y.H.; Shin, D.H.; Shin, M.H.; Choi, B.Y. Dietary iodine, seaweed consumption, and incidence risk of metabolic syndrome among postmenopausal women: A prospective analysis of the Korean Multi-Rural Communities Cohort Study (MRCohort). Eur. J. Nutr. 2021, 60, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Lee, S.Y.; Jang, D.h.; Lee, S.J.; Cho, J.Y.; Kim, S.H. Inhibitory effects of Porphyra dentata extract on 3T3-L1 adipocyte differentiation. J. Anim. Sci. Technol. 2020, 62, 854. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; You, S.G.; Kim, S.M. Functional activities of low molecular weight peptides purified from enzymatic hydrolysates of seaweeds. J. Korean Soc. Food Sci. Nutr. 2005, 34, 1124–1129. [Google Scholar] [CrossRef]
- Kim, S.K.; Byun, H.G. Production and biological applications for marine proteins and peptides—An overview. Food Sci. Ind. 2018, 51, 278–301. [Google Scholar] [CrossRef]
- Kim, M.J.; Jeon, J.; Lee, J.S. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation. Phytother. Res. 2014, 28, 137–143. [Google Scholar] [CrossRef]
- Wong, K.H.; Sam, S.W.; Cheung, P.C.K.; AngJr, P.O. Changes in lipid profiles of rats fed with seaweed-based diets. Nutr. Res. 1999, 19, 1519–1527. [Google Scholar] [CrossRef]
- Kim, Y.J.; Han, B.G.; KoGES Group. Cohort profile: The Korean genome and epidemiology study (KoGES) consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Ritchie, S.A.; Connell, J.M.C. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 319–326. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Nah, E.H.; Cho, S. Prevalence of Comorbidities among Patients with Diabetes. J. Health Inf. Stat. 2018, 43, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.O.; Kim, Y.N.; Lee, D.C. Effects of Gelidium elegans on weight and fat mass reduction and obesity biomarkers in overweight or obese adults: A randomized double-blinded study. Nutrients 2019, 11, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teas, J.; Baldeon, M.E.; Chiriboga, D.E.; Davis, J.R.; Sarries, A.J.; Braverman, L.E. Could dietary seaweed reverse the metabolic syndrome? Asia Pac. J. Clin. Nutr. 2009, 18, 145–154. [Google Scholar] [PubMed]
- Shin, A.S.; Lim, S.Y.; Sung, J.H.; Shin, H.R.; Kim, J.S. Dietary intake, eating habits, and metabolic syndrome in Korean men. J. Acad. Nutr. Diet 2009, 109, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Nishiumi, S.; Izumi, Y.; Kobayashi, T.; Yoshida, M. A pilot study: Effects of kombu intake on lifestyle-related diseases-possibility that kombu intake is effective in individuals with abnormally high serum triglyceride levels. Food Sci. Technol. Res. 2019, 25, 827–834. [Google Scholar] [CrossRef]
- Kwon, M.J.; Nam, T.J. Effects of mesangi (Capsosiphon fulvecens) powder on lipid metabolism in high cholesterol fed rats. J. Korean Soc. Food Sci. Nutr. 2006, 35, 530–535. [Google Scholar] [CrossRef]
- Lailatussifa, R.; Husni, A.; Nugroho, A.E. Anti-stress activity of Sargassum polycystum extracts using a cold restraint stress model. Food Sci. Biotechnol. 2016, 25, 589–594. [Google Scholar] [CrossRef]
- Zeng, A.; Yang, R.; Yu, S.; Zhao, W. A novel hypoglycemic agent: Polysaccharides from laver (Porphyra spp.). Food Funct. 2020, 11, 9048–9056. [Google Scholar] [CrossRef]
- Cho, M.J.; Lee, E.K.; Kim, S.S. Relationship between seaweed intake and the risk of diabetes: Korean Genome and Epidemiology Study, KoGES (Ansan and Ansung Study). Public Health Wkly. Rep. 2017, 10, 2–9. [Google Scholar]
- Ren, D.; Noda, H.; Amano, H.; Nishino, T.; Nishizawa, K. Study on antihypertensive and antihyperlipidemic effects of marine algae. Fish Sci. 1994, 60, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Wada, K.; Tsuji, M.; Nakamura, K.; Oba, S.; Nishizawa, S.; Yamamoto, K.; Watanabe, K.; Ando, K.; Nagata, C. Effect of dietary nori (dried laver) on blood pressure in young Japanese children: An intervention study. J. Epidemiol. 2021, 31, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.S.; Roh, J.S.; Yoon, Y.R.; Kim, H.J.; Kwon, M.J.; Choi, H.S.; Song, Y.O. The effect of kelp cabbage kimchi on weight loss and lipid loss. Korean J. Food Sci. Technol. 2007, 36, 1140–1147. [Google Scholar]
- Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol. 2009, 21, 75–80. [Google Scholar] [CrossRef]
- Jung, B.M.; Jung, K.J. Effect of porphyran drink on serum and liver cholesterol contents in hypercholesterolemic rat. J. Korean Soc. Food Sci. Nutr. 2005, 34, 1357–1361. [Google Scholar] [CrossRef]
- Kim, E.; Kim, M.S.; Kim, S.Y.; Kim, H.A. Effect of Ecklonia cava on the blood glucose, lipids and renal oxidative stress in diabetic rats. J. Korean Soc. Food Cult. 2008, 23, 812–819. [Google Scholar]
- Shin, J.H.; Choi, D.J.; Lim, H.C.; Seo, J.K.; Lee, S.J.; Choi, S.Y.; Sung, N.J. Nutrients and antioxidant activity of red seaweeds. J. Life Sci. 2006, 16, 400–408. [Google Scholar] [CrossRef]
Variables | Tertile of Total Seaweed Consumption | p-Value | ||
---|---|---|---|---|
T1 (Lowest) (n = 1945) | T2 (n = 1628) | T3 (Highest) (n = 2204) | ||
Age (years) | 51.3 ± 8.7 (1) | 49.9 ± 8.3 | 49.4 ± 8.1 | <0.0001 |
Education | <0.0001 | |||
Elementary/middle school | 1124 (57.8%) | 750 (46.1%) | 965 (43.8%) | |
High school/technical college | 657 (33.8%) | 690 (42.4%) | 939 (42.6%) | |
University | 164 (8.4%) | 188 (11.5%) | 300 (13.6%) | |
Income (million KRW/month) | <0.0001 | |||
< 1 | 706 (36.3%) | 392 (24.1%) | 483 (21.9%) | |
1–3 | 933 (48.0%) | 845 (51.9%) | 1143 (51.9%) | |
> 3 | 306 (15.7%) | 391 (24.0%) | 578 (26.2%) | |
Smoking status | 0.02 | |||
None | 1075 (55.3%) | 962 (59.1%) | 1323 (60.0%) | |
Past | 307 (15.8%) | 247 (15.2%) | 333 (15.1%) | |
Current | 563 (28.9%) | 419 (25.7%) | 548 (24.9%) | |
Alcohol consumption | 0.015 | |||
None | 810 (41.6%) | 718 (44.1%) | 1027 (46.6%) | |
Past | 126 (6.5%) | 90 (5.5%) | 110 (5.0%) | |
Current | 1009 (51.9%) | 820 (50.4%) | 1067 (48.4%) | |
Region | <0.0001 | |||
Ansung (rural) | 852 (43.8%) | 441 (27.1%) | 558 (25.3%) | |
Ansan (urban) | 1093 (56.2%) | 1187 (72.9%) | 1646 (74.7%) | |
Physical activity (MET-h/d) | 23.6 ± 14.9 | 21.3 ± 13.1 | 21.7 ± 13.1 | <0.0001 |
Body mass index (kg/m2) | 24.1 ± 3.0 | 24.3 ± 3.0 | 24.6 ± 3.0 | <0.0001 |
Variables | Tertile of Total Seaweed Consumption | p-Value | ||
---|---|---|---|---|
Tertile 1 (Lowest) | Tertile 2 | Tertile 3 (Highest) | ||
Dietary intake | ||||
Total energy (kcal) | 1748.6 ± 575.3 (1) | 1912 ± 525.1 | 2182.9 ± 758.3 | <0.0001 |
Protein (g) | 55.5 ± 22.3 | 65.2 ± 21.2 | 80.3 ± 35.1 | <0.0001 |
Fat (g) | 26.8 ± 16.9 | 32.7 ± 16.0 | 41.2 ± 24.9 | <0.0001 |
Carbohydrates (g) | 315.5 ± 98.6 | 334.3 ± 92.0 | 368.9 ± 121.8 | <0.0001 |
Dietary fiber (g) | 5.9 ± 2.8 | 6.7 ± 2.7 | 8.1 ± 3.8 | <0.0001 |
Total seaweed (g) | 0.5 ± 0.3 | 1.4 ± 0.3 | 3.6 ± 2.2 | <0.0001 |
Laver (g) | 0.3 ± 0.2 | 0.8 ± 0.4 | 2.0 ± 1.4 | <0.0001 |
Kelp/sea mustard (g) | 0.2 ± 0.2 | 0.7 ± 0.4 | 1.6 ± 1.7 | <0.0001 |
Components of metabolic syndrome | ||||
Waist circumference (cm) | 81.4 ± 8.5 | 81.0 ± 8.5 | 81.2 ± 8.6 | 0.157 |
Fasting glucose (mg/dL) | 86.4 ± 21.8 | 86.6 ± 19.3 | 87.7 ± 22.9 | 0.095 |
Triglycerides (mg/dL) | 157.7 ± 104.2 | 156.8 ± 98.1 | 151.6 ± 101.1 | 0.117 |
HDL cholesterol (mg/dL) | 45.1 ± 10.0 | 45.0 ± 9.9 | 45.3 ± 10.1 | 0.634 |
Systolic blood pressure (mmHg) | 118.4 ± 16.4 | 116.2 ± 16.0 | 116.7 ± 16.4 | <0.0001 |
Diastolic blood pressure (mmHg) | 78.8 ± 10.7 | 77.4 ± 10.8 | 78.0 ± 11.0 | <0.0001 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
Tertile of Seaweed Consumption | p-Value for Trend (2) | Tertile of Seaweed Consumption | p-Value for Trend | |||||
T1 (Lowest) | T2 | T3 (Highest) | T1 (Lowest) | T2 | T3 (Highest) | |||
OR (95% CI) (1) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |||
Total seaweed | ||||||||
Cases/Total (n) | 218/1012 | 192/861 | 224/963 | 326/988 | 264/958 | 275/995 | ||
Crude model | 1.00 | 1.05 (0.84–1.31) | 1.10 (0.89–1.36) | 0.36 | 1.00 | 0.77 (0.64–0.94) | 0.78 (0.64–0.94) | 0.025 |
Adjusted model (1) | 1.00 | 0.98 (0.76–1.26) | 0.84 (0.64–1.10) | 0.188 | 1.00 | 0.90 (0.71–1.13) | 0.85 (0.67–1.09) | 0.244 |
Laver | ||||||||
Cases/Total (n) | 142/625 | 299/1342 | 193/869 | 246/690 | 371/1323 | 248/928 | ||
Crude model | 1.00 | 0.98 (0.78–1.22) | 0.97 (0.76–1.24) | 0.860 | 1.00 | 0.70 (0.58–0.86) | 0.66 (0.53–0.82) | 0.003 |
Adjusted model | 1.00 | 1.09 (0.83–1.42) | 0.78 (0.57–1.06) | 0.016 | 1.00 | 0.84 (0.66–1.06) | 0.70 (0.54–0.92) | 0.014 |
Kelp/sea mustard | ||||||||
Cases/Total (n) | 231/1095 | 150/673 | 253/1068 | 261/813 | 221/741 | 383/1387 | ||
Crude model | 1.00 | 1.07 (0.85–1.35) | 1.16 (0.95–1.42) | 0.150 | 1.00 | 0.90 (0.73–1.12) | 0.81 (0.67–0.97) | 0.028 |
Adjusted model | 1.00 | 1.08 (0.83–1.41) | 1.11 (0.87–1.41) | 0.460 | 1.00 | 0.99 (0.77–1.27) | 0.92 (0.73–1.16) | 0.446 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
Tertile of Seaweed Consumption | p-Value for Trend (2) | Tertile of Seaweed Consumption | p-Value for Trend | |||||
T1 (Lowest) | T2 | T3 (Highest) | T1 (Lowest) | T2 | T3 (Highest) | |||
OR (95% CI) (1) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |||
Total seaweed | ||||||||
Abdominal obesity | 1.00 | 0.99 (0.69–1.41) | 0.83 (0.58–1.21) | 0.301 | 1.00 | 0.85 (0.66–1.11) | 0.91 (0.68–1.20) | 0.641 |
Elevated triglycerides | 1.00 | 1.10 (0.90–1.34) | 0.89 (0.72–1.10) | 0.207 | 1.00 | 0.93 (0.75–1.24) | 0.90 (0.72–1.13) | 0.421 |
Elevated fasting glucose | 1.00 | 0.82 (0.51–1.31) | 0.94 (0.59–1.49) | 0.915 | 1.00 | 0.86 (0.47–1.57) | 0.86 (0.46–1.61) | 0.709 |
Elevated blood pressure | 1.00 | 0.85 (0.70–1.03) | 0.98 (0.80–1.21) | 0.967 | 1.00 | 0.86 (0.70–1.05) | 0.93 (0.75–1.15) | 0.696 |
Low HDL cholesterol | 1.00 | 0.92 (0.75–1.13) | 0.83 (0.67–1.03) | 0.096 | 1.00 | 0.96 (0.78–1.17) | 0.94 (0.76–1.17) | 0.610 |
Laver | ||||||||
Abdominal obesity | 1.00 | 0.79 (0.54–1.15) | 0.64 (0.42–0.98) | 0.058 | 1.00 | 0.62 (0.47–0.81) | 0.53 (0.39–0.72) | 0.001 |
Elevated triglycerides | 1.00 | 1.09 (0.88–1.35) | 0.88 (0.69–1.12) | 0.065 | 1.00 | 0.93 (0.75–1.15) | 0.81 (0.64–1.04) | 0.089 |
Elevated fasting glucose | 1.00 | 0.73 (0.45–1.19) | 0.79 (0.47–1.34) | 0.748 | 1.00 | 0.99 (0.51–1.94) | 1.26 (0.63–2.52) | 0.385 |
Elevated blood pressure | 1.00 | 0.91 (0.74–1.12) | 0.97(0.76–1.22) | 0.884 | 1.00 | 1.04 (0.84–1.28) | 1.09 (0.86–1.38) | 0.496 |
Low HDL cholesterol | 1.00 | 1.10 (0.88–1.37) | 0.81 (0.63–1.04) | 0.008 | 1.00 | 0.89 (0.72–1.10) | 0.92 (0.73–1.17) | 0.780 |
Kelp/sea mustard | ||||||||
Abdominal obesity | 1.00 | 1.27 (0.87–1.81) | 1.08 (0.77–1.52) | 0.864 | 1.00 | 0.76 (0.56–1.00) | 1.05 (0.81–1.37) | 0.236 |
Elevated triglycerides | 1.00 | 0.91 (0.74–1.12) | 0.96 (0.79–1.16) | 0.817 | 1.00 | 1.05 (0.83–1.32) | 0.94 (0.76–1.16) | 0.383 |
Elevated fasting glucose | 1.00 | 1.17 (0.73–1.89) | 1.14 (0.74–1.75) | 0.660 | 1.00 | 1.70 (0.90–3.21) | 0.79 (0.41–1.51) | 0.103 |
Elevated blood pressure | 1.00 | 0.80 (0.65–0.97) | 0.89 (0.74–1.08) | 0.437 | 1.00 | 1.01 (0.81–1.27) | 0.88 (0.72–1.08) | 0.155 |
Low HDL cholesterol | 1.00 | 1.11 (0.90–1.37) | 1.04 (0.86–1.27) | 0.824 | 1.00 | 1.04 (0.83–1.29) | 1.01 (0.83–1.23) | 0.992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Lee, K.W.; Shin, D. Association of Seaweed Consumption with Metabolic Syndrome and Its Components: Findings from the Korean Genome and Epidemiology Study. Foods 2022, 11, 1635. https://doi.org/10.3390/foods11111635
Park H, Lee KW, Shin D. Association of Seaweed Consumption with Metabolic Syndrome and Its Components: Findings from the Korean Genome and Epidemiology Study. Foods. 2022; 11(11):1635. https://doi.org/10.3390/foods11111635
Chicago/Turabian StylePark, Haeun, Kyung Won Lee, and Dayeon Shin. 2022. "Association of Seaweed Consumption with Metabolic Syndrome and Its Components: Findings from the Korean Genome and Epidemiology Study" Foods 11, no. 11: 1635. https://doi.org/10.3390/foods11111635
APA StylePark, H., Lee, K. W., & Shin, D. (2022). Association of Seaweed Consumption with Metabolic Syndrome and Its Components: Findings from the Korean Genome and Epidemiology Study. Foods, 11(11), 1635. https://doi.org/10.3390/foods11111635