Characterization and Discrimination of Apples by Flash GC E-Nose: Geographical Regions and Botanical Origins Studies in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apple Samples
2.2. FGC E-Nose
2.3. Volatile Compounds Identification
2.4. Data Processing
2.4.1. Multivariate Analysis
2.4.2. Machine Learning
3. Results
3.1. Volatile Identification
3.2. Multivariate Analysis
3.2.1. PCA
3.2.2. PLS-DA
3.2.3. SLDA
3.3. Machine Learning
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meike, R.; Dean, D.L.; Baird, T. Understanding Apple Attribute Preferences of US Consumers. Foods 2022, 11, 166. [Google Scholar] [CrossRef] [PubMed]
- Zardo, D.M.; Zielinski, A.A.F.; Alberti, A.; Nogueira, A. Phenolic compounds and antioxidant capacity of brazilian apples. Food Nutr. Sci. 2015, 6, 727. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q. The Evolution and Advantage Evaluation of Apple Production Layout in China. Ph.D. Thesis, Northwest A & F University, Xianyang, China, 2021. [Google Scholar] [CrossRef]
- Lu, X.; Gao, Y.; Wang, K.; Sun, S.M.; Li, L.W.; Li, H.F.; Li, Q.S.; Feng, J.R.; Wang, D.J. Analysis of Aroma Characteristics in Different Cultivated Apple Strains. Sci. Agric. Sin. 2022, 55, 543–557. [Google Scholar] [CrossRef]
- Wu, X.; Bi, J.; Fauconnier, M.L. Characteristic Volatiles and Cultivar Classification in 35 Apple Varieties: A Case Study of Two Harvest Years. Foods 2022, 11, 690. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, M.; Adhikari, B. Advances of electronic nose and its application in fresh foods: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2700–2710. [Google Scholar] [CrossRef]
- Xiao, Z.; Yu, D.; Niu, Y.; Chen, F.; Song, S.; Zhu, J.; Zhu, G. Characterization of aroma compounds of Chinese famous liquors by gas chromatography-mass spectrometry and flash GC electronic-nose. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 945, 92–100. [Google Scholar] [CrossRef]
- Goodner, K.; Rouseff, R. Practical Analysis of Flavor and Fragrance Materials. In Practical Analysis of Flavor and Fragrance Materials; Blackwell: West Sussex, UK, 2011. [Google Scholar] [CrossRef]
- Song, J.; Chen, Q.; Bi, J.; Meng, X.; Wu, X.; Qiao, Y.; Lyu, Y. GC/MS coupled with MOS e-nose and flash GC e-nose for volatile characterization of Chinese jujubes as affected by different drying methods. Food Chem. 2020, 331, 127201. [Google Scholar] [CrossRef]
- Jońca, J.; Pawnuk, M.; Arsen, A.; Sówka, I. Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review. Sensors 2022, 22, 1510. [Google Scholar] [CrossRef]
- Gliszczyńskaświgło, A.; Chmielewski, J. Electronic nose as a tool for monitoring the authenticity of food. a review. Food Anal. Methods 2017, 10, 1800–1816. [Google Scholar] [CrossRef] [Green Version]
- Baietto, M.; Wilson, A.D. Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors 2015, 15, 899–931. [Google Scholar] [CrossRef]
- Pruteanu, E.M.; Duta, D.E.; Hincu, F.A.; Calu, M. Electronic nose for discrimination of Romanian apples. Lucr. Stiintifice. In Proceedings of the 2nd International Symposium, New Research in Biotechnology” USAMV, Bucharest, Romania, 2009; pp. 398–404. Available online: https://www.researchgate.net/publication/295909056_Electronic_nose_for_discrimination_of_Romanian_apples (accessed on 16 May 2022).
- Cheng, H.; Qin, Z.H.; Guo, X.F.; Hu, X.S.; Wu, J.H. Geographical origin identification of propolis using GC-MS and electronic nose combined with principal component analysis. Food Res. Int. 2013, 51, 813–822. [Google Scholar] [CrossRef]
- Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Gallina Toschi, T. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem. 2016, 204, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rottiers, H.; Tzompa Sosa, D.A.; van de Vyver, L.; Hinneh, M.; Everaert, H.; de Wever, J.; Messens, K.; Dewettinck, K. Discrimination of Cocoa Liquors Based on Their Odor Fingerprint: A Fast GC Electronic Nose Suitability Study. Food Anal. Methods 2019, 12, 475–488. [Google Scholar] [CrossRef]
- Zhou, C.L.; Mi, L.; Hu, X.Y.; Zhu, B.H. Evaluation of three pumpkin species: Correlation with physicochemical, antioxidant properties and classification using SPME-GC–MS and E-nose methods. J. Food Sci. Technol. 2017, 54, 3118–3131. [Google Scholar] [CrossRef] [PubMed]
- Różańska, A.; Dymerski, T.; Namieśnik, J. Novel analytical method for detection of orange juice adulteration based on ultra-fast gas chromatography. Mon. Fur Chem. 2018, 149, 1615–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, X.; Zhao, J. Comparative analyses of apple aroma by a tin-oxide gas sensor array device and GC/MS. Food Chem. 2008, 107, 120–128. [Google Scholar] [CrossRef]
- Giannetti, V.; Boccacci Mariani, M.; Mannino, P.; Marini, F. Volatile fraction analysis by HS-SPME/GC-MS and chemometric modeling for traceability of apples cultivated in the Northeast Italy. Food Control 2017, 78, 215–221. [Google Scholar] [CrossRef]
- Aprea, E.; Corollaro, M.L.; Betta, E.; Endrizzi, I.; Demattè, M.L.; Biasioli, F.; Gasperi, F. Sensory and instrumental profiling of 18 apple cultivars to investigate the relation between perceived quality and odour and flavour. Food Res. Int. 2012, 49, 677–686. [Google Scholar] [CrossRef]
- Liu, X.; Deng, J.; Bi, J.; Wu, X.; Zhang, B. Cultivar classification of cloudy apple juices from substandard fruits in China based on aroma profile analyzed by HS-SPME/GC-MS. LWT 2019, 102, 304–309. [Google Scholar] [CrossRef]
- Qiu, S.; Gao, L.; Wang, J. Classification and regression of ELM, LVQ and SVM for E-nose data of strawberry juice. J. Food Eng. 2015, 144, 77–85. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, J.; Gao, L. Discrimination and characterization of strawberry juice based on electronic nose and tongue: Comparison of different juice processing approaches by LDA, PLSR, RF, and SVM. J. Agric. Food Chem. 2014, 62, 6426–6434. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Wang, J. Application of Sensory Evaluation, HS-SPME GC-MS, E-Nose, and E-Tongue for Quality Detection in Citrus Fruits. J. Food Sci. 2015, 80, S2296–S2304. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Yang, Y.; Li, J.; Wen, X.; Zhu, M.; Jiang, Y.; Ni, Y. Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. J. Food Eng. 2016, 178, 151–158. [Google Scholar] [CrossRef]
- Buratti, S.; Benedetti, S.; Scampicchio, M.; Pangerod, E.C. Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue. Anal. Chim. Acta 2004, 525, 133–139. [Google Scholar] [CrossRef]
- Ordukaya, E.; Karlik, B. Quality Control of Olive Oils Using Machine Learning and Electronic Nose. J. Food Qual. 2017, 2017, 9272404. [Google Scholar] [CrossRef] [Green Version]
- Blanpied, G.D.; Silsby, K.J. Predicting Harvest Date Window for Apples. In Information Bulletin 221; Cornell Cooperative Extension; Available online: http://www.uvm.edu/~fruit/treefruit/tf_horticulture/AppleHortBasics/Readings/Predicting+Harvest+Date+Window+for+Apples.pdf (accessed on 3 May 2022).
- Fotakis, C.; Zervou, M. NMR metabolic fingerprinting and chemometrics driven authentication of Greek grape marc spirits. Food Chem. 2016, 196, 760–768. [Google Scholar] [CrossRef]
- Cho, J.H.; Kurup, P.U. Decision tree approach for classification and dimensionality reduction of electronic nose data. Sens. Actuators B Chem. 2011, 160, 542–548. [Google Scholar] [CrossRef]
- Güney, S.; Atasoy, A. Multiclass classification of n-butanol concentrations with k-nearest neighbor algorithm and support vector machine in an electronic nose. Sens. Actuators B Chem. 2012, 166, 721–725. [Google Scholar] [CrossRef]
- Dębska, B.; Guzowska-Świder, B. Decision trees in selection of featured determined food quality. Anal. Chim. Acta 2011, 705, 261–271. [Google Scholar] [CrossRef]
- Kondo, S.; Setha, S.; Rudell, D.R.; Buchanan, D.A.; Mattheis, J.P. Aroma volatile biosynthesis in apples affected by 1-MCP and methyl jasmonate. Postharvest Biol. Technol. 2005, 36, 61–68. [Google Scholar] [CrossRef]
- Fellman, J.K.; Rudell, D.R.; Mattinson, D.S.; Mattheis, J.P. Relationship of harvest maturity to flavor regeneration after CA storage of ‘Delicious’ apples. Postharvest Biol. Technol. 2003, 27, 39–51. [Google Scholar] [CrossRef]
- Nie, L.; Sun, J.; Chen, H.; Zou, X. Study on Fruit Aroma of Different Apple Cultivars. Sci. Agric. Sin. 2006, 39, 641–646. [Google Scholar]
- Madrera, R.R.; Valles, B.S. Determination of Volatile Compounds in Apple Pomace by Stir Bar Sorptive Extraction and Gas Chromatography-Mass Spectrometry (SBSE-GC-MS). J. Food Sci. 2011, 76, C1326–C1334. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, H.; Wen, N.; Hu, R.; Wu, G.; Zeng, Y.; Li, X.; Miao, X. Effects of maltose and lysine treatment on coffee aroma by flash gas chromatography electronic nose and gas chromatography–mass spectrometry. J. Sci. Food Agric. 2018, 98, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Meng, D.; Yue, T.; Wang, Z.; Gao, Z. Effect of the apple cultivar on cloudy apple juice fermented by a mixture of Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus fermentum. Food Chem. 2021, 340, 127922. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, D.; Chen, Y.; Kang, G.; Cheng, C. Analysis of apple producing area changes in China. J. Fruit Sci. 2021, 38, 372–384. [Google Scholar] [CrossRef]
- Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Olivas, G.I. Biochemistry of apple aroma: A review. Food Technol. Biotechnol. 2016, 54, 375–394. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Li, J.; Qin, S.; Niu, Z.; Qiao, X.; Yang, B. Influence of genetic background, growth latitude and bagging treatment on phenolic compounds in fruits of commercial cultivars and wild types of apples (malus sp.). Eur. Food Res. Technol. 2021, 247, 1149–1165. [Google Scholar] [CrossRef]
- Qin, L.; Wei, Q.; Kang, W.; Zhang, Q.; Sun, J.; Liu, S. Comparison of volatile compounds in ‘fuji’ apples in the different regions in china. Food Sci. Technol. Res. 2017, 23, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Li, T.; Xu, X.; Han, Z. SSR Ana lysis for Apple Cultivars. Acta Horticulturae Sinica. 2005, 32, 875–877. [Google Scholar]
- Gagaoua, M.; Monteils, V.; Couvreur, S.; Picard, B. Beef tenderness prediction by a combination of statistical methods: Chemometrics and supervised learning to manage integrative farm-to-meat continuum data. Foods 2019, 8, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Samples | Origin | One Parent of Cultivar | Code | No | Samples | Origin | One Parent of Cultivar | Code |
---|---|---|---|---|---|---|---|---|---|
1 | Starkrimon | Shandong | GOLDEN DELICIOUS | G1 | 22 | Huafu | Liaoning | FUJI | F10 |
2 | Fuji | Shandong (Xiqia city) | FUJI | F1 | 23 | Huayue | Liaoning | - | HY |
3 | Ralls | Shandong | RALLS | R1 | 24 | Huahong | Liaoning | GOLDEN DELICIOUS | G12 |
4 | Starkrimon | Shandong (Taian City) | GOLDEN DELICIOUS | G2 | 25 | Huajin | Liaoning | - | HJ |
5 | Fuji | Shandong (Taian City) | FUJI | F2 | 26 | Ralls | Liaoning | RALLS | R2 |
6 | Red General | Shandong | FUJI | F3 | 27 | Hanfu | Liaoning | FUJI | F11 |
7 | Golden Delicious | Shandong (Taian City) | GOLDEN DELICIOUS | G3 | 28 | Hanfu | Liaoning (Xinmin City) | FUJI | F12 |
8 | Golden Delicious | Shandong | GOLDEN DELICIOUS | G4 | 29 | Starkrimon | Liaoning | GOLDEN DELICIOUS | G13 |
9 | Yanfu 2 | Shandong | FUJI | F4 | 30 | Changhong | Liaoning | FUJI | F13 |
10 | Fuji1 | Shanxi | FUJI | F5 | 31 | Qiujin | Liaoning | GOLDEN DELICIOUS | G14 |
11 | Qinguan1 | Shanxi | GOLDEN DELICIOUS | G5 | 32 | Golden Delicious | Liaoning | GOLDEN DELICIOUS | G15 |
12 | Fuji2 | Shanxi | FUJI | F6 | 33 | Nagafu 2 | Liaoning | FUJI | F14 |
13 | Qinguan2 | Shanxi | GOLDEN DELICIOUS | G6 | 34 | Ralls | Shaanxi | RALLS | R3 |
14 | Fuji | Sinkiang | FUJI | F7 | 35 | Fuji | Shaanxi | FUJI | F15 |
15 | Fuji | Hebei | FUJI | F8 | 36 | Ruiyang | Shaanxi | FUJI | F16 |
16 | Wanglin | Hebei | GOLDEN DELICIOUS | G7 | 37 | Qinguan | Shaanxi | GOLDEN DELICIOUS | G16 |
17 | Fuji | Gansu | FUJI | F9 | 38 | Qinhong | Shaanxi | - | QH |
18 | Qinguan | Gansu | GOLDEN DELICIOUS | G8 | 39 | Changmiou | Shaanxi | - | CM |
19 | Huaniu | Gansu | GOLDEN DELICIOUS | G9 | 40 | Granny Smith | Shaanxi | - | GS |
20 | Golden Delicious | Gansu | GOLDEN DELICIOUS | G10 | 41 | Huangyuanshuai | Shaanxi | GOLDEN DELICIOUS | G17 |
21 | Jonagold | Liaoning | GOLDEN DELICIOUS | G11 |
RI MXT-5 | RI MXT-1701 | n | Range | Minimum | Maximum | Mean | Std. Deviation | |
---|---|---|---|---|---|---|---|---|
Methyl formate | 384 | 464 | 41 | 2126.08 | 0 | 2126.08 | 860.16 | 701.33 |
Ethanol | 423 | 560 | 41 | 1446.30 | 0 | 1446.30 | 164.89 | 341.73 |
1-Propanol | 543 | 675 | 41 | 714.01 | 0 | 714.01 | 33.24 | 148.77 |
Ethyl Acetate | 617 | 685 | 41 | 12,274.76 | 0 | 12,274.76 | 1003.79 | 2352.15 |
n-butanol | 666 | 778 | 41 | 14,522.00 | 0 | 14,522.00 | 3306.51 | 3384.22 |
Methyl butanoate | 716 | 786 | 41 | 9795.36 | 0 | 9795.36 | 961.91 | 1830.86 |
S(-)2-methyl-1-butanol | 739 | 848 | 41 | 9514.74 | 0 | 9514.74 | 1808.47 | 2186.63 |
Methyl 2-methylbutanoate | 776 | 851 | 41 | 2990.38 | 0 | 2990.38 | 316.37 | 643.46 |
Ethyl butyrate | 802 | 865 | 41 | 77,811.04 | 0 | 77,811.04 | 8730.23 | 14,393.08 |
Butyl acetate | 814 | 885 | 41 | 62,452.99 | 0 | 62,452.99 | 14,294.62 | 15,040.77 |
Ethyl 2-methylbutyrate | 850 | 912 | 41 | 37,062.47 | 0 | 37,062.47 | 5655.66 | 8079.00 |
Isoamyl acetate | 879 | 949 | 41 | 142,671.89 | 1181.87 | 143,853.76 | 25,960.22 | 29,205.89 |
Pentyl acetate | 910 | 976 | 41 | 46,937.00 | 903 | 47,840.00 | 10,127.95 | 8520.48 |
2,3-dimethylpyrazine | 944 | 1007 | 41 | 19,564.07 | 0 | 19,564.07 | 1872.54 | 4126.74 |
Dimethyl trisulfide | 973 | 1041 | 41 | 1458.05 | 0 | 1458.05 | 103.66 | 288.68 |
Butyl butanoate | 1000 | 1067 | 41 | 175,358.84 | 184.44 | 175,543.28 | 45,960.17 | 35,242.07 |
1,8-cineole | 1043 | 1106 | 41 | 17,649.76 | 0 | 17,649.76 | 4307.92 | 4572.64 |
(Z)-2-octenal | 1061 | 1128 | 41 | 1209.81 | 0 | 1209.81 | 132.91 | 320.17 |
Tetramethylpyrazine | 1103 | 1174 | 41 | 16,011.48 | 0 | 16,011.48 | 3114.24 | 3453.25 |
(Z)-3-Hexenyl isobutyrate | 1146 | 1212 | 41 | 3252.08 | 0 | 3252.08 | 942.02 | 862.89 |
Ethyl octanoate | 1193 | 1263 | 41 | 32,805.69 | 1674.85 | 34,480.54 | 13,042.60 | 8268.36 |
Hexyl 2-butenoate | 1240 | 1304 | 41 | 101,932.40 | 1378.28 | 103,310.68 | 30,478.65 | 26,044.90 |
Ethyl nonanoate | 1287 | 1359 | 41 | 1577.50 | 0 | 1577.50 | 323.79 | 451.75 |
Methyl decanoate | 1335 | 1403 | 41 | 937.35 | 0 | 937.35 | 69.85 | 200.44 |
Octyl butanoate | 1388 | 1461 | 41 | 27,557.42 | 171.47 | 27,728.89 | 8605.66 | 5431.89 |
Ethyl undecanoate | 1514 | 1559 | 41 | 255,585.74 | 12,471.57 | 268,057.31 | 84,013.89 | 53,310.55 |
12-methyltridecanal | 1584 | 1658 | 41 | 3146.65 | 0 | 3146.65 | 850.73 | 787.85 |
Tetradecanal | 1629 | 1687 | 41 | 4906.00 | 0 | 4906.00 | 2193.10 | 1153.65 |
2-Hexadecanone | 1797 | 1901 | 41 | 3535.80 | 1840.79 | 5376.59 | 3004.46 | 827.97 |
Original | Cross-Validated | ||||
---|---|---|---|---|---|
Correct Number | Correct Percentage | Correct Number | Correct Percentage | ||
Geographical regions | Liaoning | 13/13 | 100% | 13/13 | 100% |
Shaanxi | 8/8 | 100% | 8/8 | 100% | |
Shandong | 8/9 | 88.90% | 5/9 | 55.60% | |
Gansu | 4/4 | 100% | 4/4 | 100% | |
Total | 33/34 | 97.10% | 30/34 | 88.20% | |
Botanical origins | cv. FJ | 16/16 | 100% | 14/16 | 87.50% |
cv. GD | 17/17 | 100% | 16/17 | 94.10% | |
cv. RA | 3/3 | 100% | 2/3 | 66.70% | |
Total | 36/36 | 100% | 32/36 | 88.90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Fauconnier, M.-L.; Bi, J. Characterization and Discrimination of Apples by Flash GC E-Nose: Geographical Regions and Botanical Origins Studies in China. Foods 2022, 11, 1631. https://doi.org/10.3390/foods11111631
Wu X, Fauconnier M-L, Bi J. Characterization and Discrimination of Apples by Flash GC E-Nose: Geographical Regions and Botanical Origins Studies in China. Foods. 2022; 11(11):1631. https://doi.org/10.3390/foods11111631
Chicago/Turabian StyleWu, Xinye, Marie-Laure Fauconnier, and Jinfeng Bi. 2022. "Characterization and Discrimination of Apples by Flash GC E-Nose: Geographical Regions and Botanical Origins Studies in China" Foods 11, no. 11: 1631. https://doi.org/10.3390/foods11111631
APA StyleWu, X., Fauconnier, M.-L., & Bi, J. (2022). Characterization and Discrimination of Apples by Flash GC E-Nose: Geographical Regions and Botanical Origins Studies in China. Foods, 11(11), 1631. https://doi.org/10.3390/foods11111631