Immunological Activity and Gut Microbiota Modulation of Pectin from Kiwano (Cucumis metuliferus) Peels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Pectin Extraction
2.3. Determination of Chemical Composition
2.4. Monosaccharide Analysis
2.5. Cell Viability Assay
2.6. Detection of NO and Cytokines
2.7. Colon Microbiota Dynamic Simulation
2.8. Microbiological Analysis
2.9. SCFAs Analysis
2.10. Ammonium Determination
2.11. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition Analysis
3.2. Immune Activity Analysis
3.2.1. Cell Viability
3.2.2. Immune-Enhancing Activity
3.3. Microbial Metabolite Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | ascending colon |
Ara | arabinose |
BFBL | functional biology of lactic bacteria |
CMPP | Cucumis metuliferus peels polysaccharide |
CMPP-1 | fraction 1 of CMPP |
CMPP-2 | fraction 2 of CMPP |
DC | descending colon |
DMEM | Dulbecco modified Eagle’s medium |
DMSO | dimethyl sulfoxide |
ELISA | enzyme-linked immunosorbent assay |
FBS | fetal bovine serum |
Fuc | fucose |
Gal | galacturonic |
Gal A | galacturonic acid |
Glu | glucose |
Glu A | glucose acid |
HPAEC-PAD | high-performance anion-exchange chromatography with pulsed amperometric detection |
HPLC | high efficiency liquid chromatography |
IL-6 | interleukin 6 |
IL-10 | interleukin 10 |
LPS | lipopolysaccharide |
Man | mannose |
Man A | mannose acid |
NO | nitric oxide |
qPCR | quantitative real-time polymerase chain reaction |
RAW264.7 | mouse mononuclear macrophage leukemia cells |
Rha | rhamnose |
SCFAs | short-chain fatty acids |
T2D | type 2 diabetes |
TC | transverse colon |
TFA | trifluoracetic acid |
TNF-α | tumor necrosis factor α |
UV | ultraviolet and visible |
Xyl | xylose |
References
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brestoff, J.R.; Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013, 14, 676–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.K. Cucumis metuliferus. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Omokhua-Uyi, A.G.; Staden, J.V. Phytomedicinal relevance of South African Cucurbitaceae species and their safety assessment: A review. J. Ethnopharmacol. 2020, 259, 112967. [Google Scholar] [CrossRef]
- Nwadiaro, P.O.; Ogbonna, A.I.; Wuyep, P.A.; Sila-Gyang, M.D. Antifungal activity of Cucumis metuliferus E.Mey. ex Naudin on some post-harvest decay fungi of string beans. J. Acad. Ind. Res. 2015, 3, 490–496. [Google Scholar]
- Anyanwu, A.; Wannang, N. Alkaloids of the fruit pulp of cucumis metuliferus E.MEYE (Cuecubitaceae) have antiviral activity against IBDV and NDV. Basic Clin. Pharmacol. Toxicol. 2014, 115, 370. [Google Scholar]
- Omale, S.; Wuyep, N.N.; Auta, A.; Wannang, N.N. Anti-ulcer properties of alkalodis isoated from the fruit pulp of Cucumis metuliferous (Curcurbitaceae). Int. J. Pharm. Sci. Res. 2011, 2, 2586–2588. [Google Scholar]
- Gotep, J. Glycosides fraction extracted from fruit pulp of Cucumis metuliferus E. Meyer has antihyperglycemic effect in rats with alloxan-induced diabetes. J. Nat. Pharm. 2011, 2, 48–51. [Google Scholar] [CrossRef]
- Ezekaibeya, A.C.; Nnenna, A.O.; Kenechukwu, O.C. Proximate, Phytochemical and Vitamin Compositions of Cucumis metuliferus (Horned Melon) Rind. J. Complementary Altern. Med. Res. 2020, 9, 40–50. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Passos, C.P.; Madureira, P.; Vilanova, M.; Coimbr, M.A. Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 2015, 132, 378–396. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Lian, Y.; Zhao, C.; Du, H.; Han, Y.; Gao, W.; Xiao, H.; Zheng, J. Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1514–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Wichienchot, S.; He, X.; Fu, X.; Huang, Q.; Zhang, B. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 2019, 88, 1–9. [Google Scholar] [CrossRef]
- Requena, T.; Song, Y.; Pelaez, C.; Martínez-Cuesta, M.C. Modulation and metabolism of obesity-associated microbiota in a dynamic simulator of the human gut microbiota. LWT Food Sci. Technol. 2021, 141, 110921. [Google Scholar] [CrossRef]
- Zhu, M.Q.; Huang, R.M.; Wen, P.; Song, Y.; He, B.L.; Tan, J.L.; Hao, H.L.; Wang, H. Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels. Carbohydr. Polym. 2021, 254, 117371. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, W.; Cai, J.J.; Yuan, T.Q.; Gong, X.W. Structural analysis and anti-pancreatic lipase activity of flavonoids from Moringa oleifera Lam. leaves. Food Sci. 2018, 39, 31–37. [Google Scholar] [CrossRef]
- Zhang, W.S.; Li, X.; Zheng, J.T.; Wang, G.Y.; Sun, C.D.; Ferguson, I.B.; Chen, K.S. Bioactive components and antioxidant capacity of Chinese bayberry (Myrica rubra Sieb. and Zucc.) fruit in relation to fruit maturity and postharvest storage. Eur. Food Res. Technol. 2008, 227, 1091–1097. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, M.Q.; Hao, H.L.; Deng, J.; Li, M.Y.; Sun, Y.M.; Yang, R.L.; Wang, H.; Huang, R.M. Structure characterization of a novel polysaccharide from Chinese wild fruits (Passiflora foetida) and its immune-enhancing activity. Int. J. Biol. Macromol. 2019, 136, 324–331. [Google Scholar] [CrossRef]
- Hao, H.L.; Han, Y.; Yang, L.H.; Hu, L.M.; Duan, X.W.; Yang, X.; Huang, R.M. Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemosa var peltata. Int. J. Biol. Macromol. 2019, 134, 891–900. [Google Scholar] [CrossRef]
- Abbeele, P.V.D.; Grootaert, C.; Marzorati, M.; Possemiers, S.; Verstraete, W.; Gérard, P.; Rabot, S.; Bruneau, A.; Aidy, S.E.; Derrien, M. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl. Environ. Microbiol. 2010, 76, 5237–5246. [Google Scholar] [CrossRef] [Green Version]
- Costea, P.I.; Zeller, G.; Sunagawa, S.; Pelletier, E.; Alberti, A.; Levenez, F. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 2017, 35, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Ojalvo, D.; Martínez-Blanco, M.; Pérez-Rodríguez, L.; Molina, E.; Peláez, C.; Requena, T. Egg white peptide-based immunotherapy enhances vitamin A metabolism and induces RORγt+ regulatory T cells. J. Funct. Food. 2019, 52, 204–211. [Google Scholar] [CrossRef]
- Doo, E.H.; Chassard, C.; Schwab, C.; Lacroix, C. Effect of dietary nucleosides and yeast extracts on composition and metabolic activity of infant gut microbiota in PolyFermS colonic fermentation models. FEMS Microbiol. Ecol. 2017, 93, fix088. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.P.; Tang, D.D.; Wang, Y.; Li, X.; Hong, L.; Sun, C.D. Characteristics and immune-enhancing activity of pectic polysaccharides from sweet cherry (Prunus avium). Food Chem. 2018, 254, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Aparicio, I.; Pea, R.; Pérez-Cózar, M.; Rupérez, P.; Villanueva-Suárez, M. Apple by-product dietary fibre exhibits potential prebiotic and hypolipidemic effectsin high-fat fed Wistar rats. Bioact. Carbohydr. Diet. Fibre 2020, 23, 23100219. [Google Scholar] [CrossRef]
- Wang, D.X.; Li, H.; Li, B.; Ma, R.; Zhang, N.; Zhang, X.Y.; Jiao, L.L.; Wu, W. Systematic fractionation and immunoenhancement of water-soluble polysaccharides isolated from fruit of Morus alba L. Int. J. Biol. Macromol. 2018, 116, 1056–1063. [Google Scholar] [CrossRef]
- Du, J.; Li, J.J.; Zhu, J.H.; Huang, C.H.; Yu, R.M. Structural characterization and immunomodulatory activity of a novel polysaccharide from Ficus carica. Food Funct. 2018, 9, 7. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Cui, Y.; Dong, C.; Du, J. Isolation, purification and structural characterization of two pectin-type polysaccharides from Coreopsis tinctoria Nutt. and their proliferation activities on RAW264.7 cells. Glycoconj. J. 2021, 38, 251–259. [Google Scholar] [CrossRef]
- Ren, D.Y.; Zhao, Y.; Zheng, Q.; Alim, A.; Yang, X.B. Immunomodulatory effects of an acidic polysaccharide fraction from herbal Gynostemma pentaphyllum tea in RAW264.7 cells. Food Funct. 2019, 10, 2186–2197. [Google Scholar] [CrossRef]
- Zeng, Y.J.; Yang, H.R.; Wang, H.F.; Zong, M.H.; Lou, W.Y. Immune enhancement activity of a novel polysaccharide produced by Dendrobium officinale endophytic fungus Fusarium solani DO7. J. Funct. Food. 2019, 53, 266–275. [Google Scholar] [CrossRef]
- Lin, Z.H.; Liao, W.Z.; Ren, J.Y. Physicochemical characterization of a polysaccharide fraction from Platycladus Orientalis (L.) Franco and its macrophage immunomodulatory and anti-hepatitis B virus activities. J. Agric. Food Chem. 2016, 64, 5813–5823. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wen, P.; Hao, H.L.; Zhu, M.Q.; Sun, Y.M.; Zou, Y.X.; Requena, T.; Huang, R.M.; Wang, H. Structural features of three hetero-galacturonans from Passiflora foetida fruits and their in vitro immunomodulatory effects. Polymers 2020, 12, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macfarlane, G.T.; Macfarlane, S.; Gibson, G.R. Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb. Ecol. 1998, 35, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Huang, Q.; Fu, X.; Liu, R.H. In vitro fermentation of mulberry fruit polysaccharides by human fecal inocula and impact on microbiota. Food Funct. 2016, 7, 4637–4643. [Google Scholar] [CrossRef] [PubMed]
- Wongkaew, M.; Tinpovong, B.; Sringarm, K.; Leksawasdi, N.; Sommano, S. Crude pectic oligosaccharide recovery from Thai Chok Anan mango peel using pectinolytic enzyme hydrolysis. Foods 2021, 10, 627. [Google Scholar] [CrossRef]
- Low, D.; Pluschke, A.; Flanagan, B.; Sonni, F.; Gidley, M. Isolated pectin (apple) and fruit pulp (mango) impact gastric emptying, passage rate and short chain fatty acid (SCFA) production differently along the pig gastrointestinal tract. Food Hydrocoll. 2021, 118, 106723. [Google Scholar] [CrossRef]
- Ferreira-Lazarte, A.; Moreno, F.J.; Cueva, C.; Gil-Sánchez, I.; Villamiel, M. Behaviour of citrus pectin during its gastrointestinal digestion and fermentation in a dynamic simulator (simgi®). Carbohydr. Polym. 2018, 207, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Gavlighi, H.A.; Tabarsa, M.; You, S.; Surayot, U.; Ghaderi-Ghahfarokhi, M. Extraction, characterization and immunomodulatory property of pectic polysaccharide from pomegranate peels: Enzymatic vs conventional approach. Int. J. Biol. Macromol. 2018, 116, 698–706. [Google Scholar] [CrossRef]
- Karen, W.; De, P.V.; Kristin, V. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 2012, 56, 184–196. [Google Scholar] [CrossRef]
- Sarkar, A.; Pitchumoni, C.S. Identification of the microbiota in the aging process. In The Microbiota in Gastrointestinal Pathophysiology; Floch, M.H., Ringe, Y., Walker, W.A., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 37–56. [Google Scholar]
- Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef]
- Ryan, P.M.; Delzenne, N.M. Dietary, probiotic, and prebiotic interventions on the microbiota. In The Gut-Brain Axis; Hyland, N., Stanton, C., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 391–401. [Google Scholar]
- Plumbridge, J. Regulation of carbon assimilation in bacteria. In Encyclopedia of Microbiology; Schaechter, M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2009; pp. 375–394. [Google Scholar] [CrossRef]
- Hoover, D.G. Bifidobacterium. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 216–222. Available online: https://www.sciencedirect.com/referencework/9780123847331/encyclopedia-of-food-microbiology (accessed on 1 March 2022).
- Memba, R.; Conlon, K.C. Diagnostic and therapeutical applications. In Microbiome and Metabolome in Diagnosis, Therapy, and Other Strategic Applications; Faintuch, J., Faintuch, S., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 357–364. [Google Scholar]
- Machiels, K.; Joossens, M.; Sabino, J.; Preter, V.D.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Immerseel, F.V.; Verbeke, K. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014, 63, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belzer, C.; Vos, W.M.d. Microbes inside—From diversity to function: The case of Akkermansia. Int. Soc. Microb. Ecol. J. 2012, 6, 1449. [Google Scholar] [CrossRef]
- Singh, V.; Yeoh, B.S.; Walker, R.E.; Xiao, X.; Saha, P.; Golonka, R.M.; Cai, J.W.; Bretin, A.C.A.; Cheng, X.; Liu, Q.; et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut 2018, 68, 1801–1812. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Yang, G.; Zhang, S.; Ross, C.F.; Zhu, M.J. Goji Berry modulates gut microbiota and alleviates colitis in IL-10-deficient mice. Mol. Nutr. Food Res. 2018, 62, e1800535. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Li, J.; Liu, W.; Warda, M.; Cui, B.; Elaty, A. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: Metabolomic bioinformatic analysis. Food Funct. 2022, 13, 5416–5429. [Google Scholar] [CrossRef]
- Kim, G.; Bae, J.; Cheon, S.; Dong, H.; Da, H.; Lee, D.; Park, S.; Shim, S.; Seo, J.; Han, N. Prebiotic activities of dextran from Leuconostoc mesenteroides SPCL742 analyzed in the aspect of the human gut microbial ecosystem. Food Funct. 2022, 13, 1256–1267. [Google Scholar] [CrossRef]
- Ye, S.; Shah, B.R.; Li, J.; Liang, H.; Zhan, F.; Geng, F.; Li, B. A critical review on interplay between dietary fibers and gut microbiota. Trends Food Sci. Technol. 2022, 124, 237–249. [Google Scholar] [CrossRef]
Bacterial Group | Compartment | Stabilization Period | Intake Period | Washout Period |
---|---|---|---|---|
Total bacteria | AC | 9.41 ± 0.18 | 9.44 ± 0.02 | 9.47 ± 0.08 |
TC | 9.29 ± 0.21 | 9.36 ± 0.17 | 9.22 ± 0.14 | |
DC | 9.14 ± 0.11 | 9.27 ± 0.08 | 9.23 ± 0.03 | |
Akkermansia | AC | - | - | - |
TC | 8.33 ± 0.50 | 9.06 ± 0.05 | 8.75 ± 0.20 | |
DC | 8.58 ± 0.37 | 8.82 ± 0.01 | 8.91 ± 0.06 | |
Bacteroides | AC | 9.63 ± 0.09 | 9.94 ± 0.15 * | 9.90 ± 0.06 * |
TC | 9.64 ± 0.11 | 9.78 ± 0.15 | 9.52 ± 0.25 | |
DC | 9.26 ± 0.34 | 9.39 ± 0.15 | 9.55 ± 0.23 | |
Bifidobacterium | AC | 8.55 ± 0.12 | 8.64 ± 0.06 | 8.54 ± 0.16 |
TC | 8.39 ± 0.37 | 8.42 ± 0.14 | 8.05 ± 0.23 | |
DC | 8.18 ± 0.28 | 8.35 ± 0.09 | 8.26 ± 0.29 | |
Feacalibacterium | AC | 4.01 ± 0.49 | 4.63± 0.10 | 4.45 ± 0.03 |
TC | 4.66 ± 0.28 | 4.82 ± 0.09 | 4.64 ± 0.31 | |
DC | 4.34 ± 0.20 | 4.83 ± 0.04 * | 4.76 ± 0.14 * | |
Roseburia | AC | 5.53 ± 0.10 | 6.35 ± 0.13 * | 5.69 ± 0.10 |
TC | 5.51 ± 0.41 | 5.98 ± 0.12 | 5.41 ± 0.20 | |
DC | 5.47 ± 0.34 | 5.99 ± 0.27 | 5.63 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Song, Y.; Martínez-Cuesta, M.C.; Peláez, C.; Li, E.; Requena, T.; Wang, H.; Sun, Y. Immunological Activity and Gut Microbiota Modulation of Pectin from Kiwano (Cucumis metuliferus) Peels. Foods 2022, 11, 1632. https://doi.org/10.3390/foods11111632
Zhu M, Song Y, Martínez-Cuesta MC, Peláez C, Li E, Requena T, Wang H, Sun Y. Immunological Activity and Gut Microbiota Modulation of Pectin from Kiwano (Cucumis metuliferus) Peels. Foods. 2022; 11(11):1632. https://doi.org/10.3390/foods11111632
Chicago/Turabian StyleZhu, Minqian, Ya Song, M. Carmen Martínez-Cuesta, Carmen Peláez, Enru Li, Teresa Requena, Hong Wang, and Yuanming Sun. 2022. "Immunological Activity and Gut Microbiota Modulation of Pectin from Kiwano (Cucumis metuliferus) Peels" Foods 11, no. 11: 1632. https://doi.org/10.3390/foods11111632
APA StyleZhu, M., Song, Y., Martínez-Cuesta, M. C., Peláez, C., Li, E., Requena, T., Wang, H., & Sun, Y. (2022). Immunological Activity and Gut Microbiota Modulation of Pectin from Kiwano (Cucumis metuliferus) Peels. Foods, 11(11), 1632. https://doi.org/10.3390/foods11111632