The Influence of Sous Vide Parameters on Nutritional Characteristics and Safety of Pikeperch Fillets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish and Experiment Design
2.2. Chemical Composition
2.3. Fatty Acid Composition
2.4. Carnosine and Anserine Contents Determination
2.5. Microbiological Analyses
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition and Carnosine and Anserine Contents
3.2. Fatty Acids Proportion and Concentration
3.3. Sensory Quality
3.4. Microbiological Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldwin, D.E. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Díaz, P.; Garrido, M.D.; Bañón, S. Spoilage of sous vide cooked salmon (Salmo salar) stored under refrigeration. Food Sci. Technol. Int. 2011, 17, 31–37. [Google Scholar] [CrossRef] [PubMed]
- González-Fandos, E.; García-Linares, M.C.; Villarino-Rodríguez, A.; García-Arias, M.T.; García-Fernández, M.C. Evaluation of the microbiological safety and sensory quality of rainbow trout (Oncorhynchus mykiss) processed by the sous vide method. Food Microbiol. 2004, 21, 193–201. [Google Scholar] [CrossRef]
- Sampels, S. The effects of processing technologies and preparation on the final quality of fish products. Trends Food Sci. Technol. 2015, 44, 131–146. [Google Scholar] [CrossRef]
- Fellows, P.J. Industrial cooking. Food Process. Technol. 2017, 539–562. [Google Scholar] [CrossRef]
- Espinosa, M.C.; Díaz, P.; Linares, M.B.; Teruel, M.R.; Garrido, M.D. Quality characteristics of sous vide ready to eat seabream processed by high pressure. LWT-Food Sci. Technol. 2015, 64, 657–662. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Fish matters: Importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 2013, 21, 22–38. [Google Scholar] [CrossRef]
- Corpet, D.E. Red meat and colon cancer: Should we become vegetarians, or can we make meat safer? Meat Sci. 2011, 89, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Li, Y.-R.; Pan, C.; Chen, J.; Jiang, W.; Li, W.-N.; Zhang, X.-L.; Liao, Z.; Yan, X.-J. Quantitative analysis of carnosine, anserine, and homocarnosine in skeletal muscle of aquatic species from east China sea. Biochem. Biophys. Rep. 2021, 25, 100880. [Google Scholar] [CrossRef]
- Harris, C.I.; Milne, G. The occurrence of the N tau-methylhistidine-containing dipeptide, balenine, in muscle extracts of various mammals. Biochem. Soc. Trans. 1980, 8, 552. [Google Scholar] [CrossRef]
- Kralik, G.; Sak-Bosnar, M.; Grčević, M.; Kralik, Z. Effect of amino acids on growth performance, carcass characteristics, meat quality, and carnosine concentration in broiler chickens. J. Poult. Sci. 2018, 55, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syta, E.; Ginalska, G.; Kazimierczak, P. Bioaktywne właściwości karnozyny. Med. Ogól. Nauki Zdr. 2018, 34, 96–100. Available online: http://www.monz.pl/pdf-90885-26372?filename=Bioaktywne%20wlasciwosci.pdf (accessed on 10 April 2022). [CrossRef] [Green Version]
- Trombley, P.Q.; Horning, M.S.; Blakemore, L.J. Interactions between carnosine and zinc and copper: Implications for neuromodulation and neuroprotection. Biochem. Biokhimiia 2000, 65, 807–816. [Google Scholar]
- Young, J.F.; Therkildsen, M.; Ekstrand, B.; Che, B.N.; Larsen, M.K.; Oksbjerg, N.; Stagsted, J. Novel aspects of health promoting compounds in meat. Meat Sci. 2013, 95, 904–911. [Google Scholar] [CrossRef]
- Manhiani, P.S.; Northcutt, J.K.; Han, I.; Bridges, W.C.; Dawson, P.L. Antioxidant activity of carnosine extracted from various poultry tissues. Poultry Sci. 2013, 92, 444–453. [Google Scholar] [CrossRef]
- Fontana, M.; Pinnen, F.; Lucente, G.; Pecci, L. Prevention of peroxynitrite—Dependent damage by carnosine and related sulphonamido pseudodipeptides. Cell. Mol. Life. Sci. 2002, 59, 546–551. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Giancarlo, A.; Wim, D. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Boldyrev, A.A. Problems and perspectives in studying the biological role of carnosine. Biochemistry 2000, 65, 751–756. [Google Scholar]
- Mori, M.; Mizuno, D.; Konoha-Mizuno, K.; Yutaka Sadakane, Y.; Kawahara, M. Quantitative analysis of carnosine and anserine in foods by performing high performance liquid chromatography. Biomed. Res. Trace Elem. 2015, 26, 147–152. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Tkacz, K.; Więk, A.; Rybaczek, S.; Nogalski, Z. Sida silage in cattle nutrition—Effects on the fattening performance of Holstein-Friesian bulls and beef quality. Livest. Sci. 2021, 243, 104383. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Medana, C.; Visentin, S.; Giancotti, V.; Zunino, V.; Meineri, G. Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem. 2011, 126, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Mora, L.; Sentandreu, M.A.; Toldrá, F. Contents of creatine, creatinine and carnosine in porcine muscles of different metabolic types. Meat Sci. 2008, 79, 4, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Kopec, W.; Jamroz, D.; Wiliczkiewicz, A.; Biazik, E.; Pudlo, A.; Korzeniowska, M.; Hikawczuk, T.; Skiba, T. Antioxidative characteristics of chicken breast meat and blood after diet supplementation with carnosine, L-histidine, and β-alanine. Antioxidants 2020, 9, 1093. [Google Scholar] [CrossRef] [PubMed]
- PN-ISO 1442; Meat and Meat Products. Moisture Content Determination (Reference Method). Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-ISO 1444; Meat and Meat Products—Fat Content Determination. Polish Committee for Standardization: Warsaw, Poland, 2000.
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Modzelewska-Kapituła, M.; Pietrzak-Fiećko, R.; Zakęś, Z.; Szczepkowski, M. Assessment of fatty acid composition and technological properties of northern pike (Esox lucius) fillets: The effects of fish origin and sex. J. Aqua. Food Product Technol. 2017, 26, 1312–1323. [Google Scholar] [CrossRef]
- Folch, J.; Less, M.; Sloane-Stanley, G.H. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Peisker, K. A rapid semi-micro method for preparation of methyl esters from triglycerides using chloroform, methanol, sulphuric acid. J. Am. Oil Chem. Soc. 1964, 41, 87–88. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Nadolna, I.; Przygoda, B.; Iwanow, K. Tables of Nutritional Value of Food Products and Dishes; Instytut Żywności i Żywienia: Warsaw, Poland, 2005. [Google Scholar]
- Żmijewski, T.; Kujawa, R.; Jankowska, B.; Kwiatkowska, A.; Mamcarz, A. Slaughter yield, proximate and fatty acid composition and sensory properties of rapfen (Aspius aspius L) with tissue of bream (Abramis brama L) and pike (Esox lucius L). J. Food Comp. Anal. 2006, 19, 176–181. [Google Scholar] [CrossRef]
- PN-EN ISO 8586-3; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors. Polish Committee for Standardization: Warszaw, Poland, 2014.
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur. Union 2006, L 404, 9–25. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1924&from=en (accessed on 30 March 2022).
- Çağlak, E.; Karslı, B.; Şişmanlar Altıka, E. Investigation of quality change of zander (Sander lucioperca Linnaeus, 1758) stored at +2 ± 1 °C applying sous-vide technique in different temperature combinations. Aquac. Stud. 2017, 17, 71–81. [Google Scholar] [CrossRef]
- Redfern, S.; Dermiki, M.; Fox, S.; Lordan, R.; Shiels, K.; Kumar Saha, S.; Tsoupras, A.; Zabetakis, I. The effects of cooking salmon sous-vide on its antithrombotic properties, lipid profile and sensory characteristics. Food Res. Int. 2021, 139, 109976. [Google Scholar] [CrossRef]
- Jones, G.; Smith, M.; Harris, R. Imidazole dipeptide content of dietary sources commonly consumed within the British diet. Proc. Nutr. Soc. 2011, 70, E363. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.M.; Decker, E.A.; Means, W.J. Extraction and activity of carnosine, a naturally occurring antioxidant in beef muscle. J. Food Sci. 1993, 58, 1–4. [Google Scholar] [CrossRef]
- Pereira-Lima, C.I.; Ordoñez, J.A.; García de Fernando, G.D.; Cambero, M.I. Influence of heat treatment on carnosine, anserine and free amino acid composition of beef broth and its role in flavour development. Eur. Food Res. Technol. 2000, 210, 165–172. [Google Scholar] [CrossRef]
- Jankowska, B.; Zakęś, Z.; Żmijewski, T.; Szczepkowski, M. Fatty acid profile and meat utility of wild and cultured zander, Sander lucioperca (L.). Electron. J. Pol. Agric. Univ. Fish. 2003, 6, 2. Available online: http://www.ejpau.media.pl/articles/volume6/issue1/fisheries/art-02.pdf (accessed on 11 January 2022).
- Orlando, P.; Giardinieri, A.; Lucci, P.; Nartea, A.; Balzano, M.; Pacetti, D.; Frega, N.G.; Silvestri, S.; Tiano, L. Impact of traditional and mild oven cooking treatments on antioxidant compounds levels and oxidative status of Atlantic salmon (Salmo salar) fillets. LWT-Food Sci. Technol. 2020, 134, 110011. [Google Scholar] [CrossRef]
- Leung, K.S.; Galano, J.M.; Durand, T.; Lee, J.C. Profiling of omega-polyunsaturated fatty acids and their oxidized products in salmon after different cooking methods. Antioxidants 2018, 7, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.-Q.; Chen, Y.-W.; Dong, X.-P.; Shi, Y.-G.; Wei, J.-L.; Liu, F.-J. Protein oxidation analysis based on comparative proteomic of Russian sturgeon (Acipenser gueldenstaedti) after sous-vide cooking. Food Control 2021, 121, 107594. [Google Scholar] [CrossRef]
- Cross, H.R.; Durland, P.R.; Seideman, S.C. Sensory qualities of meat. In Food Science and Technology, Muscle as Food; Bechtel, P.J., Ed.; Academic Press: Cambridge, MA, USA, 1986; pp. 279–320. ISBN 9780120841905. [Google Scholar] [CrossRef]
- Kato, H.C.A.; Lourenço, L.F.H.; Araújo, E.A.F.; Sousa, C.L.; Peixoto Joele, M.R.S.; Ribeiro, S.C.A. Change in physical and chemical characteristics related to the binomial time-temperature used in sous pasteurization see Tambaqui (Colossoma macropoum). Arq. Bras. Med. Vet. Zootec. 2016, 68, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Hernandez, E.; Salaseviciene, A.; Ertbjerg, P. Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Sci. 2018, 143, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Ayub, H.; Ahmad, A. Physiochemical changes in sous-vide and conventionally cooked meat. Int. J. Gastr. Food Sci. 2019, 17, 100145. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02005R2073-20200308&from=EN (accessed on 28 April 2022).
- Chmielowska, C.; Korsak, D.; Szuplewska, M.; Grzelecka, M.; Maćkiw, E.; Stasiak, M.; Macion, A.; Skowron, K.; Bartosik, D. Benzalkonium chloride and heavy metal resistance profiles of Listeria monocytogenes strains isolated from fish, fish products and food-producing factories in Poland. Food Microbiol. 2021, 98, 103756. [Google Scholar] [CrossRef]
- Dogruyol, H.; Mol, S.; Cosansu, S. Increased thermal sensitivity of Listeria monocytogenes in sous-vide salmon by oregano essential oil and citric acid. Food Microbiol. 2020, 90, 103496. [Google Scholar] [CrossRef]
Points | Colour | Aroma | Texture | Juiciness | Taste |
---|---|---|---|---|---|
5 | Homogeneous, typical for cooked fish of certain species | Typical, clearly perceptible | Firm, particularly tender | Very juicy | Desirable, typical, intense, no foreign aftertastes |
4 | Homogeneous, darker than typical | Typical, poorly perceptible or very strong | Slightly too soft or too hard, very tender | Juicy | Desirable, typical, weak, no foreign aftertastes |
3 | Slightly inhomogeneous, too dark | Poorly perceptible, foreign | Semi-soft or hard, tender | Low juiciness | Typical with slight foreign aftertaste |
2 | Inhomogeneous | Perceptible, foreign | Soft or hard, fibrous | Dry | Clearly perceptible foreign aftertaste |
1 | Very inhomogeneous | Strong foreign | Very soft or very hard, fibrous | Very dry | Atypical, strong foreign aftertaste |
Attribute | Raw | SV65 | SV75 | SV90 | p Value |
---|---|---|---|---|---|
Moisture (%) | 76.73 a ± 0.27 | 74.40 c ± 0.23 | 75.33 bc ± 0.40 | 76.30 ab ± 0.33 | *** |
Protein (%) | 20.70 b ± 0.23 | 22.81 a ± 0.34 | 21.79 a ± 0.44 | 20.76 b ± 0.30 | *** |
Fat (%) | 1.09 c ± 0.03 | 1.36 a ± 0.05 | 1.25 ab ± 0.07 | 1.21 bc ± 0.03 | *** |
Ash (%) | 1.09 b ± 0.01 | 1.17 a ± 0.01 | 1.20 a ± 0.02 | 1.21 a ± 0.03 | *** |
Carnosine (mg/100 g) | 14.61 a ± 0.81 | 4.60 b ± 0.31 | 2.01 b ± 0.30 | 2.07 b ± 0.92 | *** |
Anserine (mg/100 g) | 39.42 a ± 0.97 | 44.54 a ± 2.60 | 38.03 ab ± 2.12 | 32.88 b ± 1.90 | ** |
Cooking loss (%) | - | 19.98 a ± 0.66 | 17.26 b ± 0.39 | 16.38 b ± 1.02 | ** |
Fatty Acid (%) | Raw | SV65 | SV75 | SV90 |
---|---|---|---|---|
C 12:0 | 0.036 ± 0.001 | 0.034 ± 0.001 | 0.034 ± 0.001 | 0.039 ± 0.001 |
C 14:0 | 3.344 ± 0.035 | 3.397 ± 0.057 | 3.384 ± 0.059 | 3.354 ± 0.069 |
C 15:0 | 0.288 ± 0.003 | 0.295 ± 0.004 | 0.287 ± 0.005 | 0.293 ± 0.005 |
C 16:0 | 14.912 ± 0.511 | 15.493 ± 0.262 | 15.596 ± 0.436 | 15.381 ± 0.437 |
C 17:0 | 0.160 ± 0.001 | 0.160 ± 0.002 | 0.159 ± 0.002 | 0.160 ± 0.003 |
C 18:0 | 1.477 ± 0.012 | 1.427 ± 0.043 | 1.509 ± 0.053 | 1.405 ± 0.033 |
C 20:0 | 0.162 ± 0.003 | 0.155 ± 0.006 | 0.156 ± 0.005 | 0.159 ± 0.006 |
C 14:1 | 0.113 ± 0.005 | 0.124 ± 0.012 | 0.116 ± 0.010 | 0.116 ± 0.010 |
C 16:1 | 6.426 ± 0.160 | 6.150 ± 0.315 | 6.657 ± 0.216 | 6.354 ± 0.267 |
C 17:1 | 0.334 ± 0.003 | 0.348 ± 0.010 | 0.335 ± 0.004 | 0.327 ± 0.004 |
C 18:1 cis9 | 35.995 ± 0.231 | 36.371 ± 0.149 | 35.812 ± 0.312 | 35.524 ± 0.149 |
C 18:1 cis11 | 2.795 ± 0.042 | 2.842 ± 0.016 | 2.750 ± 0.035 | 2.866 ± 0.027 |
C 20:1 n-9 | 4.268 ± 0.098 | 4.091 ± 0.150 | 4.219 ± 0.100 | 4.354 ± 0.059 |
C22:1 n-11 | 1.833 ± 0.039 | 1.772 ± 0.079 | 1.765 ± 0.068 | 1.789 ± 0.061 |
C22:1 n-9 | 0.318 ± 0.006 | 0.304 ± 0.009 | 0.317 ± 0.016 | 0.319 ± 0.011 |
C 18:2 n-6 | 11.896 ± 0.166 | 11.942 ± 0.201 | 11.634 ± 0.233 | 11.917 ± 0.269 |
C 18:3 n-6 | 0.169 ± 0.004 | 0.173 ± 0.002 | 0.169 ± 0.007 | 0.157 ± 0.003 |
C 18:3 n-3 | 3.461 ± 0.044 | 3.475 ± 0.071 | 3.363 ± 0.057 | 3.406 ± 0.074 |
C 18:4 n-3 | 0.653 ± 0.007 | 0.649 ± 0.007 | 0.636 ± 0.010 | 0.637 ± 0.012 |
C 20:2 n-6 | 0.651 ± 0.007 | 0.651 ± 0.010 | 0.639 ± 0.013 | 0.645 ±0.013 |
C 20:3 n-6 | 0.152 ± 0.003 | 0.150 ± 0.002 | 0.152 ± 0.005 | 0.146 ± 0.002 |
C 20:4 n-6 | 0.254 ± 0.006 | 0.236 ± 0.005 | 0.250 ± 0.015 | 0.273 ± 0.008 |
C 20:3 n-3 | 0.323 ± 0.003 | 0.321 ± 0.007 | 0.317 ± 0.004 | 0.314 ± 0.006 |
C 20:4 n-3 | 0.497 ± 0.005 | 0.496 ± 0.009 | 0.482 ± 0.007 | 0.478 ± 0.007 |
C 20:5 n-3 | 2.561 ± 0.048 | 2.451 ± 0.063 | 2.519 ± 0.102 | 2.652 ± 0.069 |
C 22:5 n-6 | 0.105 ± 0.004 | 0.106 ± 0.004 | 0.105 ± 0.008 | 0.094 ± 0.006 |
C 22:5 n-3 | 0.812 ± 0.007 | 0.790 ± 0.019 | 0.781 ± 0.009 | 0.793 ± 0.019 |
C 22:6 n-3 | 6.004 ± 0.089 | 5.599 ± 0.046 | 5.857 ± 0.205 | 6.048 ± 0.177 |
SFA | 20.38 ± 0.50 | 20.96 ± 0.31 | 21.12 ± 0.49 | 20.79 ± 0.51 |
MUFA | 52.08 ± 0.30 | 52.00 ± 0.34 | 51.97 ± 0.20 | 51.65 ± 0.37 |
PUFA | 27.54 ± 0.34 | 27.04 ± 0.42 | 26.90 ± 0.52 | 27.56 ± 0.49 |
n-3 | 14.31 ± 0.18 | 13.78 ± 0.22 | 13.95 ± 0.34 | 14.33 ± 0.27 |
n-6 | 13.23 ± 0.18 | 13.26 ± 0.21 | 12.95 ± 0.25 | 13.23 ± 0.28 |
n-6/n-3 | 0.93 ± 0.007 | 0.96 ± 0.004 | 0.93 ± 0.019 | 0.92 ± 0.017 |
n-3/n-6 | 1.08 ± 0.008 | 1.04 ± 0.005 | 1.08 ± 0.022 | 1.08 ± 0.019 |
Bacteria Species/Group | Raw | SV65 | SV75 | SV90 |
---|---|---|---|---|
TVC | 9.08 × 105 | 4.55 × 102 | <10 | <10 |
Enterobacteriaceae | 2.87 × 105 | 2.00 × 102 | <100 | <100 |
Enterococcus sp. | 1.50 × 102 | 1.00 × 102 | <100 | <100 |
Staphylococcus sp. | 1.05 × 103 | 1.00 × 102 | <100 | <100 |
Listeria monocytogenes | <100 | <100 | <100 | <100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modzelewska-Kapituła, M.; Pietrzak-Fiećko, R.; Zakrzewski, A.; Więk, A. The Influence of Sous Vide Parameters on Nutritional Characteristics and Safety of Pikeperch Fillets. Foods 2022, 11, 1605. https://doi.org/10.3390/foods11111605
Modzelewska-Kapituła M, Pietrzak-Fiećko R, Zakrzewski A, Więk A. The Influence of Sous Vide Parameters on Nutritional Characteristics and Safety of Pikeperch Fillets. Foods. 2022; 11(11):1605. https://doi.org/10.3390/foods11111605
Chicago/Turabian StyleModzelewska-Kapituła, Monika, Renata Pietrzak-Fiećko, Arkadiusz Zakrzewski, and Adam Więk. 2022. "The Influence of Sous Vide Parameters on Nutritional Characteristics and Safety of Pikeperch Fillets" Foods 11, no. 11: 1605. https://doi.org/10.3390/foods11111605
APA StyleModzelewska-Kapituła, M., Pietrzak-Fiećko, R., Zakrzewski, A., & Więk, A. (2022). The Influence of Sous Vide Parameters on Nutritional Characteristics and Safety of Pikeperch Fillets. Foods, 11(11), 1605. https://doi.org/10.3390/foods11111605