Effects of Hot Air Drying on Drying Kinetics and Anthocyanin Degradation of Blood-Flesh Peach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Materials
2.3. Drying Experiment
2.4. Drying Rate Curves
2.5. Drying Kinetics and Fitting Models
2.6. Effective Moisture Diffusivities and Activation Energy
2.7. Color Measurement
2.8. Extracting
2.9. Analysis of Total Monomeric Anthocyanins (ACY)
2.10. Identification and Quantification of Anthocyanins by UPLC-QqQ-MS/MS
2.11. Statistical Analysis
3. Results and Discussion
3.1. Drying Curves
3.2. Modeling the HAD Kinetics
3.3. Deff and Ea
3.4. Physical Characteristics
3.5. Anthocyanin Degradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wang, L. Genetic Resources, Breeding Programs in China, and Gene Mining of Peach: A Review. Hortic. Plant J. 2020, 6, 205–215. [Google Scholar] [CrossRef]
- Pavlina, D.; Dimitrios, G.; Mina, K.; Eleni, T. Phenotypic characterization of qualitative parameters and antioxidant contents in peach and nectarine fruit and changes after jam preparation. J. Sci. Food Agric. 2017, 97, 3374–3383. [Google Scholar]
- Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013, 18, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Xu, B.; Sun, J.; Jiang, X.; Bai, W. Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2021, 1–13. [Google Scholar] [CrossRef]
- Selvi, K.Ç. Investigating the Influence of Infrared Drying Method on Linden (Tilia platyphyllos Scop.) Leaves: Kinetics, Color, Projected Area, Modeling, Total Phenolic, and Flavonoid Content. Plants 2020, 9, 916. [Google Scholar] [CrossRef]
- Nasri, F. Solar thermal drying performance analysis of banana and peach in the region of Gafsa (Tunisia). Case Stud. Therm. Eng. 2020, 22, 100771. [Google Scholar] [CrossRef]
- Roknul Azam, S.; Zhang, M.; Law, C.L.; Mujumdar, A.S. Effects of drying methods on quality attributes of peach (Prunus persica) leather. Dry. Technol. 2019, 37, 341–351. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Yeganeh, R.; Momeny, M. Influence of ultrasound pre-treatment and temperature on the quality and thermodynamic properties in the drying process of nectarine slices in a hot air dryer. J. Food Processing Preserv. 2020, 44, 14818. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Z.W.; Xiang, Y.Y.; Deng, T.W.; Zhao, X.; Shi, S.Y.; Zheng, Q.R.; Gao, X.X.; Li, W.F. The effects of drying methods on chemical profiles and antioxidant activities of two cultivars of Psidium guajava fruits. LWT Food Sci. Technol. 2020, 118, 108723. [Google Scholar] [CrossRef]
- Guo, C.; Bi, J.; Li, X.; Lyu, J.; Xu, Y.; Hu, J. Investigation on the phenolic composition, related oxidation and antioxidant activity of thinned peach dried by different methods. LWT Food Sci. Technol. 2021, 147, 111573. [Google Scholar] [CrossRef]
- Arslan, D.; Özcan, M.M. Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food Bioprod. Processing 2011, 89, 504–513. [Google Scholar] [CrossRef]
- Qu, C.L.; Wang, X.K.; Wang, Z.W.; Yu, S.C.; Wang, D.X. Effect of drying temperatures on the peanut quality during hot air drying. J. Oleo Sci. 2020, 69, 403–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khattak, M.; Hanif, M.; Khan, M.; Ramzan, M. Comparison of drying process and preservatives on drying kinetics, texture and antioxidants retention in mulberry fruits. J. Anim. Plant Sci. 2019, 29, 803–806. [Google Scholar]
- Onwude, D.I.; Hashim, N.; Janius, R.B.; Nawi, N.M.; Abdan, K. Modeling the thin-layer drying of fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 599–618. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Miao, Y.; Xiang, H.; Tan, W.; Li, W. Effects of air-impingement jet drying on drying kinetics and quality retention of tomato slices. Food Sci. Biotechnol. 2021, 30, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, M.; Xiao, X.; Zhang, B.; Yang, X. Effects of air-impingement jet drying on drying kinetics, nutrient retention and rehydration characteristics of onion (Allium cepa) slices. Int. J. Food Eng. 2015, 11, 435–446. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Chong, S.; Yan, S.; Yu, R.; Chen, R.; Si, J.; Zhang, X. Identification and quantitative analysis of anthocyanins composition and their stability from different strains of Hibiscus syriacus L. flowers. Ind. Crops Prod. 2022, 177, 114457. [Google Scholar] [CrossRef]
- Kara, Ş.; Erçelebi, E.A. Thermal degradation kinetics of anthocyanins and visual colour of Urmu mulberry (Morus nigra L.). J. Food Eng. 2013, 116, 541–547. [Google Scholar] [CrossRef]
- Mugodo, K.; Workneh, T.S. The kinetics of thin-layer drying and modelling for mango slices and the influence of differing hot-air drying methods on quality. Heliyon 2021, 7, e07182. [Google Scholar] [CrossRef]
- Senadeera, W.; Adiletta, G.; Nal, B.; Matteo, M.; Russo, P. Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices. Foods 2020, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Lemus-Mondaca, R.; Zura-Bravo, L.; Ah-Hen, K.; Di Scala, K. Effect of drying methods on drying kinetics, energy features, thermophysical and microstructural properties of Stevia rebaudiana leaves. J. Sci. Food Agric. 2021, 101, 6484–6495. [Google Scholar] [CrossRef]
- Ju, H.Y.; Zhao, S.H.; Mujumdar, A.S.; Zhao, H.Y.; Duan, X.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Step-down relative humidity convective air drying strategy to enhance drying kinetics, efficiency, and quality of American ginseng root (Panax quinquefolium). Dry. Technol. 2020, 38, 903–916. [Google Scholar] [CrossRef]
- Sahoo, M.; Titikshya, S.; Aradwad, P.; Kumar, V.; Naik, S.N. Study of the drying behaviour and color kinetics of convective drying of yam (Dioscorea hispida) slices. Ind. Crops Prod. 2022, 176, 114258. [Google Scholar] [CrossRef]
- Kim, S.H.; Tanaka, F.; Tanaka, F. Drying kinetics and determination of effective moisture diffusivity and activation energy in cucumber pericarp tissues using thin-layer drying models. Food Sci. Technol. Res. 2021, 27, 181–192. [Google Scholar] [CrossRef]
- Okeleye, A.F.; Akanbi, C.T.; Morakinyo, T.A. Modeling of thin layer drying characteristics of blanch-assisted water yam (Dioscorea alata) slices. Croat. J. Food Sci. Technol. 2021, 13, 43–50. [Google Scholar] [CrossRef]
- Ibarz, A.; Pagán, J.; Garza, S. Kinetic models of non-enzymatic browning in apple puree. J. Sci. Food Agric. 2000, 80, 1162–1168. [Google Scholar] [CrossRef]
- Karasu, S.; Kilicli, M.; Baslar, M.; Arici, M.; Sagdic, O.; Karaagacli, M. Dehydration kinetics and changes of bioactive compounds of tulip and poppy petals as a natural colorant under vacuum and oven conditions. J. Food Processing Preserv. 2015, 39, 2096–2106. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Wang, W.D.; Xu, S.Y. Degradation kinetics of anthocyanins in blackberry juice and concentrate. J. Food Eng. 2007, 82, 271–275. [Google Scholar] [CrossRef]
- Zhou, X.J.; Zhu, C.T.; Hu, Y.; You, S.; Wang, J. A novel microfluidic aqueous two-phase system with immobilized enzyme enhances cyanidin-3-O-glucoside content in red pigments from mulberry fruits. Biochem. Eng. J. 2020, 158, 107556. [Google Scholar] [CrossRef]
- Olivas-Aguirre, F.J.; Rodrigo-García, J.; Martínez-Ruiz, N.D.R.; Cárdenas-Robles, A.I.; Mendoza-Díaz, S.O.; Álvarez-Parrilla, E.; González-Aguilar, G.A.; De la Rosa, L.A.; Ramos-Jiménez, A.; Wall-Medrano, A. Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects. Molecules 2016, 21, 1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradinaru, G.; Biliaderis, C.G.; Kallithraka, S.; Kefalas, P.; Garcia-Viguera, C. Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: Effects of copigmentation and glass transition. Food Chem. 2003, 83, 423–436. [Google Scholar] [CrossRef]
- Kim, A.N.; Lee, K.Y.; Bo, G.K.; Si, W.C.; Choi, S.G. Thermal processing under oxygen–free condition of blueberry puree: Effect on anthocyanin, ascorbic acid, antioxidant activity, and enzyme activities. Food Chem. 2020, 342, 128345. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Cai, Z.; Shen, Z.; Ma, R.; Yu, M. Proanthocyanidin monomers and cyanidin 3-o-glucoside accumulation in blood-flesh peach (Prunus persica (L.) Batsch) fruit. Arch. Biol. Sci. 2017, 69, 611–617. [Google Scholar] [CrossRef]
- Jiao, Y.; Ma, R.; Shen, Z.; Yan, J.; Yu, M. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development. J. Zhejiang Univ. Sci. B 2014, 15, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2010, 81, 853–876. [Google Scholar] [CrossRef]
- Muche, B.M.; Speers, R.A.; Rupasinghe, H.P.V. Storage temperature impacts on anthocyanins degradation, color changes and haze development in juice of “Merlot” and “Ruby” grapes (Vitis vinifera). Front. Nutr. 2018, 5, 100. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Łysiak, G.P.; Lech, K.; Figiel, A. Functional relationships between phytochemicals and drying conditions during the processing of blackcurrant pomace into powders. Adv. Powder Technol. 2017, 28, 1340–1348. [Google Scholar] [CrossRef]
- Li, W.; Pang, X.; Xiao, J.; Wang, X.; He, R.; Zhao, X. Degradation kinetics of pelargonidin-3-(p-coumaroyl)diglucoside-5-(malonyl)glucoside and pelargonidin-3-(feruloyl)diglucoside-5-(malonyl)glucoside in red radish during air-impingement jet drying. LWT Food Sci. Technol. 2020, 127, 109390. [Google Scholar] [CrossRef]
No. | Model | Formula | Parameter | Temperature/°C | ||
---|---|---|---|---|---|---|
50 | 60 | 70 | ||||
1 | Lewis | exp(−kt) | k | 0.011940 | 0.017852 | 0.020864 |
R2 | 0.9843 | 0.9813 | 0.9847 | |||
χ2 | 0.001801 | 0.002079 | 0.001637 | |||
RMSE | 0.041167 | 0.044045 | 0.038988 | |||
2 | Page | exp(−ktn) | k | 0.004794 | 0.006266 | 0.008711 |
n | 1.212 | 1.272 | 1.236 | |||
R2 | 0.9964 | 0.9974 | 0.9975 | |||
χ2 | 0.000531 | 0.000379 | 0.000347 | |||
RMSE | 0.021652 | 0.018130 | 0.017256 | |||
3 | Modified midilli and other | aexp(−kt) + b | a | 1.133 | 1.111 | 1.102 |
k | 0.009641 | 0.016108 | 0.018818 | |||
b | −0.124 | −0.081 | −0.077 | |||
R2 | 0.9968 | 0.9939 | 0.9952 | |||
χ2 | 0.000534 | 0.001048 | 0.000798 | |||
RMSE | 0.020202 | 0.027725 | 0.023872 | |||
4 | Henderson and Pabis | aexp(−kt) | a | 1.035 | 1.048 | 1.041 |
k | 0.012550 | 0.019076 | 0.022071 | |||
R2 | 0.9878 | 0.9869 | 0.9888 | |||
χ2 | 0.001623 | 0.001743 | 0.001416 | |||
RMSE | 0.037838 | 0.038869 | 0.034836 | |||
5 | Wang and Singh | 1 + at + bt2 | a | −0.008939 | −0.013199 | −0.015440 |
b | 0.000020 | 0.000041 | 0.000056 | |||
R2 | 0.9986 | 0.9951 | 0.9945 | |||
χ2 | 0.000212 | 0.000737 | 0.000796 | |||
RMSE | 0.013670 | 0.025282 | 0.026120 |
Temperature/°C | Deff (m2/s) | L | a | b | ΔE |
---|---|---|---|---|---|
Fresh | — | 44.77 ± 1.81 b | 24.32 ± 1.67 a | 10.58 ± 1.33 a | - |
50 | 1.62 × 10−10 | 52.27 ± 3.13 a | 10.80 ± 2.27 b | 3.92 ± 1.05 c | 17.01 ± 0.97 a |
60 | 2.43 × 10−10 | 51.97 ± 1.78 a | 11.92 ± 2.91 b | 6.17 ± 1.53 b | 15.02 ± 1.71 a |
70 | 2.84 × 10−10 | 49.54 ± 1.36 a | 13.74 ± 2.40 b | 6.26 ± 0.69 b | 12.41 ± 0.07 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, S.; Miao, Y.; Zhou, C.; Luo, Y.; Lin, Z.; Xie, R.; Li, W. Effects of Hot Air Drying on Drying Kinetics and Anthocyanin Degradation of Blood-Flesh Peach. Foods 2022, 11, 1596. https://doi.org/10.3390/foods11111596
Tan S, Miao Y, Zhou C, Luo Y, Lin Z, Xie R, Li W. Effects of Hot Air Drying on Drying Kinetics and Anthocyanin Degradation of Blood-Flesh Peach. Foods. 2022; 11(11):1596. https://doi.org/10.3390/foods11111596
Chicago/Turabian StyleTan, Si, Yiwen Miao, Chongbing Zhou, Yuping Luo, Zhiru Lin, Ruobing Xie, and Wenfeng Li. 2022. "Effects of Hot Air Drying on Drying Kinetics and Anthocyanin Degradation of Blood-Flesh Peach" Foods 11, no. 11: 1596. https://doi.org/10.3390/foods11111596
APA StyleTan, S., Miao, Y., Zhou, C., Luo, Y., Lin, Z., Xie, R., & Li, W. (2022). Effects of Hot Air Drying on Drying Kinetics and Anthocyanin Degradation of Blood-Flesh Peach. Foods, 11(11), 1596. https://doi.org/10.3390/foods11111596