The Potential Application of Pickering Multiple Emulsions in Food
Abstract
:1. Introduction
2. Pickering Emulsions
2.1. Food-Grade Pickering Particles (PPs)
Potential Use of By-Products for Preparation of PPs
2.2. w/o and o/w Pickering Emulsions
3. w/o/w and o/w/o PMEs
3.1. Stability of PMEs
3.1.1. Stabilization of PMEs Only by PPs
3.1.2. Co-Stabilization of PMEs by Emulsifiers
4. Preparation of Food-Grade PMEs
4.1. Two-Step Emulsification
4.2. Advanced Methods
4.2.1. One-Step Emulsification
4.2.2. Microfluidic Methods
5. Potential Application of PMEs in Food Systems
5.1. Low-Fat Products
5.2. Functional Food with Encapsulated Compounds
5.3. Janus Particles and Emulsions
5.4. In Vitro Behaviour of PMEs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lobato-Calleros, C.; Recillas-Mota, M.T.; Espinosa-Solares, T.; Alvarez-Ramirez, J.; Vernon-Carter, E.J. Microstructural and Rheological Properties of Low-Fat Stirred Yoghurts Made with Skim Milk and Multiple Emulsions. J. Texture Stud. 2009, 40, 657–675. [Google Scholar] [CrossRef]
- Eslami, P.; Forootan, K.; Davarpanh, L.; Vahabzadeh, F. Incorporation of Lactobacillus Casei into the Inner Phase of the Water-in-Oil-in-Water (W1/O/W2) Emulsion Prepared with β-Cyclodextrin and Bacterial Survival in a Model Gastric Environment. Appl. Food Biotechnol. 2020, 7, 171–182. [Google Scholar] [CrossRef]
- Carlotti, M.E.; Gallarate, M.; Sapino, S.; Ugazio, E.; Morel, S. W/O/W Multiple Emulsions for Dermatological and Cosmetic Use, Obtained with Ethylene Oxide Free Emulsifiers. J. Dispers. Sci. Technol. 2005, 26, 183–192. [Google Scholar] [CrossRef]
- Mahmood, T.; Akhtar, N. Stability of a Cosmetic Multiple Emulsion Loaded with Green Tea Extract. Sci. World J. 2013, 2013, 153695. [Google Scholar] [CrossRef]
- Lobato-Calleros, C.; Rodriguez, E.; Sandoval-Castilla, O.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Reduced-Fat White Fresh Cheese-like Products Obtained from W1/O/W2 Multiple Emulsions: Viscoelastic and High-Resolution Image Analyses. Food Res. Int. 2006, 39, 678–685. [Google Scholar] [CrossRef]
- Charcosset, C. Preparation of Emulsions and Particles by Membrane Emulsification for the Food Processing Industry. J. Food Eng. 2009, 92, 241–249. [Google Scholar] [CrossRef]
- Dickinson, E. Double Emulsions Stabilized by Food Biopolymers. Food Biophys. 2011, 6, 1–11. [Google Scholar] [CrossRef]
- Garti, N. Progress in Stabilization and Transport Phenomena of Double Emulsions in Food Applications. LWT Food Sci. Technol. 1997, 30, 222–235. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F. Potential Applications of Multiple Emulsions in the Development of Healthy and Functional Foods. Food Res. Int. 2013, 52, 64–74. [Google Scholar] [CrossRef]
- Klojdová, I.; Štětina, J.; Horáčková, Š. W/O/W Multiple Emulsions as the Functional Component of Dairy Products. Chem. Eng. Technol. 2019, 42, 715–727. [Google Scholar] [CrossRef]
- Lamba, H.; Sathish, K.; Sabikhi, L. Double Emulsions: Emerging Delivery System for Plant Bioactives. Food Bioprocess Technol. 2015, 8, 709–728. [Google Scholar]
- Muschiolik, G.; Dickinson, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [PubMed]
- Silva, M.; Chandrapala, J. Ultrasonic Emulsification of Milk Proteins Stabilized Primary and Double Emulsions: A Review. Food Rev. Int. 2021, 1–23. [Google Scholar] [CrossRef]
- Muschiolik, G. Multiple Emulsions for Food Use. Curr. Opin. Colloid Interface Sci. 2007, 12, 213–220. [Google Scholar]
- Tekin Pulatsü, E.; Sahin, S.; Sumnu, G. Characterization of Different Double-Emulsion Formulations Based on Food-Grade Emulsifiers and Stabilizers. J. Dispers. Sci. Technol. 2018, 39, 996–1002. [Google Scholar] [CrossRef]
- Yildirim, M.; Sumnu, G.; Sahin, S. The Effects of Emulsifier Type, Phase Ratio, and Homogenization Methods on Stability of the Double Emulsion. J. Dispers. Sci. Technol. 2017, 38, 807–814. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Tan, Y.; Muriel Mundo, J.L.; McClements, D.J. Comparison of Plant-Based Emulsifier Performance in Water-in-Oil-in-Water Emulsions: Soy Protein Isolate, Pectin and Gum Arabic. J. Food Eng. 2021, 307, 110625. [Google Scholar] [CrossRef]
- Schuch, A.; Helfenritter, C.; Funck, M.; Schuchmann, H.P. Observations on the Influence of Different Biopolymers on Coalescence of Inner Water Droplets in W/O/W (Water-in-Oil-in-Water) Double Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2015, 475, 2–8. [Google Scholar] [CrossRef]
- Mortensen, A.; Aguilar, F.; Lambré, C. Re-evaluation of Polyglycerol Polyricinoleate (E 476) as a Food Additive. EFSA J. 2017, 15, e04743. [Google Scholar] [CrossRef] [Green Version]
- Arenas-Jal, M.; Suñé-Negre, J.M.; Pérez-Lozano, P.; García-Montoya, E. Trends in the Food and Sports Nutrition Industry: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2405–2421. [Google Scholar] [CrossRef]
- Salih, N.; Salimon, J. A Review on New Trends, Challenges and Prospects of Ecofriendly Friendly Green Food-Grade Biolubricants. Biointerface Res. Appl. Chem. 2021, 12, 1185–1207. [Google Scholar] [CrossRef]
- Pickering, S.U. CXCVI—Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, Y.; Bolzinger, M.A. Emulsions Stabilized with Solid Nanoparticles: Pickering Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Dickinson, E. Advances in Food Emulsions and Foams: Reflections on Research in the Neo-Pickering Era. Curr. Opin. Food Sci. 2020, 33, 52–60. [Google Scholar] [CrossRef]
- Salerno, A.; Bolzinger, M.A.; Rolland, P.; Chevalier, Y.; Josse, D.; Briançon, S. Pickering Emulsions for Skin Decontamination. Toxicol. Vitr. 2016, 34, 45–54. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 2017, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Abdullah; Weiss, J.; Ahmad, T.; Zhang, C.; Zhang, H. A Review of Recent Progress on High Internal-Phase Pickering Emulsions in Food Science. Trends Food Sci. Technol. 2020, 106, 91–103. [Google Scholar] [CrossRef]
- Wardana, A.A.; Koga, A.; Tanaka, F.; Tanaka, F. Antifungal Features and Properties of Chitosan/Sandalwood Oil Pickering Emulsion Coating Stabilized by Appropriate Cellulose Nanofiber Dosage for Fresh Fruit Application. Sci. Rep. 2021, 11, 18412. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.; Xiang, W.; Rojas, O.J. Pickering Emulsions by Combining Cellulose Nanofibrils and Nanocrystals: Phase Behavior and Depletion Stabilization. Green Chem. 2018, 20, 1571–1582. [Google Scholar] [CrossRef]
- Jiang, H.; Sheng, Y.; Ngai, T. Pickering Emulsions: Versatility of Colloidal Particles and Recent Applications. Curr. Opin. Colloid Interface Sci. 2020, 49, 1–15. [Google Scholar] [CrossRef]
- Niroula, A.; Gamot, T.D.; Ooi, C.W.; Dhital, S. Biomolecule-Based Pickering Food Emulsions: Intrinsic Components of Food Matrix, Recent Trends and Prospects. Food Hydrocoll. 2021, 112, 106303. [Google Scholar] [CrossRef]
- Berton-Carabin, C.C.; Schroën, K. Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Annu. Rev. Food Sci. Technol. 2015, 6, 263–297. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ao, F.; Ge, X.; Shen, W. Food-Grade Pickering Emulsions: Preparation, Stabilization and Applications. Molecules 2020, 25, 3202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion. Materials 2016, 9, 903. [Google Scholar] [CrossRef] [PubMed]
- Linke, C.; Drusch, S. Pickering Emulsions in Foods—Opportunities and Limitations. Crit. Rev. Food Sci. Nutr. 2018, 58, 1971–1985. [Google Scholar] [CrossRef]
- Zhu, F. Starch Based Pickering Emulsions: Fabrication, Properties, and Applications. Trends Food Sci. Technol. 2019, 85, 129–137. [Google Scholar] [CrossRef]
- Sharkawy, A.; Barreiro, M.F.; Rodrigues, A.E. Chitosan-Based Pickering Emulsions and Their Applications: A Review. Carbohydr. Polym. 2020, 250, 116885. [Google Scholar] [CrossRef]
- Jafari, S.M.; Sedaghat Doost, A.; Nikbakht Nasrabadi, M.; Boostani, S.; van der Meeren, P. Phytoparticles for the Stabilization of Pickering Emulsions in the Formulation of Novel Food Colloidal Dispersions. Trends Food Sci. Technol. 2020, 98, 117–128. [Google Scholar] [CrossRef]
- Zhao, Q.; Zaaboul, F.; Liu, Y.; Li, J. Recent Advances on Protein-Based Pickering High Internal Phase Emulsions (Pickering HIPEs): Fabrication, Characterization, and Applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1934–1968. [Google Scholar] [CrossRef]
- Sarkar, A.; Dickinson, E. Sustainable Food-Grade Pickering Emulsions Stabilized by Plant-Based Particles. Curr. Opin. Colloid Interface Sci. 2020, 49, 69–81. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Y.; Huang, Q. Recent Advances on Food-Grade Particles Stabilized Pickering Emulsions: Fabrication, Characterization and Research Trends. Trends Food Sci. Technol. 2016, 55, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.S. Pickering Emulsions for Food and Drinks. Curr. Opin. Food Sci. 2019, 27, 57–63. [Google Scholar] [CrossRef]
- Haaj, S.B.; Thielemans, W.; Magnin, A.; Boufi, S. Starch Nanocrystal Stabilized Pickering Emulsion Polymerization for Nanocomposites with Improved Performance. ACS Appl. Mater. Interfaces 2014, 6, 8263–8273. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Ye, F.; Zhou, G.; Gao, R.; Qin, D.; Zhao, G. Micronized Apple Pomace as a Novel Emulsifier for Food O/W Pickering Emulsion. Food Chem. 2020, 330, 127325. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Li, Q.; Li, Y.; Li, B.; Liu, S. Water-Insoluble Dietary Fibers from Bamboo Shoot Used as Plant Food Particles for the Stabilization of O/W Pickering Emulsion. Food Chem. 2020, 310, 125925. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, S. Molecularly Imprinted Polymers Fabricated via Pickering Emulsions Stabilized Solely by Food-Grade Casein Colloidal Nanoparticles for Selective Protein Recognition. Anal. Bioanal. Chem. 2018, 410, 3133–3143. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, C.; Du, M.; Lin, S.; Xu, X.; Yu, P. In-Situ Dispersion of Casein to Form Nanoparticles for Pickering High Internal Phase Emulsions. LWT 2021, 139, 110538. [Google Scholar] [CrossRef]
- Li, Q.; Wu, Y.; Fang, R.; Lei, C.; Li, Y.; Li, B.; Pei, Y.; Luo, X.; Liu, S. Application of Nanocellulose as Particle Stabilizer in Food Pickering Emulsion: Scope, Merits and Challenges. Trends Food Sci. Technol. 2021, 110, 573–583. [Google Scholar] [CrossRef]
- Sanchez-Salvador, J.L.; Balea, A.; Monte, M.C.; Blanco, A.; Negro, C. Pickering Emulsions Containing Cellulose Microfibers Produced by Mechanical Treatments as Stabilizer in the Food Industry. Appl. Sci. 2019, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Lin, D.; Liu, D.; Yang, X. Emulsions Stabilized by Nanofibers from Bacterial Cellulose: New Potential Food-Grade Pickering Emulsions. Food Res. Int. 2018, 103, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Angkuratipakorn, T.; Chung, C.; Koo, C.K.W.; Mundo, J.L.M.; McClements, D.J.; Decker, E.A.; Singkhonrat, J. Development of Food-Grade Pickering Oil-in-Water Emulsions: Tailoring Functionality Using Mixtures of Cellulose Nanocrystals and Lauric Arginate. Food Chem. 2020, 327, 127039. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.P.; Ho, K.W.; Surjit Singh, C.K.; Ooi, C.W.; Tey, B.T.; Chan, E.S. Pickering Emulsion Hydrogel as a Promising Food Delivery System: Synergistic Effects of Chitosan Pickering Emulsifier and Alginate Matrix on Hydrogel Stability and Emulsion Delivery. Food Hydrocoll. 2020, 103, 105659. [Google Scholar] [CrossRef]
- Alehosseini, E.; Jafari, S.M.; Shahiri Tabarestani, H. Production of D-Limonene-Loaded Pickering Emulsions Stabilized by Chitosan Nanoparticles. Food Chem. 2021, 354, 129591. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Cheng, J.; Huang, Q. Food-Grade Pickering Emulsions Stabilized by Ovotransferrin Fibrils. Food Hydrocoll. 2019, 94, 592–602. [Google Scholar] [CrossRef]
- Du, Z.; Li, Q.; Li, J.; Su, E.; Liu, X.; Wan, Z.; Yang, X. Self-Assembled Egg Yolk Peptide Micellar Nanoparticles as a Versatile Emulsifier for Food-Grade Oil-in-Water Pickering Nanoemulsions. J. Agric. Food Chem. 2019, 67, 11728–11740. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Cheng, Y.; Huang, Q. Heteroprotein Complex Formation of Ovotransferrin and Lysozyme: Fabrication of Food-Grade Particles to Stabilize Pickering Emulsions. Food Hydrocoll. 2019, 96, 190–200. [Google Scholar] [CrossRef]
- Zhao, J.; Dai, Y.; Gao, J.; Deng, Q.; Wan, C.; Li, B.; Zhou, B. Desalted Duck Egg White Nanogels Combined with κ-Carrageenan as Stabilisers for Food-Grade Pickering Emulsion. Int. J. Food Sci. Technol. 2021, 57, 2819–2829. [Google Scholar] [CrossRef]
- Feng, X.; Dai, H.; Ma, L.; Yu, Y.; Tang, M.; Li, Y.; Hu, W.; Liu, T.; Zhang, Y. Food-Grade Gelatin Nanoparticles: Preparation, Characterization, and Preliminary Application for Stabilizing Pickering Emulsions. Foods 2019, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Dai, H.; Ma, L.; Fu, Y.; Yu, Y.; Zhou, H.; Guo, T.; Zhu, H.; Wang, H.; Zhang, Y. Properties of Pickering Emulsion Stabilized by Food-Grade Gelatin Nanoparticles: Influence of the Nanoparticles Concentration. Colloids Surf. B Biointerfaces 2020, 196, 111294. [Google Scholar] [CrossRef]
- Burgos-Díaz, C.; Wandersleben, T.; Olivos, M.; Lichtin, N.; Bustamante, M.; Solans, C. Food-Grade Pickering Stabilizers Obtained from a Protein-Rich Lupin Cultivar (AluProt-CGNA®): Chemical Characterization and Emulsifying Properties. Food Hydrocoll. 2019, 87, 847–857. [Google Scholar] [CrossRef]
- Zhang, S.; Holmes, M.; Ettelaie, R.; Sarkar, A. Pea Protein Microgel Particles as Pickering Stabilisers of Oil-in-Water Emulsions: Responsiveness to PH and Ionic Strength. Food Hydrocoll. 2020, 102, 105583. [Google Scholar] [CrossRef]
- Ning, F.; Ge, Z.; Qiu, L.; Wang, X.; Luo, L.; Xiong, H.; Huang, Q. Double-Induced Se-Enriched Peanut Protein Nanoparticles Preparation, Characterization and Stabilized Food-Grade Pickering Emulsions. Food Hydrocoll. 2020, 99, 105308. [Google Scholar] [CrossRef]
- Qin, X.S.; Luo, Z.G.; Peng, X.C. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Interfacial Adsorption/Arrangement Properties. J. Agric. Food Chem. 2018, 66, 4449–4457. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, N.; Chen, C.; He, R.; Ju, X. Rapeseed Protein Nanogels As Novel Pickering Stabilizers for Oil-in-Water Emulsions. J. Agric. Food Chem. 2020, 68, 3607–3614. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Liu, H.; Huang, Q. Fabrication and Characterization of Resistant Starch Stabilized Pickering Emulsions. Food Hydrocoll. 2020, 103, 105703. [Google Scholar] [CrossRef]
- Lu, X.; Xiao, J.; Huang, Q. Pickering Emulsions Stabilized by Media-Milled Starch Particles. Food Res. Int. 2018, 105, 140–149. [Google Scholar] [CrossRef]
- Liu, F.; Ou, S.Y.; Tang, C.H. Ca2+-Induced Soy Protein Nanoparticles as Pickering Stabilizers: Fabrication and Characterization. Food Hydrocoll. 2017, 65, 175–186. [Google Scholar] [CrossRef]
- Ruan, Q.; Guo, J.; Wan, Z.; Ren, J.; Yang, X. PH Switchable Pickering Emulsion Based on Soy Peptides Functionalized Calcium Phosphate Particles. Food Hydrocoll. 2017, 70, 219–228. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, Z.; Zhang, Y.; Lin, X.; Li, B. Novel Food-Grade Pickering Emulsions Stabilized by Tea Water-Insoluble Protein Nanoparticles from Tea Residues. Food Hydrocoll. 2019, 96, 322–330. [Google Scholar] [CrossRef]
- Tong, Q.; Yi, Z.; Ran, Y.; Chen, X.; Chen, G.; Li, X. Green Tea Polyphenol-Stabilized Gel-Like High Internal Phase Pickering Emulsions. ACS Sustain. Chem. Eng. 2021, 9, 4076–4090. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, D.J.; Huang, Q. Engineering Miscellaneous Particles from Media-Milled Defatted Walnut Flour as Novel Food-Grade Pickering Stabilizers. Food Res. Int. 2021, 147, 110554. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Pan, Y.; Peng, D.; Huang, W.; Shen, W.; Jin, W.; Huang, Q. Tunable Self-Assemblies of Whey Protein Isolate Fibrils for Pickering Emulsions Structure Regulation. Food Hydrocoll. 2022, 124, 107264. [Google Scholar] [CrossRef]
- Zhou, B.; Gao, S.; Li, X.; Liang, H.; Li, S. Antioxidant Pickering Emulsions Stabilised by Zein/Tannic Acid Colloidal Particles with Low Concentration. Int. J. Food Sci. Technol. 2020, 55, 1924–1934. [Google Scholar] [CrossRef]
- Li, W.; Huang, D.; Jiang, Y.; Liu, Y.; Li, F.; Huang, Q.; Li, D. Preparation of Pickering Emulsion Stabilised by Zein/Grape Seed Proanthocyanidins Binary Composite. Int. J. Food Sci. Technol. 2021, 56, 3763–3772. [Google Scholar] [CrossRef]
- Gould, J.; Garcia-Garcia, G.; Wolf, B. Pickering Particles Prepared from Food Waste. Materials 2016, 9, 791. [Google Scholar] [CrossRef]
- Lafarga, T.; Hayes, M. Bioactive Peptides from Meat Muscle and By-Products: Generation, Functionality and Application as Functional Ingredients. Meat Sci. 2014, 98, 227–239. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-Products of Plant Food Processing as a Source of Functional Compounds—Recent Developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Schröder, A.; Laguerre, M.; Sprakel, J.; Schroën, K.; Berton-Carabin, C.C. Pickering Particles as Interfacial Reservoirs of Antioxidants. J. Colloid Interface Sci. 2020, 575, 489–498. [Google Scholar] [CrossRef]
- Gençdağ, E.; Görgüç, A.; Yılmaz, F.M. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. Food Rev. Int. 2021, 37, 447–468. [Google Scholar] [CrossRef]
- Galali, Y.; Omar, Z.A.; Sajadi, S.M. Biologically Active Components in By-Products of Food Processing. Food Sci. Nutr. 2020, 8, 3004–3022. [Google Scholar] [CrossRef]
- Kumar, A.; Li, S.; Cheng, C.M.; Lee, D. Recent Developments in Phase Inversion Emulsification. Ind. Eng. Chem. Res. 2015, 54, 8375–8396. [Google Scholar] [CrossRef]
- Tang, J.; Quinlan, P.J.; Tam, K.C. Stimuli-Responsive Pickering Emulsions: Recent Advances and Potential Applications. Soft Matter 2015, 11, 3512–3529. [Google Scholar] [CrossRef]
- Huang, X.N.; Zhou, F.Z.; Yang, T.; Yin, S.W.; Tang, C.H.; Yang, X.Q. Fabrication and Characterization of Pickering High Internal Phase Emulsions (HIPEs) Stabilized by Chitosan-Caseinophosphopeptides Nanocomplexes as Oral Delivery Vehicles. Food Hydrocoll. 2019, 93, 34–45. [Google Scholar] [CrossRef]
- Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering Emulsions: Preparation Processes, Key Parameters Governing Their Properties and Potential for Pharmaceutical Applications. J. Control. Release 2019, 309, 302–332. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.L.R.; Gomes, A.; Furtado, G.d.F.; Tibolla, H.; Menegalli, F.C.; Cunha, R.L. Modulating in Vitro Digestibility of Pickering Emulsions Stabilized by Food-Grade Polysaccharides Particles. Carbohydr. Polym. 2020, 227, 115344. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, J.; Salt, L.J.; Ridout, M.J.; Han, J.; Wilde, P.J. Structural Stability of Liposome-Stabilized Oil-in-Water Pickering Emulsions and Their Fate during: In Vitro Digestion. Food Funct. 2019, 10, 7262–7274. [Google Scholar] [CrossRef] [PubMed]
- Gamot, T.D.; Bhattacharyya, A.R.; Sridhar, T.; Beach, F.; Tabor, R.F.; Majumder, M. Synthesis and Stability of Water-in-Oil Emulsion Using Partially Reduced Graphene Oxide as a Tailored Surfactant. Langmuir 2017, 33, 10311–10321. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wu, F.; Sun, X.; Li, R.; Guo, Y.; Li, C.; Zhang, L.; Xing, F.; Wang, W.; Gao, J. Factors That Affect Pickering Emulsions Stabilized by Graphene Oxide. ACS Appl. Mater. Interfaces 2013, 5, 4843–4855. [Google Scholar] [CrossRef] [PubMed]
- Nonomura, Y.; Kobayashi, N.; Nakagawa, N. Multiple Pickering Emulsions Stabilized by Microbowls. Langmuir 2011, 27, 4557–4562. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Feng, X.; Wang, Q.; Adhikari, B. Pickering and High Internal Phase Pickering Emulsions Stabilized by Protein-Based Particles: A Review of Synthesis, Application and Prospective. Food Hydrocoll. 2020, 109, 106117. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, S.; Jiang, Z.; Liu, B. Fabrication and Characterization of Food-Grade Pickering High Internal Emulsions Stabilized with β-Cyclodextrin. LWT 2020, 134, 110134. [Google Scholar] [CrossRef]
- Marefati, A.; Sjöö, M.; Timgren, A.; Dejmek, P.; Rayner, M. Fabrication of Encapsulated Oil Powders from Starch Granule Stabilized W/O/W Pickering Emulsions by Freeze-Drying. Food Hydrocoll. 2015, 51, 261–271. [Google Scholar] [CrossRef]
- Stasse, M.; Laurichesse, E.; Ribaut, T.; Anthony, O.; Héroguez, V.; Schmitt, V. Formulation of Concentrated Oil-in-Water-in-Oil Double Emulsions for Fragrance Encapsulation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 592, 124564. [Google Scholar] [CrossRef]
- Low, L.E.; Siva, S.P.; Ho, Y.K.; Chan, E.S.; Tey, B.T. Recent Advances of Characterization Techniques for the Formation, Physical Properties and Stability of Pickering Emulsion. Adv. Colloid Interface Sci. 2020, 277, 102117. [Google Scholar] [CrossRef]
- Li, G.; Lee, W.J.; Liu, N.; Lu, X.; Tan, C.P.; Lai, O.M.; Qiu, C.; Wang, Y. Stabilization Mechanism of Water-in-Oil Emulsions by Medium- and Long-Chain Diacylglycerol: Post-Crystallization vs. Pre-Crystallization. LWT 2021, 146, 111649. [Google Scholar] [CrossRef]
- Gonzalez Ortiz, D.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering 2020, 6, 468–482. [Google Scholar] [CrossRef]
- Tambe, D.; Paulis, J.; Sharma, M.M. Factors Controlling the Stability of Colloid-Stabilized Emulsions. J. Colloid Interface Sci. 1995, 171, 244–253. [Google Scholar] [CrossRef]
- Abend, S.; Bonnke, N.; Gutschner, U.; Lagaly, G. Stabilization of Emulsions by Heterocoagulation of Clay Minerals and Layered Double Hydroxides. Colloid Polym. Sci. 1998, 276, 730–737. [Google Scholar] [CrossRef]
- Destribats, M.; Rouvet, M.; Gehin-Delval, C.; Schmitt, C.; Binks, B.P. Emulsions Stabilised by Whey Protein Microgel Particles: Towards Food-Grade Pickering Emulsions. Soft Matter 2014, 10, 6941–6954. [Google Scholar] [CrossRef]
- Binks, B.P.; Desforges, A.; Duff, D.G. Synergistic Stabilization of Emulsions by a Mixture of Surface-Active Nanoparticles and Surfactant. Langmuir 2007, 23, 1098–1106. [Google Scholar] [CrossRef]
- Chung, C.; Sher, A.; Rousset, P.; McClements, D.J. Impact of electrostatic interactions on lecithin-stabilized model O/W emulsions. Food Biophys. 2018, 13, 292–303. [Google Scholar] [CrossRef]
- Zou, S.; Wang, C.; Gao, Q.; Tong, Z. Surfactant-Free Multiple Pickering Emulsions Stabilized by Combining Hydrophobic and Hydrophilic Nanoparticles. J. Dispers. Sci. Technol. 2013, 34, 173–181. [Google Scholar] [CrossRef]
- Vladisavljević, G.T.; Williams, R.A. Recent Developments in Manufacturing Emulsions and Particulate Products Using Membranes. Adv. Colloid Interface Sci. 2005, 113, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vladisavljević, G.T.; Kobayashi, I.; Nakajima, M. Production of Uniform Droplets Using Membrane, Microchannel and Microfluidic Emulsification Devices. Microfluid. Nanofluid. 2012, 13, 151–178. [Google Scholar] [CrossRef] [Green Version]
- Krstić, D.M.; Höflinger, W.; Koris, A.K.; Vatai, G.N. Energy-Saving Potential of Cross-Flow Ultrafiltration with Inserted Static Mixer: Application to an Oil-in-Water Emulsion. Sep. Purif. Technol. 2007, 57, 134–139. [Google Scholar] [CrossRef]
- Scott, K.; Mahmood, A.J.; Jachuck, R.J.; Hu, B. Intensified Membrane Filtration with Corrugated Membranes. J. Membr. Sci. 2000, 173, 1–16. [Google Scholar] [CrossRef]
- Manga, M.S.; Cayre, O.J.; Williams, R.A.; Biggs, S.; York, D.W. Production of Solid-Stabilised Emulsions through Rotational Membrane Emulsification: Influence of Particle Adsorption Kinetics. Soft Matter 2012, 8, 1532–1538. [Google Scholar] [CrossRef]
- Yuan, Q.; Cayre, O.J.; Manga, M.; Williams, R.A.; Biggs, S. Preparation of Particle-Stabilized Emulsions Using Membrane Emulsification. Soft Matter 2010, 6, 1580–1588. [Google Scholar] [CrossRef]
- Huang, Z.; Jurewicz, I.; Muñoz, E.; Garriga, R.; Keddie, J.L. Pickering Emulsions Stabilized by Carboxylated Nanodiamonds over a Broad PH Range. J. Colloid Interface Sci. 2022, 608, 2025–2038. [Google Scholar] [CrossRef]
- Arkoumanis, P.G.; Norton, I.T.; Spyropoulos, F. Pickering Particle and Emulsifier Co-Stabilised Emulsions Produced via Rotating Membrane Emulsification. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Yang, Y.; Chen, Y.; Li, J.; Wang, L.; Li, C. A Review of Multiple Pickering Emulsions: Solid Stabilization, Preparation, Particle Effect, and Application. Chem. Eng. Sci. 2022, 248, 117085. [Google Scholar] [CrossRef]
- Sabri, F.; Raphael, W.; Berthomier, K.; Fradette, L.; Tavares, J.R.; Virgilio, N. One-Step Processing of Highly Viscous Multiple Pickering Emulsions. J. Colloid Interface Sci. 2020, 560, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zou, L.; McClements, D.J.; Liu, W. One-Step Preparation of High Internal Phase Emulsions Using Natural Edible Pickering Stabilizers: Gliadin Nanoparticles/Gum Arabic. Food Hydrocoll. 2020, 100, 105381. [Google Scholar] [CrossRef]
- Ruan, Q.; Zeng, L.; Ren, J.; Yang, X. One-Step Formation of a Double Pickering Emulsion via Modulation of the Oil Phase Composition. Food Funct. 2018, 9, 4508–4517. [Google Scholar] [CrossRef] [PubMed]
- Vladisavljević, G.T.; al Nuumani, R.; Nabavi, S.A. Microfluidic Production of Multiple Emulsions. Micromachines 2017, 8, 75. [Google Scholar] [CrossRef]
- Vladisavljević, G.T. Recent Advances in the Production of Controllable Multiple Emulsions Using Microfabricated Devices. Particuology 2016, 24, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.Y.; Utada, A.S.; Shah, R.K.; Kim, J.W.; Weitz, D.A. Controllable Monodisperse Multiple Emulsions. Angew. Chem. Int. Ed. 2007, 46, 9128–9132. [Google Scholar] [CrossRef]
- Shah, R.K.; Kim, J.W.; Agresti, J.J.; Weitz, D.A.; Chu, L.Y. Fabrication of Monodisperse Thermosensitive Microgels and Gel Capsules in Microfluidic Devices. Soft Matter 2008, 4, 2303–2309. [Google Scholar] [CrossRef]
- Al Nuumani, R.; Vladisavljević, G.T.; Kasprzak, M.; Wolf, B. In-Vitro Oral Digestion of Microfluidically Produced Monodispersed W/O/W Food Emulsions Loaded with Concentrated Sucrose Solution Designed to Enhance Sweetness Perception. J. Food Eng. 2020, 267, 109701. [Google Scholar] [CrossRef]
- Thorsen, T.; Roberts, R.W.; Arnold, F.H.; Quake, S.R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett. 2001, 86, 4163. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.Y.; Nakajima, M.; Binks, B.P. Preparation of Particle-Stabilized Oil-in-Water Emulsions with the Microchannel Emulsification Method. Colloids Surf. A Physicochem. Eng. Asp. 2005, 262, 94–100. [Google Scholar] [CrossRef]
- Mackie, A.R.; Rafiee, H.; Malcolm, P.; Salt, L.; van Aken, G. Specific Food Structures Supress Appetite through Reduced Gastric Emptying Rate. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G1038–G1043. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Jia, H.; Gao, G.; Wang, X.; Zhang, X.; Wang, Y. Using Cellulose Nanofibers and Its Palm Oil Pickering Emulsion as Fat Substitutes in Emulsified Sausage. J. Food Sci. 2018, 83, 1740–1747. [Google Scholar] [CrossRef]
- Xie, Y.; Lei, Y.; Rong, J.; Zhang, X.; Li, J.; Chen, Y.; Liang, H.; Li, Y.; Li, B.; Fang, Z.; et al. Physico-Chemical Properties of Reduced-Fat Biscuits Prepared Using O/W Cellulose-Based Pickering Emulsion. LWT 2021, 148, 111745. [Google Scholar] [CrossRef]
- Feng, X.; Sun, Y.; Yang, Y.; Zhou, X.; Cen, K.; Yu, C.; Xu, T.; Tang, X. Zein Nanoparticle Stabilized Pickering Emulsion Enriched with Cinnamon Oil and Its Effects on Pound Cakes. LWT 2020, 122, 109025. [Google Scholar] [CrossRef]
- Aserin, A. Multiple Emulsions: Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Matos, M.; Timgren, A.; Sjöö, M.; Dejmek, P.; Rayner, M. Preparation and Encapsulation Properties of Double Pickering Emulsions Stabilized by Quinoa Starch Granules. Colloids Surf. A Physicochem. Eng. Asp. 2013, 423, 147–153. [Google Scholar] [CrossRef]
- Boostani, S.; Riazi, M.; Marefati, A.; Rayner, M.; Hosseini, S.M.H. Development and Characterization of Medium and High Internal Phase Novel Multiple Pickering Emulsions Stabilized by Hordein Nanoparticles. Food Chem. 2022, 372, 131354. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, T.; Smits, J.; Huang, X.; Maas, M.; Yin, S.; Ngai, T. Edible High Internal Phase Pickering Emulsion with Double-Emulsion Morphology. Food Hydrocoll. 2021, 111, 106405. [Google Scholar] [CrossRef]
- Low, L.E.; Tan, L.T.H.; Goh, B.H.; Tey, B.T.; Ong, B.H.; Tang, S.Y. Magnetic Cellulose Nanocrystal Stabilized Pickering Emulsions for Enhanced Bioactive Release and Human Colon Cancer Therapy. Int. J. Biol. Macromol. 2019, 127, 76–84. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, S.; Sun, Y.; Fang, X.; Wu, L. Fabrication, Properties and Applications of Janus Particles. Chem. Soc. Rev. 2012, 41, 4356–4378. [Google Scholar] [CrossRef]
- Walther, A.; Müller, A.H.E. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 2013, 113, 5194–5261. [Google Scholar] [CrossRef] [PubMed]
- Kierulf, A.; Azizi, M.; Eskandarloo, H.; Whaley, J.; Liu, W.; Perez-Herrera, M.; You, Z.; Abbaspourrad, A. Starch-Based Janus Particles: Proof-of-Concept Heterogeneous Design via a Spin-Coating Spray Approach. Food Hydrocoll. 2019, 91, 301–310. [Google Scholar] [CrossRef]
- Jia, R.; Jiang, H.; Jin, M.; Wang, X.; Huang, J. Silver/Chitosan-Based Janus Particles: Synthesis, Characterization, and Assessment of Antimicrobial Activity in Vivo and Vitro. Food Res. Int. 2015, 78, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Tu, F.; Lee, D. One-Step Encapsulation and Triggered Release Based on Janus Particle-Stabilized Multiple Emulsions. Chem. Commun. 2014, 50, 15549–15552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Savagatrup, S.; Kaplonek, P.; Seeberger, P.H.; Swager, T.M. Janus Emulsions for the Detection of Bacteria. ACS Cent. Sci. 2017, 3, 309–313. [Google Scholar] [CrossRef]
- Liao, D.H.; Zhao, J.B.; Gregersen, H. Gastrointestinal Tract Modelling in Health and Disease. World J. Gastroenterol. 2009, 15, 169–176. [Google Scholar] [CrossRef]
- Kitazawa, H.; Toba, T.; Itoh, T.; Kumano, N.; Adachi, S.; Yamaguchi, T. Antitumoral Activity of Slime-Forming, Encapsulated Lctococcus Lactis Subsp. Cremoris Isol. Scand. Ropy Sour Milk Viili Nihon Chikusan Gakkaiho 1991, 62, 277–283. [Google Scholar] [CrossRef]
- Charteris, W.P.; Kelly, P.M.; Morelli, L.; Collins, J.K. Development and Application of an in Vitro Methodology to Determine the Transit Tolerance of Potentially Probiotic Lactobacillus and Bifidobacterium Species in the Upper Human Gastrointestinal Tract. J. Appl. Microbiol. 1998, 84, 759–768. [Google Scholar] [CrossRef]
- Sumeri, I.; Arike, L.; Adamberg, K.; Paalme, T. Single Bioreactor Gastrointestinal Tract Simulator for Study of Survival of Probiotic Bacteria. Appl. Microbiol. Biotechnol. 2008, 80, 317–324. [Google Scholar] [CrossRef]
- Li, C.; Yu, W.; Wu, P.; Chen, X.D. Current in Vitro Digestion Systems for Understanding Food Digestion in Human Upper Gastrointestinal Tract. Trends Food Sci. Technol. 2020, 96, 114–126. [Google Scholar] [CrossRef]
- Mulet-Cabero, A.I.; Egger, L.; Portmann, R.; Ménard, O.; Marze, S.; Minekus, M.; le Feunteun, S.; Sarkar, A.; Grundy, M.M.L.; Carrière, F.; et al. A Standardised Semi-Dynamic: In Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2020, 11, 1702–1720. [Google Scholar] [CrossRef] [Green Version]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Sjöö, M.; Emek, S.C.; Hall, T.; Rayner, M.; Wahlgren, M. Barrier Properties of Heat Treated Starch Pickering Emulsions. J. Colloid Interface Sci. 2015, 450, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Goh, K.K.T.; Singh, R.P.; Singh, H. Behaviour of an Oil-in-Water Emulsion Stabilized by β-Lactoglobulin in an in Vitro Gastric Model. Food Hydrocoll. 2009, 23, 1563–1569. [Google Scholar] [CrossRef]
- Sarkar, A.; Goh, K.K.T.; Singh, H. Properties of Oil-in-Water Emulsions Stabilized by β-Lactoglobulin in Simulated Gastric Fluid as Influenced by Ionic Strength and Presence of Mucin. Food Hydrocoll. 2010, 24, 534–541. [Google Scholar] [CrossRef]
- Mao, L.; Miao, S. Structuring Food Emulsions to Improve Nutrient Delivery During Digestion. Food Eng. Rev. 2015, 7, 439–451. [Google Scholar] [CrossRef]
- Maldonado-Valderrama, J.; Woodward, N.C.; Patrick Gunning, A.; Ridout, M.J.; Husband, F.A.; Mackie, A.R.; Morris, V.J.; Wilde, P.J. Interfacial Characterization of β-Lactoglobulin Networks: Displacement by Bile Salts. Langmuir 2008, 24, 6759–6767. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Andrade, J.; Rousseau, D. Fat Crystal-Stabilized Water-in-Oil Emulsion Breakdown and Marker Release during in Vitro Digestion. LWT 2021, 149, 111802. [Google Scholar] [CrossRef]
- Lee, Y.K.; Chang, Y.H. Structural and in Vitro Digestibility Properties of Esterified Maca Starch with Citric Acid and Its Application as an Oil-in-Water (O/W) Pickering Emulsion Stabilizer. Int. J. Biol. Macromol. 2019, 134, 798–806. [Google Scholar] [CrossRef]
- Li, X.; Kuang, Y.; Jiang, Y.; Dong, H.; Han, W.; Ding, Q.; Lou, J.; Wang, Y.; Cao, T.; Li, J.; et al. In Vitro Gastrointestinal Digestibility of Corn Oil-in-Water Pickering Emulsions Stabilized by Three Types of Nanocellulose. Carbohydr. Polym. 2022, 277, 118835. [Google Scholar] [CrossRef]
- Marefati, A.; Wiege, B.; Abdul Hadi, N.; Dejmek, P.; Rayner, M. In Vitro Intestinal Lipolysis of Emulsions Based on Starch Granule Pickering Stabilization. Food Hydrocoll. 2019, 95, 468–475. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, C.; Wang, B.; Mao, Z.; Xu, H.; Zhong, Y.; Zhang, L.; Sui, X.; Qu, S. In Vitro Digestion of Oil-in-Water Emulsions Stabilized by Regenerated Chitin. J. Agric. Food Chem. 2018, 66, 12344–12352. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Lu, X.; Huang, Q. Double Emulsion Derived from Kafirin Nanoparticles Stabilized Pickering Emulsion: Fabrication, Microstructure, Stability and in Vitro Digestion Profile. Food Hydrocoll. 2017, 62, 230–238. [Google Scholar] [CrossRef]
- Cai, L.; Cao, M.; Regenstein, J. Slow-Release and Nontoxic Pickering Emulsion Platform for Antimicrobial Peptide. J. Agric. Food Chem. 2020, 68, 7453–7466. [Google Scholar] [CrossRef]
PPs for Simple Emulsions—Primary Material | Reference |
---|---|
Apple pomace | [44] |
Bamboo shoot | [45] |
Casein | [46,47] |
Cellulose | [48,49,50,51] |
Chitosan | [52,53] |
Egg proteins | [54,55,56,57] |
Gelatin | [58,59] |
Lupin cultivar | [60] |
Pea protein | [61] |
Peanut protein | [62] |
Quinoa protein | [63] |
Rapeseed protein | [64] |
Starch | [65,66] |
Soy protein | [67,68] |
Tea components | [69,70] |
Walnut flour | [71] |
Whey protein | [72] |
Zein | [73,74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klojdová, I.; Stathopoulos, C. The Potential Application of Pickering Multiple Emulsions in Food. Foods 2022, 11, 1558. https://doi.org/10.3390/foods11111558
Klojdová I, Stathopoulos C. The Potential Application of Pickering Multiple Emulsions in Food. Foods. 2022; 11(11):1558. https://doi.org/10.3390/foods11111558
Chicago/Turabian StyleKlojdová, Iveta, and Constantinos Stathopoulos. 2022. "The Potential Application of Pickering Multiple Emulsions in Food" Foods 11, no. 11: 1558. https://doi.org/10.3390/foods11111558
APA StyleKlojdová, I., & Stathopoulos, C. (2022). The Potential Application of Pickering Multiple Emulsions in Food. Foods, 11(11), 1558. https://doi.org/10.3390/foods11111558